@inproceedings{5965, abstract = {Relaxed concurrent data structures have become increasingly popular, due to their scalability in graph processing and machine learning applications (\citeNguyen13, gonzalez2012powergraph ). Despite considerable interest, there exist families of natural, high performing randomized relaxed concurrent data structures, such as the popular MultiQueue~\citeMQ pattern for implementing relaxed priority queue data structures, for which no guarantees are known in the concurrent setting~\citeAKLN17. Our main contribution is in showing for the first time that, under a set of analytic assumptions, a family of relaxed concurrent data structures, including variants of MultiQueues, but also a new approximate counting algorithm we call the MultiCounter, provides strong probabilistic guarantees on the degree of relaxation with respect to the sequential specification, in arbitrary concurrent executions. We formalize these guarantees via a new correctness condition called distributional linearizability, tailored to concurrent implementations with randomized relaxations. Our result is based on a new analysis of an asynchronous variant of the classic power-of-two-choices load balancing algorithm, in which placement choices can be based on inconsistent, outdated information (this result may be of independent interest). We validate our results empirically, showing that the MultiCounter algorithm can implement scalable relaxed timestamps.}, author = {Alistarh, Dan-Adrian and Brown, Trevor A and Kopinsky, Justin and Li, Jerry Z. and Nadiradze, Giorgi}, booktitle = {Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures - SPAA '18}, isbn = {9781450357999}, location = {Vienna, Austria}, pages = {133--142}, publisher = {ACM Press}, title = {{Distributionally linearizable data structures}}, doi = {10.1145/3210377.3210411}, year = {2018}, } @inproceedings{5967, abstract = {The Big Match is a multi-stage two-player game. In each stage Player 1 hides one or two pebbles in his hand, and his opponent has to guess that number; Player 1 loses a point if Player 2 is correct, and otherwise he wins a point. As soon as Player 1 hides one pebble, the players cannot change their choices in any future stage. Blackwell and Ferguson (1968) give an ε-optimal strategy for Player 1 that hides, in each stage, one pebble with a probability that depends on the entire past history. Any strategy that depends just on the clock or on a finite memory is worthless. The long-standing natural open problem has been whether every strategy that depends just on the clock and a finite memory is worthless. We prove that there is such a strategy that is ε-optimal. In fact, we show that just two states of memory are sufficient. }, author = {Hansen, Kristoffer Arnsfelt and Ibsen-Jensen, Rasmus and Neyman, Abraham}, booktitle = {Proceedings of the 2018 ACM Conference on Economics and Computation - EC '18}, isbn = {9781450358293}, location = {Ithaca, NY, United States}, pages = {149--150}, publisher = {ACM Press}, title = {{The Big Match with a clock and a bit of memory}}, doi = {10.1145/3219166.3219198}, year = {2018}, } @inproceedings{5966, abstract = {The transactional conflict problem arises in transactional systems whenever two or more concurrent transactions clash on a data item. While the standard solution to such conflicts is to immediately abort one of the transactions, some practical systems consider the alternative of delaying conflict resolution for a short interval, which may allow one of the transactions to commit. The challenge in the transactional conflict problem is to choose the optimal length of this delay interval so as to minimize the overall running time penalty for the conflicting transactions. In this paper, we propose a family of optimal online algorithms for the transactional conflict problem. Specifically, we consider variants of this problem which arise in different implementations of transactional systems, namely "requestor wins'' and "requestor aborts'' implementations: in the former, the recipient of a coherence request is aborted, whereas in the latter, it is the requestor which has to abort. Both strategies are implemented by real systems. We show that the requestor aborts case can be reduced to a classic instance of the ski rental problem, while the requestor wins case leads to a new version of this classical problem, for which we derive optimal deterministic and randomized algorithms. Moreover, we prove that, under a simplified adversarial model, our algorithms are constant-competitive with the offline optimum in terms of throughput. We validate our algorithmic results empirically through a hardware simulation of hardware transactional memory (HTM), showing that our algorithms can lead to non-trivial performance improvements for classic concurrent data structures.