@inproceedings{15006, abstract = {Graphical games are a useful framework for modeling the interactions of (selfish) agents who are connected via an underlying topology and whose behaviors influence each other. They have wide applications ranging from computer science to economics and biology. Yet, even though an agent’s payoff only depends on the actions of their direct neighbors in graphical games, computing the Nash equilibria and making statements about the convergence time of "natural" local dynamics in particular can be highly challenging. In this work, we present a novel approach for classifying complexity of Nash equilibria in graphical games by establishing a connection to local graph algorithms, a subfield of distributed computing. In particular, we make the observation that the equilibria of graphical games are equivalent to locally verifiable labelings (LVL) in graphs; vertex labelings which are verifiable with constant-round local algorithms. This connection allows us to derive novel lower bounds on the convergence time to equilibrium of best-response dynamics in graphical games. Since we establish that distributed convergence can sometimes be provably slow, we also introduce and give bounds on an intuitive notion of "time-constrained" inefficiency of best responses. We exemplify how our results can be used in the implementation of mechanisms that ensure convergence of best responses to a Nash equilibrium. Our results thus also give insight into the convergence of strategy-proof algorithms for graphical games, which is still not well understood.}, author = {Hirvonen, Juho and Schmid, Laura and Chatterjee, Krishnendu and Schmid, Stefan}, booktitle = {27th International Conference on Principles of Distributed Systems}, isbn = {9783959773089}, issn = {18688969}, location = {Tokyo, Japan}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{On the convergence time in graphical games: A locality-sensitive approach}}, doi = {10.4230/LIPIcs.OPODIS.2023.11}, volume = {286}, year = {2024}, } @article{15001, abstract = {Self-replication of amyloid fibrils via secondary nucleation is an intriguing physicochemical phenomenon in which existing fibrils catalyze the formation of their own copies. The molecular events behind this fibril surface-mediated process remain largely inaccessible to current structural and imaging techniques. Using statistical mechanics, computer modeling, and chemical kinetics, we show that the catalytic structure of the fibril surface can be inferred from the aggregation behavior in the presence and absence of a fibril-binding inhibitor. We apply our approach to the case of Alzheimer’s A amyloid fibrils formed in the presence of proSP-C Brichos inhibitors. We find that self-replication of A fibrils occurs on small catalytic sites on the fibril surface, which are far apart from each other, and each of which can be covered by a single Brichos inhibitor.}, author = {Curk, Samo and Krausser, Johannes and Meisl, Georg and Frenkel, Daan and Linse, Sara and Michaels, Thomas C.T. and Knowles, Tuomas P.J. and Šarić, Anđela}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {7}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites}}, doi = {10.1073/pnas.2220075121}, volume = {121}, year = {2024}, } @article{15002, abstract = {The lattice Schwinger model, the discrete version of QED in 1 + 1 dimensions, is a well-studied test bench for lattice gauge theories. Here, we study the fractal properties of this model. We reveal the self-similarity of the ground state, which allows us to develop a recurrent procedure for finding the ground-state wave functions and predicting ground-state energies. We present the results of recurrently calculating ground-state wave functions using the fractal Ansatz and automized software package for fractal image processing. In certain parameter regimes, just a few terms are enough for our recurrent procedure to predict ground-state energies close to the exact ones for several hundreds of sites. Our findings pave the way to understanding the complexity of calculating many-body wave functions in terms of their fractal properties as well as finding new links between condensed matter and high-energy lattice models.}, author = {Petrova, Elena and Tiunov, Egor S. and Bañuls, Mari Carmen and Fedorov, Aleksey K.}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {5}, publisher = {American Physical Society}, title = {{Fractal states of the Schwinger model}}, doi = {10.1103/PhysRevLett.132.050401}, volume = {132}, year = {2024}, } @article{12485, abstract = {In this paper we introduce the critical variational setting for parabolic stochastic evolution equations of quasi- or semi-linear type. Our results improve many of the abstract results in the classical variational setting. In particular, we are able to replace the usual weak or local monotonicity condition by a more flexible local Lipschitz condition. Moreover, the usual growth conditions on the multiplicative noise are weakened considerably. Our new setting provides general conditions under which local and global existence and uniqueness hold. Moreover, we prove continuous dependence on the initial data. We show that many classical SPDEs, which could not be covered by the classical variational setting, do fit in the critical variational setting. In particular, this is the case for the Cahn-Hilliard equations, tamed Navier-Stokes equations, and Allen-Cahn equation.