@article{7451, abstract = {We prove that the observable telegraph signal accompanying the bistability in the photon-blockade-breakdown regime of the driven and lossy Jaynes–Cummings model is the finite-size precursor of what in the thermodynamic limit is a genuine first-order phase transition. We construct a finite-size scaling of the system parameters to a well-defined thermodynamic limit, in which the system remains the same microscopic system, but the telegraph signal becomes macroscopic both in its timescale and intensity. The existence of such a finite-size scaling completes and justifies the classification of the photon-blockade-breakdown effect as a first-order dissipative quantum phase transition.}, author = {Vukics, A. and Dombi, A. and Fink, Johannes M and Domokos, P.}, issn = {2521-327X}, journal = {Quantum}, publisher = {Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften}, title = {{Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition}}, doi = {10.22331/q-2019-06-03-150}, volume = {3}, year = {2019}, } @inproceedings{7468, abstract = {We present a new proximal bundle method for Maximum-A-Posteriori (MAP) inference in structured energy minimization problems. The method optimizes a Lagrangean relaxation of the original energy minimization problem using a multi plane block-coordinate Frank-Wolfe method that takes advantage of the specific structure of the Lagrangean decomposition. We show empirically that our method outperforms state-of-the-art Lagrangean decomposition based algorithms on some challenging Markov Random Field, multi-label discrete tomography and graph matching problems.}, author = {Swoboda, Paul and Kolmogorov, Vladimir}, booktitle = {Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition}, isbn = {9781728132938}, issn = {10636919}, location = {Long Beach, CA, United States}, publisher = {IEEE}, title = {{Map inference via block-coordinate Frank-Wolfe algorithm}}, doi = {10.1109/CVPR.2019.01140}, volume = {2019-June}, year = {2019}, } @inproceedings{7479, abstract = {Multi-exit architectures, in which a stack of processing layers is interleaved with early output layers, allow the processing of a test example to stop early and thus save computation time and/or energy. In this work, we propose a new training procedure for multi-exit architectures based on the principle of knowledge distillation. The method encourage searly exits to mimic later, more accurate exits, by matching their output probabilities. Experiments on CIFAR100 and ImageNet show that distillation-based training significantly improves the accuracy of early exits while maintaining state-of-the-art accuracy for late ones. The method is particularly beneficial when training data is limited and it allows a straightforward extension to semi-supervised learning,i.e. making use of unlabeled data at training time. Moreover, it takes only afew lines to implement and incurs almost no computational overhead at training time, and none at all at test time.}, author = {Bui Thi Mai, Phuong and Lampert, Christoph}, booktitle = {IEEE International Conference on Computer Vision}, isbn = {9781728148038}, issn = {15505499}, location = {Seoul, Korea}, pages = {1355--1364}, publisher = {IEEE}, title = {{Distillation-based training for multi-exit architectures}}, doi = {10.1109/ICCV.2019.00144}, volume = {2019-October}, year = {2019}, } @inproceedings{7542, abstract = {We present a novel class of convolutional neural networks (CNNs) for set functions,i.e., data indexed with the powerset of a finite set. The convolutions are derivedas linear, shift-equivariant functions for various notions of shifts on set functions.The framework is fundamentally different from graph convolutions based on theLaplacian, as it provides not one but several basic shifts, one for each element inthe ground set. Prototypical experiments with several set function classificationtasks on synthetic datasets and on datasets derived from real-world hypergraphsdemonstrate the potential of our new powerset CNNs.