@unpublished{8063, abstract = {We present a generative model of images that explicitly reasons over the set of objects they show. Our model learns a structured latent representation that separates objects from each other and from the background; unlike prior works, it explicitly represents the 2D position and depth of each object, as well as an embedding of its segmentation mask and appearance. The model can be trained from images alone in a purely unsupervised fashion without the need for object masks or depth information. Moreover, it always generates complete objects, even though a significant fraction of training images contain occlusions. Finally, we show that our model can infer decompositions of novel images into their constituent objects, including accurate prediction of depth ordering and segmentation of occluded parts.}, author = {Anciukevicius, Titas and Lampert, Christoph and Henderson, Paul M}, booktitle = {arXiv}, title = {{Object-centric image generation with factored depths, locations, and appearances}}, year = {2020}, } @unpublished{8081, abstract = {Here, we employ micro- and nanosized cellulose particles, namely paper fines and cellulose nanocrystals, to induce hierarchical organization over a wide length scale. After processing them into carbonaceous materials, we demonstrate that these hierarchically organized materials outperform the best materials for supercapacitors operating with organic electrolytes reported in literature in terms of specific energy/power (Ragone plot) while showing hardly any capacity fade over 4,000 cycles. The highly porous materials feature a specific surface area as high as 2500 m2ˑg-1 and exhibit pore sizes in the range of 0.5 to 200 nm as proven by scanning electron microscopy and N2 physisorption. The carbonaceous materials have been further investigated by X-ray photoelectron spectroscopy and RAMAN spectroscopy. Since paper fines are an underutilized side stream in any paper production process, they are a cheap and highly available feedstock to prepare carbonaceous materials with outstanding performance in electrochemical applications. }, author = {Hobisch, Mathias A. and Mourad, Eléonore and Fischer, Wolfgang J. and Prehal, Christian and Eyley, Samuel and Childress, Anthony and Zankel, Armin and Mautner, Andreas and Breitenbach, Stefan and Rao, Apparao M. and Thielemans, Wim and Freunberger, Stefan Alexander and Eckhart, Rene and Bauer, Wolfgang and Spirk, Stefan }, title = {{High specific capacitance supercapacitors from hierarchically organized all-cellulose composites}}, year = {2020}, } @article{8105, abstract = {Physical and biological systems often exhibit intermittent dynamics with bursts or avalanches (active states) characterized by power-law size and duration distributions. These emergent features are typical of systems at the critical point of continuous phase transitions, and have led to the hypothesis that such systems may self-organize at criticality, i.e. without any fine tuning of parameters. Since the introduction of the Bak-Tang-Wiesenfeld (BTW) model, the paradigm of self-organized criticality (SOC) has been very fruitful for the analysis of emergent collective behaviors in a number of systems, including the brain. Although considerable effort has been devoted in identifying and modeling scaling features of burst and avalanche statistics, dynamical aspects related to the temporal organization of bursts remain often poorly understood or controversial. Of crucial importance to understand the mechanisms responsible for emergent behaviors is the relationship between active and quiet periods, and the nature of the correlations. Here we investigate the dynamics of active (θ-bursts) and quiet states (δ-bursts) in brain activity during the sleep-wake cycle. We show the duality of power-law (θ, active phase) and exponential-like (δ, quiescent phase) duration distributions, typical of SOC, jointly emerge with power-law temporal correlations and anti-correlated coupling between active and quiet states. Importantly, we demonstrate that such temporal organization shares important similarities with earthquake dynamics, and propose that specific power-law correlations and coupling between active and quiet states are distinctive characteristics of a class of systems with self-organization at criticality.}, author = {Lombardi, Fabrizio and Wang, Jilin W.J.L. and Zhang, Xiyun and Ivanov, Plamen Ch}, issn = {2100-014X}, journal = {EPJ Web of Conferences}, publisher = {EDP Sciences}, title = {{Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality}}, doi = {10.1051/epjconf/202023000005}, volume = {230}, year = {2020}, } @inproceedings{8135, abstract = {Discrete Morse theory has recently lead to new developments in the theory of random geometric complexes. This article surveys the methods and results obtained with this new approach, and discusses some of its shortcomings. It uses simulations to illustrate the results and to form conjectures, getting numerical estimates for combinatorial, topological, and geometric properties of weighted and unweighted Delaunay mosaics, their dual Voronoi tessellations, and the Alpha and Wrap complexes contained in the mosaics.}, author = {Edelsbrunner, Herbert and Nikitenko, Anton and Ölsböck, Katharina and Synak, Peter}, booktitle = {Topological Data Analysis}, isbn = {9783030434076}, issn = {21978549}, pages = {181--218}, publisher = {Springer Nature}, title = {{Radius functions on Poisson–Delaunay mosaics and related complexes experimentally}}, doi = {10.1007/978-3-030-43408-3_8}, volume = {15}, year = {2020}, } @misc{8181, author = {Hauschild, Robert}, publisher = {IST Austria}, title = {{Amplified centrosomes in dendritic cells promote immune cell effector functions}}, doi = {10.15479/AT:ISTA:8181}, year = {2020}, }