}, author = {Agresti, Antonio and Veraar, Mark}, issn = {1432-2064}, journal = {Probability Theory and Related Fields}, publisher = {Springer Nature}, title = {{The critical variational setting for stochastic evolution equations}}, doi = {10.1007/s00440-023-01249-x}, year = {2024}, } @inproceedings{15008, abstract = {Oblivious routing is a well-studied paradigm that uses static precomputed routing tables for selecting routing paths within a network. Existing oblivious routing schemes with polylogarithmic competitive ratio for general networks are tree-based, in the sense that routing is performed according to a convex combination of trees. However, this restriction to trees leads to a construction that has time quadratic in the size of the network and does not parallelize well. In this paper we study oblivious routing schemes based on electrical routing. In particular, we show that general networks with n vertices and m edges admit a routing scheme that has competitive ratio O(log² n) and consists of a convex combination of only O(√m) electrical routings. This immediately leads to an improved construction algorithm with time Õ(m^{3/2}) that can also be implemented in parallel with Õ(√m) depth.}, author = {Goranci, Gramoz and Henzinger, Monika H and Räcke, Harald and Sachdeva, Sushant and Sricharan, A. R.}, booktitle = {15th Innovations in Theoretical Computer Science Conference}, isbn = {9783959773096}, issn = {1868-8969}, location = {Berkeley, CA, United States}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Electrical flows for polylogarithmic competitive oblivious routing}}, doi = {10.4230/LIPIcs.ITCS.2024.55}, volume = {287}, year = {2024}, } @inproceedings{15007, abstract = {Traditional blockchains grant the miner of a block full control not only over which transactions but also their order. This constitutes a major flaw discovered with the introduction of decentralized finance and allows miners to perform MEV attacks. In this paper, we address the issue of sandwich attacks by providing a construction that takes as input a blockchain protocol and outputs a new blockchain protocol with the same security but in which sandwich attacks are not profitable. Furthermore, our protocol is fully decentralized with no trusted third parties or heavy cryptography primitives and carries a linear increase in latency and minimum computation overhead.}, author = {Alpos, Orestis and Amores-Sesar, Ignacio and Cachin, Christian and Yeo, Michelle X}, booktitle = {27th International Conference on Principles of Distributed Systems}, isbn = {9783959773089}, issn = {1868-8969}, location = {Tokyo, Japan}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Eating sandwiches: Modular and lightweight elimination of transaction reordering attacks}}, doi = {10.4230/LIPIcs.OPODIS.2023.12}, volume = {286}, year = {2024}, } @inproceedings{14769, abstract = {For a set of points in Rd, the Euclidean k-means problems consists of finding k centers such that the sum of distances squared from each data point to its closest center is minimized. Coresets are one the main tools developed recently to solve this problem in a big data context. They allow to compress the initial dataset while preserving its structure: running any algorithm on the coreset provides a guarantee almost equivalent to running it on the full data. In this work, we study coresets in a fully-dynamic setting: points are added and deleted with the goal to efficiently maintain a coreset with which a k-means solution can be computed. Based on an algorithm from Henzinger and Kale [ESA'20], we present an efficient and practical implementation of a fully dynamic coreset algorithm, that improves the running time by up to a factor of 20 compared to our non-optimized implementation of the algorithm by Henzinger and Kale, without sacrificing more than 7% on the quality of the k-means solution.}, author = {Henzinger, Monika H and Saulpic, David and Sidl, Leonhard}, booktitle = {2024 Proceedings of the Symposium on Algorithm Engineering and Experiments}, location = {Alexandria, VA, United States}, pages = {220--233}, publisher = {Society for Industrial & Applied Mathematics}, title = {{Experimental evaluation of fully dynamic k-means via coresets}}, doi = {10.1137/1.9781611977929.17}, year = {2024}, } @article{15009, abstract = {Since the commercialization of brine shrimp (genus Artemia) in the 1950s, this lineage, and in particular the model species Artemia franciscana, has been the subject of extensive research. However, our understanding of the genetic mechanisms underlying various aspects of their reproductive biology, including sex determination, is still lacking. This is partly due to the scarcity of genomic resources for Artemia species and crustaceans in general. Here, we present a chromosome-level genome assembly of A. franciscana (Kellogg 1906), from the Great Salt Lake, United States. The genome is 1 GB, and the majority of the genome (81%) is scaffolded into 21 linkage groups using a previously published high-density linkage map. We performed coverage and FST analyses using male and female genomic and transcriptomic reads to quantify the extent of differentiation between the Z and W chromosomes. Additionally, we quantified the expression levels in male and female heads and gonads and found further evidence for dosage compensation in this species.