}, author = {Wendler, Chris and Alistarh, Dan-Adrian and Püschel, Markus}, issn = {1049-5258}, location = {Vancouver, Canada}, pages = {927--938}, publisher = {Neural Information Processing Systems Foundation}, title = {{Powerset convolutional neural networks}}, volume = {32}, year = {2019}, } @inproceedings{7640, abstract = {We propose a new model for detecting visual relationships, such as "person riding motorcycle" or "bottle on table". This task is an important step towards comprehensive structured mage understanding, going beyond detecting individual objects. Our main novelty is a Box Attention mechanism that allows to model pairwise interactions between objects using standard object detection pipelines. The resulting model is conceptually clean, expressive and relies on well-justified training and prediction procedures. Moreover, unlike previously proposed approaches, our model does not introduce any additional complex components or hyperparameters on top of those already required by the underlying detection model. We conduct an experimental evaluation on two datasets, V-COCO and Open Images, demonstrating strong quantitative and qualitative results.}, author = {Kolesnikov, Alexander and Kuznetsova, Alina and Lampert, Christoph and Ferrari, Vittorio}, booktitle = {Proceedings of the 2019 International Conference on Computer Vision Workshop}, isbn = {9781728150239}, location = {Seoul, South Korea}, publisher = {IEEE}, title = {{Detecting visual relationships using box attention}}, doi = {10.1109/ICCVW.2019.00217}, year = {2019}, } @unpublished{8184, abstract = {Denote by ∆N the N-dimensional simplex. A map f : ∆N → Rd is an almost r-embedding if fσ1∩. . .∩fσr = ∅ whenever σ1, . . . , σr are pairwise disjoint faces. A counterexample to the topological Tverberg conjecture asserts that if r is not a prime power and d ≥ 2r + 1, then there is an almost r-embedding ∆(d+1)(r−1) → Rd. This was improved by Blagojevi´c–Frick–Ziegler using a simple construction of higher-dimensional counterexamples by taking k-fold join power of lower-dimensional ones. We improve this further (for d large compared to r): If r is not a prime power and N := (d+ 1)r−r l d + 2 r + 1 m−2, then there is an almost r-embedding ∆N → Rd. For the r-fold van Kampen–Flores conjecture we also produce counterexamples which are stronger than previously known. Our proof is based on generalizations of the Mabillard–Wagner theorem on construction of almost r-embeddings from equivariant maps, and of the Ozaydin theorem on existence of equivariant maps. }, author = {Avvakumov, Sergey and Karasev, R. and Skopenkov, A.}, booktitle = {arXiv}, publisher = {arXiv}, title = {{Stronger counterexamples to the topological Tverberg conjecture}}, year = {2019}, } @inproceedings{6430, abstract = {A proxy re-encryption (PRE) scheme is a public-key encryption scheme that allows the holder of a key pk to derive a re-encryption key for any other key 𝑝𝑘′. This re-encryption key lets anyone transform ciphertexts under pk into ciphertexts under 𝑝𝑘′ without having to know the underlying message, while transformations from 𝑝𝑘′ to pk should not be possible (unidirectional). Security is defined in a multi-user setting against an adversary that gets the users’ public keys and can ask for re-encryption keys and can corrupt users by requesting their secret keys. Any ciphertext that the adversary cannot trivially decrypt given the obtained secret and re-encryption keys should be secure. All existing security proofs for PRE only show selective security, where the adversary must first declare the users it wants to corrupt. This can be lifted to more meaningful adaptive security by guessing the set of corrupted users among the n users, which loses a factor exponential in Open image in new window , rendering the result meaningless already for moderate Open image in new window . Jafargholi et al. (CRYPTO’17) proposed a framework that in some cases allows to give adaptive security proofs for schemes which were previously only known to be selectively secure, while avoiding the exponential loss that results from guessing the adaptive choices made by an adversary. We apply their framework to PREs that satisfy some natural additional properties. Concretely, we give a more fine-grained reduction for several unidirectional PREs, proving adaptive security at a much smaller loss. The loss depends on the graph of users whose edges represent the re-encryption keys queried by the adversary. For trees and chains the loss is quasi-polynomial in the size and for general graphs it is exponential in their depth and indegree (instead of their size as for previous reductions). Fortunately, trees and low-depth graphs cover many, if not most, interesting applications. Our results apply e.g. to the bilinear-map based PRE schemes by Ateniese et al. (NDSS’05 and CT-RSA’09), Gentry’s FHE-based scheme (STOC’09) and the LWE-based scheme by Chandran et al. (PKC’14).