}, author = {Alistarh, Dan-Adrian and Haider, Syed Kamran and Kübler, Raphael and Nadiradze, Giorgi}, booktitle = {Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures - SPAA '18}, isbn = {9781450357999}, location = {Vienna, Austria}, pages = {383--392}, publisher = {ACM Press}, title = {{The transactional conflict problem}}, doi = {10.1145/3210377.3210406}, year = {2018}, } @article{5975, abstract = {We consider the recent formulation of the algorithmic Lov ́asz Local Lemma [N. Har-vey and J. Vondr ́ak, inProceedings of FOCS, 2015, pp. 1327–1345; D. Achlioptas and F. Iliopoulos,inProceedings of SODA, 2016, pp. 2024–2038; D. Achlioptas, F. Iliopoulos, and V. Kolmogorov,ALocal Lemma for Focused Stochastic Algorithms, arXiv preprint, 2018] for finding objects that avoid“bad features,” or “flaws.” It extends the Moser–Tardos resampling algorithm [R. A. Moser andG. Tardos,J. ACM, 57 (2010), 11] to more general discrete spaces. At each step the method picks aflaw present in the current state and goes to a new state according to some prespecified probabilitydistribution (which depends on the current state and the selected flaw). However, the recent formu-lation is less flexible than the Moser–Tardos method since it requires a specific flaw selection rule,whereas the algorithm of Moser and Tardos allows an arbitrary rule (and thus can potentially beimplemented more efficiently). We formulate a new “commutativity” condition and prove that it issufficient for an arbitrary rule to work. It also enables an efficient parallelization under an additionalassumption. We then show that existing resampling oracles for perfect matchings and permutationsdo satisfy this condition.}, author = {Kolmogorov, Vladimir}, issn = {1095-7111}, journal = {SIAM Journal on Computing}, number = {6}, pages = {2029--2056}, publisher = {Society for Industrial & Applied Mathematics (SIAM)}, title = {{Commutativity in the algorithmic Lovász local lemma}}, doi = {10.1137/16m1093306}, volume = {47}, year = {2018}, } @inproceedings{5964, abstract = {A standard design pattern found in many concurrent data structures, such as hash tables or ordered containers, is an alternation of parallelizable sections that incur no data conflicts and critical sections that must run sequentially and are protected with locks. A lock can be viewed as a queue that arbitrates the order in which the critical sections are executed, and a natural question is whether we can use stochastic analysis to predict the resulting throughput. As a preliminary evidence to the affirmative, we describe a simple model that can be used to predict the throughput of coarse-grained lock-based algorithms. We show that our model works well for CLH lock, and we expect it to work for other popular lock designs such as TTAS, MCS, etc.}, author = {Aksenov, Vitaly and Alistarh, Dan-Adrian and Kuznetsov, Petr}, booktitle = {Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing - PODC '18}, isbn = {9781450357951}, location = {Egham, United Kingdom}, pages = {411--413}, publisher = {ACM Press}, title = {{Brief Announcement: Performance prediction for coarse-grained locking}}, doi = {10.1145/3212734.3212785}, year = {2018}, } @article{5971, abstract = {We consider a Wigner-type ensemble, i.e. large hermitian N×N random matrices H=H∗ with centered independent entries and with a general matrix of variances Sxy=𝔼∣∣Hxy∣∣2. The norm of H is asymptotically given by the maximum of the support of the self-consistent density of states. We establish a bound on this maximum in terms of norms of powers of S that substantially improves the earlier bound 2∥S∥1/2∞ given in [O. Ajanki, L. Erdős and T. Krüger, Universality for general Wigner-type matrices, Prob. Theor. Rel. Fields169 (2017) 667–727]. The key element of the proof is an effective Markov chain approximation for the contributions of the weighted Dyck paths appearing in the iterative solution of the corresponding Dyson equation.