@article{288, abstract = {Recent lineage tracing studies have revealed that mammary gland homeostasis relies on unipotent stem cells. However, whether and when lineage restriction occurs during embryonic mammary development, and which signals orchestrate cell fate specification, remain unknown. Using a combination of in vivo clonal analysis with whole mount immunofluorescence and mathematical modelling of clonal dynamics, we found that embryonic multipotent mammary cells become lineage-restricted surprisingly early in development, with evidence for unipotency as early as E12.5 and no statistically discernable bipotency after E15.5. To gain insights into the mechanisms governing the switch from multipotency to unipotency, we used gain-of-function Notch1 mice and demonstrated that Notch activation cell autonomously dictates luminal cell fate specification to both embryonic and basally committed mammary cells. These functional studies have important implications for understanding the signals underlying cell plasticity and serve to clarify how reactivation of embryonic programs in adult cells can lead to cancer.}, author = {Lilja, Anna and Rodilla, Veronica and Huyghe, Mathilde and Hannezo, Edouard B and Landragin, Camille and Renaud, Olivier and Leroy, Olivier and Rulands, Steffen and Simons, Benjamin and Fré, Silvia}, journal = {Nature Cell Biology}, number = {6}, pages = {677 -- 687}, publisher = {Nature Publishing Group}, title = {{Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland}}, doi = {10.1038/s41556-018-0108-1}, volume = {20}, year = {2018}, } @article{304, abstract = {Additive manufacturing has recently seen drastic improvements in resolution, making it now possible to fabricate features at scales of hundreds or even dozens of nanometers, which previously required very expensive lithographic methods. As a result, additive manufacturing now seems poised for optical applications, including those relevant to computer graphics, such as material design, as well as display and imaging applications. In this work, we explore the use of additive manufacturing for generating structural colors, where the structures are designed using a fabrication-aware optimization process. This requires a combination of full-wave simulation, a feasible parameterization of the design space, and a tailored optimization procedure. Many of these components should be re-usable for the design of other optical structures at this scale. We show initial results of material samples fabricated based on our designs. While these suffer from the prototype character of state-of-the-art fabrication hardware, we believe they clearly demonstrate the potential of additive nanofabrication for structural colors and other graphics applications.}, author = {Auzinger, Thomas and Heidrich, Wolfgang and Bickel, Bernd}, journal = {ACM Transactions on Graphics}, number = {4}, publisher = {ACM}, title = {{Computational design of nanostructural color for additive manufacturing}}, doi = {10.1145/3197517.3201376}, volume = {37}, year = {2018}, } @article{12, abstract = {Molding is a popular mass production method, in which the initial expenses for the mold are offset by the low per-unit production cost. However, the physical fabrication constraints of the molding technique commonly restrict the shape of moldable objects. For a complex shape, a decomposition of the object into moldable parts is a common strategy to address these constraints, with plastic model kits being a popular and illustrative example. However, conducting such a decomposition requires considerable expertise, and it depends on the technical aspects of the fabrication technique, as well as aesthetic considerations. We present an interactive technique to create such decompositions for two-piece molding, in which each part of the object is cast between two rigid mold pieces. Given the surface description of an object, we decompose its thin-shell equivalent into moldable parts by first performing a coarse decomposition and then utilizing an active contour model for the boundaries between individual parts. Formulated as an optimization problem, the movement of the contours is guided by an energy reflecting fabrication constraints to ensure the moldability of each part. Simultaneously, the user is provided with editing capabilities to enforce aesthetic guidelines. Our interactive interface provides control of the contour positions by allowing, for example, the alignment of part boundaries with object features. Our technique enables a novel workflow, as it empowers novice users to explore the design space, and it generates fabrication-ready two-piece molds that can be used either for casting or industrial injection molding of free-form objects.}, author = {Nakashima, Kazutaka and Auzinger, Thomas and Iarussi, Emmanuel and Zhang, Ran and Igarashi, Takeo and Bickel, Bernd}, journal = {ACM Transaction on Graphics}, number = {4}, publisher = {ACM}, title = {{CoreCavity: Interactive shell decomposition for fabrication with two-piece rigid molds}}, doi = {10.1145/3197517.3201341}, volume = {37}, year = {2018}, } @article{454, abstract = {Direct reciprocity is a mechanism for cooperation among humans. Many of our daily interactions are repeated. We interact repeatedly with our family, friends, colleagues, members of the local and even global community. In the theory of repeated games, it is a tacit assumption that the various games that a person plays simultaneously have no effect on each other. Here we introduce a general framework that allows us to analyze “crosstalk” between a player’s concurrent games. In the presence of crosstalk, the action a person experiences in one game can alter the person’s decision in another. We find that crosstalk impedes the maintenance of cooperation and requires stronger levels of forgiveness. The magnitude of the effect depends on the population structure. In more densely connected social groups, crosstalk has a stronger effect. A harsh retaliator, such as Tit-for-Tat, is unable to counteract crosstalk. The crosstalk framework provides a unified interpretation of direct and upstream reciprocity in the context of repeated games.}, author = {Reiter, Johannes and Hilbe, Christian and Rand, David and Chatterjee, Krishnendu and Nowak, Martin}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group}, title = {{Crosstalk in concurrent repeated games impedes direct reciprocity and requires stronger levels of forgiveness}}, doi = {10.1038/s41467-017-02721-8}, volume = {9}, year = {2018}, } @article{320, abstract = {Fast-spiking, parvalbumin-expressing GABAergic interneurons (PV+-BCs) express a complex machinery of rapid signaling mechanisms, including specialized voltage-gated ion channels to generate brief action potentials (APs). However, short APs are associated with overlapping Na+ and K+ fluxes and are therefore energetically expensive. How the potentially vicious combination of high AP frequency and inefficient spike generation can be reconciled with limited energy supply is presently unclear. To address this question, we performed direct recordings from the PV+-BC axon, the subcellular structure where active conductances for AP initiation and propagation are located. Surprisingly, the energy required for the AP was, on average, only ∼1.6 times the theoretical minimum. High energy efficiency emerged from the combination of fast inactivation of Na+ channels and delayed activation of Kv3-type K+ channels, which minimized ion flux overlap during APs. Thus, the complementary tuning of axonal Na+ and K+ channel gating optimizes both fast signaling properties and metabolic efficiency. Hu et al. demonstrate that action potentials in parvalbumin-expressing GABAergic interneuron axons are energetically efficient, which is highly unexpected given their brief duration. High energy efficiency emerges from the combination of fast inactivation of voltage-gated Na+ channels and delayed activation of Kv3 channels in the axon. }, author = {Hu, Hua and Roth, Fabian and Vandael, David H and Jonas, Peter M}, journal = {Neuron}, number = {1}, pages = {156 -- 165}, publisher = {Elsevier}, title = {{Complementary tuning of Na+ and K+ channel gating underlies fast and energy-efficient action potentials in GABAergic interneuron axons}}, doi = {10.1016/j.neuron.2018.02.024}, volume = {98}, year = {2018}, }