}, author = {Fuchsbauer, Georg and Kamath Hosdurg, Chethan and Klein, Karen and Pietrzak, Krzysztof Z}, isbn = {9783030172589}, issn = {16113349}, location = {Beijing, China}, pages = {317--346}, publisher = {Springer Nature}, title = {{Adaptively secure proxy re-encryption}}, doi = {10.1007/978-3-030-17259-6_11}, volume = {11443}, year = {2019}, } @article{6069, abstract = {Electron transport in two-dimensional conducting materials such as graphene, with dominant electron–electron interaction, exhibits unusual vortex flow that leads to a nonlocal current-field relation (negative resistance), distinct from the classical Ohm’s law. The transport behavior of these materials is best described by low Reynolds number hydrodynamics, where the constitutive pressure–speed relation is Stoke’s law. Here we report evidence of such vortices observed in a viscous flow of Newtonian fluid in a microfluidic device consisting of a rectangular cavity—analogous to the electronic system. We extend our experimental observations to elliptic cavities of different eccentricities, and validate them by numerically solving bi-harmonic equation obtained for the viscous flow with no-slip boundary conditions. We verify the existence of a predicted threshold at which vortices appear. Strikingly, we find that a two-dimensional theoretical model captures the essential features of three-dimensional Stokes flow in experiments.}, author = {Mayzel, Jonathan and Steinberg, Victor and Varshney, Atul}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Stokes flow analogous to viscous electron current in graphene}}, doi = {10.1038/s41467-019-08916-5}, volume = {10}, year = {2019}, } @article{6014, abstract = {Speed of sound waves in gases and liquids are governed by the compressibility of the medium. There exists another type of non-dispersive wave where the wave speed depends on stress instead of elasticity of the medium. A well-known example is the Alfven wave, which propagates through plasma permeated by a magnetic field with the speed determined by magnetic tension. An elastic analogue of Alfven waves has been predicted in a flow of dilute polymer solution where the elastic stress of the stretching polymers determines the elastic wave speed. Here we present quantitative evidence of elastic Alfven waves in elastic turbulence of a viscoelastic creeping flow between two obstacles in channel flow. The key finding in the experimental proof is a nonlinear dependence of the elastic wave speed cel on the Weissenberg number Wi, which deviates from predictions based on a model of linear polymer elasticity.}, author = {Varshney, Atul and Steinberg, Victor}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Elastic alfven waves in elastic turbulence}}, doi = {10.1038/s41467-019-08551-0}, volume = {10}, year = {2019}, } @article{6451, abstract = {Epidermal growth factor receptor (EGFR) signaling controls skin development and homeostasis inmice and humans, and its deficiency causes severe skin inflammation, which might affect epidermalstem cell behavior. Here, we describe the inflammation-independent effects of EGFR deficiency dur-ing skin morphogenesis and in adult hair follicle stem cells. Expression and alternative splicing analysisof RNA sequencing data from interfollicular epidermis and outer root sheath indicate that EGFR con-trols genes involved in epidermal differentiation and also in centrosome function, DNA damage, cellcycle, and apoptosis. Genetic experiments employingp53deletion in EGFR-deficient epidermis revealthat EGFR signaling exhibitsp53-dependent functions in proliferative epidermal compartments, aswell asp53-independent functions in differentiated hair shaft keratinocytes. Loss of EGFR leads toabsence of LEF1 protein specifically in the innermost epithelial hair layers, resulting in disorganizationof medulla cells. Thus, our results uncover important spatial and temporal features of cell-autonomousEGFR functions in the epidermis.