}, author = {Erdös, László and Mühlbacher, Peter}, issn = {2010-3271}, journal = {Random matrices: Theory and applications}, publisher = {World Scientific Publishing}, title = {{Bounds on the norm of Wigner-type random matrices}}, doi = {10.1142/s2010326319500096}, year = {2018}, } @article{5984, abstract = {G-protein-coupled receptors (GPCRs) form the largest receptor family, relay environmental stimuli to changes in cell behavior and represent prime drug targets. Many GPCRs are classified as orphan receptors because of the limited knowledge on their ligands and coupling to cellular signaling machineries. Here, we engineer a library of 63 chimeric receptors that contain the signaling domains of human orphan and understudied GPCRs functionally linked to the light-sensing domain of rhodopsin. Upon stimulation with visible light, we identify activation of canonical cell signaling pathways, including cAMP-, Ca2+-, MAPK/ERK-, and Rho-dependent pathways, downstream of the engineered receptors. For the human pseudogene GPR33, we resurrect a signaling function that supports its hypothesized role as a pathogen entry site. These results demonstrate that substituting unknown chemical activators with a light switch can reveal information about protein function and provide an optically controlled protein library for exploring the physiology and therapeutic potential of understudied GPCRs.}, author = {Morri, Maurizio and Sanchez-Romero, Inmaculada and Tichy, Alexandra-Madelaine and Kainrath, Stephanie and Gerrard, Elliot J. and Hirschfeld, Priscila and Schwarz, Jan and Janovjak, Harald L}, issn = {2041-1723}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, title = {{Optical functionalization of human class A orphan G-protein-coupled receptors}}, doi = {10.1038/s41467-018-04342-1}, volume = {9}, year = {2018}, } @article{5976, abstract = {We propose FlexMaps, a novel framework for fabricating smooth shapes out of flat, flexible panels with tailored mechanical properties. We start by mapping the 3D surface onto a 2D domain as in traditional UV mapping to design a set of deformable flat panels called FlexMaps. For these panels, we design and obtain specific mechanical properties such that, once they are assembled, the static equilibrium configuration matches the desired 3D shape. FlexMaps can be fabricated from an almost rigid material, such as wood or plastic, and are made flexible in a controlled way by using computationally designed spiraling microstructures.}, author = {Malomo, Luigi and Perez Rodriguez, Jesus and Iarussi, Emmanuel and Pietroni, Nico and Miguel, Eder and Cignoni, Paolo and Bickel, Bernd}, issn = {0730-0301}, journal = {ACM Transactions on Graphics}, number = {6}, publisher = {Association for Computing Machinery (ACM)}, title = {{FlexMaps: Computational design of flat flexible shells for shaping 3D objects}}, doi = {10.1145/3272127.3275076}, volume = {37}, year = {2018}, } @article{5983, abstract = {We study a quantum impurity possessing both translational and internal rotational degrees of freedom interacting with a bosonic bath. Such a system corresponds to a “rotating polaron,” which can be used to model, e.g., a rotating molecule immersed in an ultracold Bose gas or superfluid helium. We derive the Hamiltonian of the rotating polaron and study its spectrum in the weak- and strong-coupling regimes using a combination of variational, diagrammatic, and mean-field approaches. We reveal how the coupling between linear and angular momenta affects stable quasiparticle states, and demonstrate that internal rotation leads to an enhanced self-localization in the translational degrees of freedom.}, author = {Yakaboylu, Enderalp and Midya, Bikashkali and Deuchert, Andreas and Leopold, Nikolai K and Lemeshko, Mikhail}, issn = {2469-9969}, journal = {Physical Review B}, number = {22}, publisher = {American Physical Society}, title = {{Theory of the rotating polaron: Spectrum and self-localization}}, doi = {10.1103/physrevb.98.224506}, volume = {98}, year = {2018}, } @article{5982, abstract = {In the present work, we detail a fast and simple solution-based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation-driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower-like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three-fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65.