}, author = {Amberg, Nicole and Sotiropoulou, Panagiota A. and Heller, Gerwin and Lichtenberger, Beate M. and Holcmann, Martin and Camurdanoglu, Bahar and Baykuscheva-Gentscheva, Temenuschka and Blanpain, Cedric and Sibilia, Maria}, issn = {2589-0042}, journal = {iScience}, pages = {243--256}, publisher = {Elsevier}, title = {{EGFR controls hair shaft differentiation in a p53-independent manner}}, doi = {10.1016/j.isci.2019.04.018}, volume = {15}, year = {2019}, } @article{10879, abstract = {We study effects of a bounded and compactly supported perturbation on multidimensional continuum random Schrödinger operators in the region of complete localisation. Our main emphasis is on Anderson orthogonality for random Schrödinger operators. Among others, we prove that Anderson orthogonality does occur for Fermi energies in the region of complete localisation with a non-zero probability. This partially confirms recent non-rigorous findings [V. Khemani et al., Nature Phys. 11 (2015), 560–565]. The spectral shift function plays an important role in our analysis of Anderson orthogonality. We identify it with the index of the corresponding pair of spectral projections and explore the consequences thereof. All our results rely on the main technical estimate of this paper which guarantees separate exponential decay of the disorder-averaged Schatten p-norm of χa(f(H)−f(Hτ))χb in a and b. Here, Hτ is a perturbation of the random Schrödinger operator H, χa is the multiplication operator corresponding to the indicator function of a unit cube centred about a∈Rd, and f is in a suitable class of functions of bounded variation with distributional derivative supported in the region of complete localisation for H.}, author = {Dietlein, Adrian M and Gebert, Martin and Müller, Peter}, issn = {1664-039X}, journal = {Journal of Spectral Theory}, keywords = {Random Schrödinger operators, spectral shift function, Anderson orthogonality}, number = {3}, pages = {921--965}, publisher = {European Mathematical Society Publishing House}, title = {{Perturbations of continuum random Schrödinger operators with applications to Anderson orthogonality and the spectral shift function}}, doi = {10.4171/jst/267}, volume = {9}, year = {2019}, } @article{10878, abstract = {Starting from a microscopic model for a system of neurons evolving in time which individually follow a stochastic integrate-and-fire type model, we study a mean-field limit of the system. Our model is described by a system of SDEs with discontinuous coefficients for the action potential of each neuron and takes into account the (random) spatial configuration of neurons allowing the interaction to depend on it. In the limit as the number of particles tends to infinity, we obtain a nonlinear Fokker-Planck type PDE in two variables, with derivatives only with respect to one variable and discontinuous coefficients. We also study strong well-posedness of the system of SDEs and prove the existence and uniqueness of a weak measure-valued solution to the PDE, obtained as the limit of the laws of the empirical measures for the system of particles.}, author = {Flandoli, Franco and Priola, Enrico and Zanco, Giovanni A}, issn = {1553-5231}, journal = {Discrete and Continuous Dynamical Systems}, keywords = {Applied Mathematics, Discrete Mathematics and Combinatorics, Analysis}, number = {6}, pages = {3037--3067}, publisher = {American Institute of Mathematical Sciences}, title = {{A mean-field model with discontinuous coefficients for neurons with spatial interaction}}, doi = {10.3934/dcds.2019126}, volume = {39}, year = {2019}, } @inproceedings{6935, abstract = {This paper investigates the power of preprocessing in the CONGEST model. Schmid and Suomela (ACM HotSDN 2013) introduced the SUPPORTED CONGEST model to study the application of distributed algorithms in Software-Defined Networks (SDNs). In this paper, we show that a large class of lower bounds in the CONGEST model still hold in the SUPPORTED model, highlighting the robustness of these bounds. This also raises the question how much does preprocessing help in the CONGEST model.}, author = {Foerster, Klaus-Tycho and Korhonen, Janne and Rybicki, Joel and Schmid, Stefan}, booktitle = {Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing}, isbn = {9781450362177}, location = {Toronto, ON, Canada}, pages = {259--261}, publisher = {ACM}, title = {{Does preprocessing help under congestion?}}, doi = {10.1145/3293611.3331581}, year = {2019}, } @article{138, abstract = {Autoregulation is the direct modulation of gene expression by the product of the corresponding gene. Autoregulation of bacterial gene expression has been mostly studied at the transcriptional level, when a protein acts as the cognate transcriptional repressor. A recent study investigating dynamics of the bacterial toxin–antitoxin MazEF system has shown how autoregulation at both the transcriptional and post-transcriptional levels affects the heterogeneity of Escherichia coli populations. Toxin–antitoxin systems hold a crucial but still elusive part in bacterial response to stress. This perspective highlights how these modules can also serve as a great model system for investigating basic concepts in gene regulation. However, as the genomic background and environmental conditions substantially influence toxin activation, it is important to study (auto)regulation of toxin–antitoxin systems in well-defined setups as well as in conditions that resemble the environmental niche.}, author = {Nikolic, Nela}, journal = {Current Genetics}, number = {1}, pages = {133--138}, publisher = {Springer}, title = {{Autoregulation of bacterial gene expression: lessons from the MazEF toxin–antitoxin system}}, doi = {10.1007/s00294-018-0879-8}, volume = {65}, year = {2019}, } @article{151, abstract = {We construct planar bi-Sobolev mappings whose local volume distortion is bounded from below by a given function f∈Lp with p>1. More precisely, for any 1<q<(p+1)/2 we construct W1,q-bi-Sobolev maps with identity boundary conditions; for f∈L∞, we provide bi-Lipschitz maps. The basic building block of our construction are bi-Lipschitz maps which stretch a given compact subset of the unit square by a given factor while preserving the boundary. The construction of these stretching maps relies on a slight strengthening of the celebrated covering result of Alberti, Csörnyei, and Preiss for measurable planar sets in the case of compact sets. We apply our result to a model functional in nonlinear elasticity, the integrand of which features fast blowup as the Jacobian determinant of the deformation becomes small. For such functionals, the derivation of the equilibrium equations for minimizers requires an additional regularization of test functions, which our maps provide.}, author = {Fischer, Julian L and Kneuss, Olivier}, journal = {Journal of Differential Equations}, number = {1}, pages = {257 -- 311}, publisher = {Elsevier}, title = {{Bi-Sobolev solutions to the prescribed Jacobian inequality in the plane with L p data and applications to nonlinear elasticity}}, doi = {10.1016/j.jde.2018.07.045}, volume = {266}, year = {2019}, } @article{27, abstract = {The cerebral cortex is composed of a large variety of distinct cell-types including projection neurons, interneurons and glial cells which emerge from distinct neural stem cell (NSC) lineages. The vast majority of cortical projection neurons and certain classes of glial cells are generated by radial glial progenitor cells (RGPs) in a highly orchestrated manner. Recent studies employing single cell analysis and clonal lineage tracing suggest that NSC and RGP lineage progression are regulated in a profound deterministic manner. In this review we focus on recent advances based mainly on correlative phenotypic data emerging from functional genetic studies in mice. We establish hypotheses to test in future research and outline a conceptual framework how epigenetic cues modulate the generation of cell-type diversity during cortical development. This article is protected by copyright. All rights reserved.}, author = {Amberg, Nicole and Laukoter, Susanne and Hippenmeyer, Simon}, journal = {Journal of Neurochemistry}, number = {1}, pages = {12--26}, publisher = {Wiley}, title = {{Epigenetic cues modulating the generation of cell type diversity in the cerebral cortex}}, doi = {10.1111/jnc.14601}, volume = {149}, year = {2019}, } @article{5789, abstract = {Tissue morphogenesis is driven by mechanical forces that elicit changes in cell size, shape and motion. The extent by which forces deform tissues critically depends on the rheological properties of the recipient tissue. Yet, whether and how dynamic changes in tissue rheology affect tissue morphogenesis and how they are regulated within the developing organism remain unclear. Here, we show that blastoderm spreading at the onset of zebrafish morphogenesis relies on a rapid, pronounced and spatially patterned tissue fluidization. Blastoderm fluidization is temporally controlled by mitotic cell rounding-dependent cell–cell contact disassembly during the last rounds of cell cleavages. Moreover, fluidization is spatially restricted to the central blastoderm by local activation of non-canonical Wnt signalling within the blastoderm margin, increasing cell cohesion and thereby counteracting the effect of mitotic rounding on contact disassembly. Overall, our results identify a fluidity transition mediated by loss of cell cohesion as a critical regulator of embryo morphogenesis.