}, author = {Zhang, Yu and Liu, Yu and Lim, Khak Ho and Xing, Congcong and Li, Mengyao and Zhang, Ting and Tang, Pengyi and Arbiol, Jordi and Llorca, Jordi and Ng, Ka Ming and Ibáñez, Maria and Guardia, Pablo and Prato, Mirko and Cadavid, Doris and Cabot, Andreu}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {52}, pages = {17063--17068}, publisher = {Wiley}, title = {{Tin diselenide molecular precursor for solution-processable thermoelectric materials}}, doi = {10.1002/anie.201809847}, volume = {57}, year = {2018}, } @inproceedings{5978, abstract = {We consider the MAP-inference problem for graphical models,which is a valued constraint satisfaction problem defined onreal numbers with a natural summation operation. We proposea family of relaxations (different from the famous Sherali-Adams hierarchy), which naturally define lower bounds for itsoptimum. This family always contains a tight relaxation andwe give an algorithm able to find it and therefore, solve theinitial non-relaxed NP-hard problem.The relaxations we consider decompose the original probleminto two non-overlapping parts: an easy LP-tight part and adifficult one. For the latter part a combinatorial solver must beused. As we show in our experiments, in a number of applica-tions the second, difficult part constitutes only a small fractionof the whole problem. This property allows to significantlyreduce the computational time of the combinatorial solver andtherefore solve problems which were out of reach before.}, author = {Haller, Stefan and Swoboda, Paul and Savchynskyy, Bogdan}, booktitle = {Proceedings of the 32st AAAI Conference on Artificial Intelligence}, location = {New Orleans, LU, United States}, pages = {6581--6588}, publisher = {AAAI Press}, title = {{Exact MAP-inference by confining combinatorial search with LP relaxation}}, year = {2018}, } @article{5990, abstract = {A Ge–Si core–shell nanowire is used to realize a Josephson field‐effect transistor with highly transparent contacts to superconducting leads. By changing the electric field, access to two distinct regimes, not combined before in a single device, is gained: in the accumulation mode the device is highly transparent and the supercurrent is carried by multiple subbands, while near depletion, the supercurrent is carried by single‐particle levels of a strongly coupled quantum dot operating in the few‐hole regime. These results establish Ge–Si nanowires as an important platform for hybrid superconductor–semiconductor physics and Majorana fermions.}, author = {Ridderbos, Joost and Brauns, Matthias and Shen, Jie and de Vries, Folkert K. and Li, Ang and Bakkers, Erik P. A. M. and Brinkman, Alexander and Zwanenburg, Floris A.}, issn = {0935-9648}, journal = {Advanced Materials}, number = {44}, publisher = {Wiley}, title = {{Josephson effect in a few-hole quantum dot}}, doi = {10.1002/adma.201802257}, volume = {30}, year = {2018}, } @article{5998, abstract = {Genome amplification and cellular senescence are commonly associated with pathological processes. While physiological roles for polyploidization and senescence have been described in mouse development, controversy exists over their significance in humans. Here, we describe tetraploidization and senescence as phenomena of normal human placenta development. During pregnancy, placental extravillous trophoblasts (EVTs) invade the pregnant endometrium, termed decidua, to establish an adapted microenvironment required for the developing embryo. This process is critically dependent on continuous cell proliferation and differentiation, which is thought to follow the classical model of cell cycle arrest prior to terminal differentiation. Strikingly, flow cytometry and DNAseq revealed that EVT formation is accompanied with a genome-wide polyploidization, independent of mitotic cycles. DNA replication in these cells was analysed by a fluorescent cell-cycle indicator reporter system, cell cycle marker expression and EdU incorporation. Upon invasion into the decidua, EVTs widely lose their replicative potential and enter a senescent state characterized by high senescence-associated (SA) β-galactosidase activity, induction of a SA secretory phenotype as well as typical metabolic alterations. Furthermore, we show that the shift from endocycle-dependent genome amplification to growth arrest is disturbed in androgenic complete hydatidiform moles (CHM), a hyperplastic pregnancy disorder associated with increased risk of developing choriocarinoma. Senescence is decreased in CHM-EVTs, accompanied by exacerbated endoreduplication and hyperploidy. We propose induction of cellular senescence as a ploidy-limiting mechanism during normal human placentation and unravel a link between excessive polyploidization and reduced senescence in CHM.