}, author = {Petridou, Nicoletta and Grigolon, Silvia and Salbreux, Guillaume and Hannezo, Edouard B and Heisenberg, Carl-Philipp J}, issn = {14657392}, journal = {Nature Cell Biology}, pages = {169–178}, publisher = {Nature Publishing Group}, title = {{Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling}}, doi = {10.1038/s41556-018-0247-4}, volume = {21}, year = {2019}, } @article{196, abstract = {The abelian sandpile serves as a model to study self-organized criticality, a phenomenon occurring in biological, physical and social processes. The identity of the abelian group is a fractal composed of self-similar patches, and its limit is subject of extensive collaborative research. Here, we analyze the evolution of the sandpile identity under harmonic fields of different orders. We show that this evolution corresponds to periodic cycles through the abelian group characterized by the smooth transformation and apparent conservation of the patches constituting the identity. The dynamics induced by second and third order harmonics resemble smooth stretchings, respectively translations, of the identity, while the ones induced by fourth order harmonics resemble magnifications and rotations. Starting with order three, the dynamics pass through extended regions of seemingly random configurations which spontaneously reassemble into accentuated patterns. We show that the space of harmonic functions projects to the extended analogue of the sandpile group, thus providing a set of universal coordinates identifying configurations between different domains. Since the original sandpile group is a subgroup of the extended one, this directly implies that it admits a natural renormalization. Furthermore, we show that the harmonic fields can be induced by simple Markov processes, and that the corresponding stochastic dynamics show remarkable robustness over hundreds of periods. Finally, we encode information into seemingly random configurations, and decode this information with an algorithm requiring minimal prior knowledge. Our results suggest that harmonic fields might split the sandpile group into sub-sets showing different critical coefficients, and that it might be possible to extend the fractal structure of the identity beyond the boundaries of its domain. }, author = {Lang, Moritz and Shkolnikov, Mikhail}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {8}, pages = {2821--2830}, publisher = {National Academy of Sciences}, title = {{Harmonic dynamics of the Abelian sandpile}}, doi = {10.1073/pnas.1812015116}, volume = {116}, year = {2019}, } @article{5817, abstract = {We theoretically study the shapes of lipid vesicles confined to a spherical cavity, elaborating a framework based on the so-called limiting shapes constructed from geometrically simple structural elements such as double-membrane walls and edges. Partly inspired by numerical results, the proposed non-compartmentalized and compartmentalized limiting shapes are arranged in the bilayer-couple phase diagram which is then compared to its free-vesicle counterpart. We also compute the area-difference-elasticity phase diagram of the limiting shapes and we use it to interpret shape transitions experimentally observed in vesicles confined within another vesicle. The limiting-shape framework may be generalized to theoretically investigate the structure of certain cell organelles such as the mitochondrion.}, author = {Kavcic, Bor and Sakashita, A. and Noguchi, H. and Ziherl, P.}, issn = {1744-6848}, journal = {Soft Matter}, number = {4}, pages = {602--614}, publisher = {Royal Society of Chemistry}, title = {{Limiting shapes of confined lipid vesicles}}, doi = {10.1039/c8sm01956h}, volume = {15}, year = {2019}, } @article{73, abstract = {We consider the space of probability measures on a discrete set X, endowed with a dynamical optimal transport metric. Given two probability measures supported in a subset Y⊆X, it is natural to ask whether they can be connected by a constant speed geodesic with support in Y at all times. Our main result answers this question affirmatively, under a suitable geometric condition on Y introduced in this paper. The proof relies on an extension result for subsolutions to discrete Hamilton-Jacobi equations, which is of independent interest.}, author = {Erbar, Matthias and Maas, Jan and Wirth, Melchior}, issn = {09442669}, journal = {Calculus of Variations and Partial Differential Equations}, number = {1}, publisher = {Springer}, title = {{On the geometry of geodesics in discrete optimal transport}}, doi = {10.1007/s00526-018-1456-1}, volume = {58}, year = {2019}, }