}, author = {Velicky, Philipp and Meinhardt, Gudrun and Plessl, Kerstin and Vondra, Sigrid and Weiss, Tamara and Haslinger, Peter and Lendl, Thomas and Aumayr, Karin and Mairhofer, Mario and Zhu, Xiaowei and Schütz, Birgit and Hannibal, Roberta L. and Lindau, Robert and Weil, Beatrix and Ernerudh, Jan and Neesen, Jürgen and Egger, Gerda and Mikula, Mario and Röhrl, Clemens and Urban, Alexander E. and Baker, Julie and Knöfler, Martin and Pollheimer, Jürgen}, issn = {1553-7404}, journal = {PLOS Genetics}, number = {10}, publisher = {Public Library of Science}, title = {{Genome amplification and cellular senescence are hallmarks of human placenta development}}, doi = {10.1371/journal.pgen.1007698}, volume = {14}, year = {2018}, } @article{5995, abstract = {Motivation Computational prediction of the effect of mutations on protein stability is used by researchers in many fields. The utility of the prediction methods is affected by their accuracy and bias. Bias, a systematic shift of the predicted change of stability, has been noted as an issue for several methods, but has not been investigated systematically. Presence of the bias may lead to misleading results especially when exploring the effects of combination of different mutations. Results Here we use a protocol to measure the bias as a function of the number of introduced mutations. It is based on a self-consistency test of the reciprocity the effect of a mutation. An advantage of the used approach is that it relies solely on crystal structures without experimentally measured stability values. We applied the protocol to four popular algorithms predicting change of protein stability upon mutation, FoldX, Eris, Rosetta and I-Mutant, and found an inherent bias. For one program, FoldX, we manage to substantially reduce the bias using additional relaxation by Modeller. Authors using algorithms for predicting effects of mutations should be aware of the bias described here.}, author = {Usmanova, Dinara R and Bogatyreva, Natalya S and Ariño Bernad, Joan and Eremina, Aleksandra A and Gorshkova, Anastasiya A and Kanevskiy, German M and Lonishin, Lyubov R and Meister, Alexander V and Yakupova, Alisa G and Kondrashov, Fyodor and Ivankov, Dmitry}, issn = {1367-4803}, journal = {Bioinformatics}, number = {21}, pages = {3653--3658}, publisher = {Oxford University Press }, title = {{Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation}}, doi = {10.1093/bioinformatics/bty340}, volume = {34}, year = {2018}, } @article{5992, abstract = {Lamellipodia are flat membrane protrusions formed during mesenchymal motion. Polymerization at the leading edge assembles the actin filament network and generates protrusion force. How this force is supported by the network and how the assembly rate is shared between protrusion and network retrograde flow determines the protrusion rate. We use mathematical modeling to understand experiments changing the F-actin density in lamellipodia of B16-F1 melanoma cells by modulation of Arp2/3 complex activity or knockout of the formins FMNL2 and FMNL3. Cells respond to a reduction of density with a decrease of protrusion velocity, an increase in the ratio of force to filament number, but constant network assembly rate. The relation between protrusion force and tension gradient in the F-actin network and the density dependency of friction, elasticity, and viscosity of the network explain the experimental observations. The formins act as filament nucleators and elongators with differential rates. Modulation of their activity suggests an effect on network assembly rate. Contrary to these expectations, the effect of changes in elongator composition is much weaker than the consequences of the density change. We conclude that the force acting on the leading edge membrane is the force required to drive F-actin network retrograde flow.}, author = {Dolati, Setareh and Kage, Frieda and Mueller, Jan and Müsken, Mathias and Kirchner, Marieluise and Dittmar, Gunnar and Sixt, Michael K and Rottner, Klemens and Falcke, Martin}, issn = {1939-4586}, journal = {Molecular Biology of the Cell}, number = {22}, pages = {2674--2686}, publisher = {American Society for Cell Biology }, title = {{On the relation between filament density, force generation, and protrusion rate in mesenchymal cell motility}}, doi = {10.1091/mbc.e18-02-0082}, volume = {29}, year = {2018}, } @article{6010, abstract = {The optic tectum (TeO), or superior colliculus, is a multisensory midbrain center that organizes spatially orienting responses to relevant stimuli. To define the stimulus with the highest priority at each moment, a network of reciprocal connections between the TeO and the isthmi promotes competition between concurrent tectal inputs. In the avian midbrain, the neurons mediating enhancement and suppression of tectal inputs are located in separate isthmic nuclei, facilitating the analysis of the neural processes that mediate competition. A specific subset of radial neurons in the intermediate tectal layers relay retinal inputs to the isthmi, but at present it is unclear whether separate neurons innervate individual nuclei or a single neural type sends a common input to several of them. In this study, we used in vitro neural tracing and cell-filling experiments in chickens to show that single neurons innervate, via axon collaterals, the three nuclei that comprise the isthmotectal network. This demonstrates that the input signals representing the strength of the incoming stimuli are simultaneously relayed to the mechanisms promoting both enhancement and suppression of the input signals. By performing in vivo recordings in anesthetized chicks, we also show that this common input generates synchrony between both antagonistic mechanisms, demonstrating that activity enhancement and suppression are closely coordinated. From a computational point of view, these results suggest that these tectal neurons constitute integrative nodes that combine inputs from different sources to drive in parallel several concurrent neural processes, each performing complementary functions within the network through different firing patterns and connectivity.}, author = {Garrido-Charad, Florencia and Vega Zuniga, Tomas A and Gutiérrez-Ibáñez, Cristián and Fernandez, Pedro and López-Jury, Luciana and González-Cabrera, Cristian and Karten, Harvey J. and Luksch, Harald and Marín, Gonzalo J.}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {32}, pages = {E7615--E7623}, publisher = {National Academy of Sciences}, title = {{“Shepherd’s crook” neurons drive and synchronize the enhancing and suppressive mechanisms of the midbrain stimulus selection network}}, doi = {10.1073/pnas.1804517115}, volume = {115}, year = {2018}, } @article{6003, abstract = {Digital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as ‘stylized fabrication methods’. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion or to devise a particular interaction with the fabricated model. In this state‐of‐the‐art report, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research.}, author = {Bickel, Bernd and Cignoni, Paolo and Malomo, Luigi and Pietroni, Nico}, issn = {0167-7055}, journal = {Computer Graphics Forum}, number = {6}, pages = {325--342}, publisher = {Wiley}, title = {{State of the art on stylized fabrication}}, doi = {10.1111/cgf.13327}, volume = {37}, year = {2018}, } @article{6002, abstract = {The Bogoliubov free energy functional is analysed. The functional serves as a model of a translation-invariant Bose gas at positive temperature. We prove the existence of minimizers in the case of repulsive interactions given by a sufficiently regular two-body potential. Furthermore, we prove the existence of a phase transition in this model and provide its phase diagram.}, author = {Napiórkowski, Marcin M and Reuvers, Robin and Solovej, Jan Philip}, issn = {1432-0673}, journal = {Archive for Rational Mechanics and Analysis}, number = {3}, pages = {1037--1090}, publisher = {Springer Nature}, title = {{The Bogoliubov free energy functional I: Existence of minimizers and phase diagram}}, doi = {10.1007/s00205-018-1232-6}, volume = {229}, year = {2018}, } @article{5996, abstract = {In pipes, turbulence sets in despite the linear stability of the laminar Hagen–Poiseuille flow. The Reynolds number ( ) for which turbulence first appears in a given experiment – the ‘natural transition point’ – depends on imperfections of the set-up, or, more precisely, on the magnitude of finite amplitude perturbations. At onset, turbulence typically only occupies a certain fraction of the flow, and this fraction equally is found to differ from experiment to experiment. Despite these findings, Reynolds proposed that after sufficiently long times, flows may settle to steady conditions: below a critical velocity, flows should (regardless of initial conditions) always return to laminar, while above this velocity, eddying motion should persist. As will be shown, even in pipes several thousand diameters long, the spatio-temporal intermittent flow patterns observed at the end of the pipe strongly depend on the initial conditions, and there is no indication that different flow patterns would eventually settle to a (statistical) steady state. Exploiting the fact that turbulent puffs do not age (i.e. they are memoryless), we continuously recreate the puff sequence exiting the pipe at the pipe entrance, and in doing so introduce periodic boundary conditions for the puff pattern. This procedure allows us to study the evolution of the flow patterns for arbitrary long times, and we find that after times in excess of advective time units, indeed a statistical steady state is reached. Although the resulting flows remain spatio-temporally intermittent, puff splitting and decay rates eventually reach a balance, so that the turbulent fraction fluctuates around a well-defined level which only depends on . In accordance with Reynolds’ proposition, we find that at lower (here 2020), flows eventually always resume to laminar, while for higher ( ), turbulence persists. The critical point for pipe flow hence falls in the interval of $2020 , which is in very good agreement with the recently proposed value of . The latter estimate was based on single-puff statistics and entirely neglected puff interactions. Unlike in typical contact processes where such interactions strongly affect the percolation threshold, in pipe flow, the critical point is only marginally influenced. Interactions, on the other hand, are responsible for the approach to the statistical steady state. As shown, they strongly affect the resulting flow patterns, where they cause ‘puff clustering’, and these regions of large puff densities are observed to travel across the puff pattern in a wave-like fashion.}, author = {Vasudevan, Mukund and Hof, Björn}, issn = {1469-7645}, journal = {Journal of Fluid Mechanics}, pages = {76--94}, publisher = {Cambridge University Press}, title = {{The critical point of the transition to turbulence in pipe flow}}, doi = {10.1017/jfm.2017.923}, volume = {839}, year = {2018}, } @article{5993, abstract = {In this article, we consider the termination problem of probabilistic programs with real-valued variables. Thequestions concerned are: qualitative ones that ask (i) whether the program terminates with probability 1(almost-sure termination) and (ii) whether the expected termination time is finite (finite termination); andquantitative ones that ask (i) to approximate the expected termination time (expectation problem) and (ii) tocompute a boundBsuch that the probability not to terminate afterBsteps decreases exponentially (con-centration problem). To solve these questions, we utilize the notion of ranking supermartingales, which isa powerful approach for proving termination of probabilistic programs. In detail, we focus on algorithmicsynthesis of linear ranking-supermartingales over affine probabilistic programs (Apps) with both angelic anddemonic non-determinism. An important subclass of Apps is LRApp which is defined as the class of all Appsover which a linear ranking-supermartingale exists.Our main contributions are as follows. Firstly, we show that the membership problem of LRApp (i) canbe decided in polynomial time for Apps with at most demonic non-determinism, and (ii) isNP-hard and inPSPACEfor Apps with angelic non-determinism. Moreover, theNP-hardness result holds already for Appswithout probability and demonic non-determinism. Secondly, we show that the concentration problem overLRApp can be solved in the same complexity as for the membership problem of LRApp. Finally, we show thatthe expectation problem over LRApp can be solved in2EXPTIMEand isPSPACE-hard even for Apps withoutprobability and non-determinism (i.e., deterministic programs). Our experimental results demonstrate theeffectiveness of our approach to answer the qualitative and quantitative questions over Apps with at mostdemonic non-determinism.}, author = {Chatterjee, Krishnendu and Fu, Hongfei and Novotný, Petr and Hasheminezhad, Rouzbeh}, issn = {0164-0925}, journal = {ACM Transactions on Programming Languages and Systems}, number = {2}, publisher = {Association for Computing Machinery (ACM)}, title = {{Algorithmic analysis of qualitative and quantitative termination problems for affine probabilistic programs}}, doi = {10.1145/3174800}, volume = {40}, year = {2018}, }