}, author = {Bett, Vincent K and Macon, Ariana and Vicoso, Beatriz and Elkrewi, Marwan N}, issn = {1759-6653}, journal = {Genome Biology and Evolution}, number = {1}, publisher = {Oxford University Press}, title = {{Chromosome-level assembly of Artemia franciscana sheds light on sex chromosome differentiation}}, doi = {10.1093/gbe/evae006}, volume = {16}, year = {2024}, } @article{15004, abstract = {The impulsive limit (the “sudden approximation”) has been widely employed to describe the interaction between molecules and short, far-off-resonant laser pulses. This approximation assumes that the timescale of the laser-molecule interaction is significantly shorter than the internal rotational period of the molecule, resulting in the rotational motion being instantaneously “frozen” during the interaction. This simplified description of the laser-molecule interaction is incorporated in various theoretical models predicting rotational dynamics of molecules driven by short laser pulses. In this theoretical work, we develop an effective theory for ultrashort laser pulses by examining the full time-evolution operator and solving the time-dependent Schrödinger equation at the operator level. Our findings reveal a critical angular momentum, lcrit, at which the impulsive limit breaks down. In other words, the validity of the sudden approximation depends not only on the pulse duration but also on its intensity, since the latter determines how many angular momentum states are populated. We explore both ultrashort multicycle (Gaussian) pulses and the somewhat less studied half-cycle pulses, which produce distinct effective potentials. We discuss the limitations of the impulsive limit and propose a method that rescales the effective matrix elements, enabling an improved and more accurate description of laser-molecule interactions.}, author = {Karle, Volker and Lemeshko, Mikhail}, issn = {2469-9934}, journal = {Physical Review A}, number = {2}, publisher = {American Physical Society}, title = {{Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics}}, doi = {10.1103/PhysRevA.109.023101}, volume = {109}, year = {2024}, } @misc{14705, abstract = {Since the commercialization of brine shrimp (genus Artemia) in the 1950s, this lineage, and in particular the model species Artemia franciscana, has been the subject of extensive research. However, our understanding of the genetic mechanisms underlying various aspects of their reproductive biology, including sex determination, are still lacking. This is partly due to the scarcity of genomic resources for Artemia species and crustaceans in general. Here, we present a chromosome-level genome assembly of Artemia franciscana (Kellogg 1906), from the Great Salt Lake, USA. The genome is 1GB, and the majority of the genome (81%) is scaffolded into 21 linkage groups using a previously published high-density linkage map. We performed coverage and FST analyses using male and female genomic and transcriptomic reads to quantify the extent of differentiation between the Z and W chromosomes. Additionally, we quantified the expression levels in male and female heads and gonads and found further evidence for dosage compensation in this species.}, author = {Elkrewi, Marwan N}, keywords = {sex chromosome evolution, genome assembly, dosage compensation}, publisher = {Institute of Science and Technology Austria}, title = {{Data from "Chromosome-level assembly of Artemia franciscana sheds light on sex-chromosome differentiation"}}, doi = {10.15479/AT:ISTA:14705}, year = {2024}, } @article{15018, abstract = {The epitaxial growth of a strained Ge layer, which is a promising candidate for the channel material of a hole spin qubit, has been demonstrated on 300 mm Si wafers using commercially available Si0.3Ge0.7 strain relaxed buffer (SRB) layers. The assessment of the layer and the interface qualities for a buried strained Ge layer embedded in Si0.3Ge0.7 layers is reported. The XRD reciprocal space mapping confirmed that the reduction of the growth temperature enables the 2-dimensional growth of the Ge layer fully strained with respect to the Si0.3Ge0.7. Nevertheless, dislocations at the top and/or bottom interface of the Ge layer were observed by means of electron channeling contrast imaging, suggesting the importance of the careful dislocation assessment. The interface abruptness does not depend on the selection of the precursor gases, but it is strongly influenced by the growth temperature which affects the coverage of the surface H-passivation. The mobility of 2.7 × 105 cm2/Vs is promising, while the low percolation density of 3 × 1010 /cm2 measured with a Hall-bar device at 7 K illustrates the high quality of the heterostructure thanks to the high Si0.3Ge0.7 SRB quality.}, author = {Shimura, Yosuke and Godfrin, Clement and Hikavyy, Andriy and Li, Roy and Aguilera Servin, Juan L and Katsaros, Georgios and Favia, Paola and Han, Han and Wan, Danny and de Greve, Kristiaan and Loo, Roger}, issn = {1369-8001}, journal = {Materials Science in Semiconductor Processing}, keywords = {Mechanical Engineering, Mechanics of Materials, Condensed Matter Physics, General Materials Science}, number = {5}, publisher = {Elsevier}, title = {{Compressively strained epitaxial Ge layers for quantum computing applications}}, doi = {10.1016/j.mssp.2024.108231}, volume = {174}, year = {2024}, } @inproceedings{15011, abstract = {Pruning large language models (LLMs) from the BERT family has emerged as a standard compression benchmark, and several pruning methods have been proposed for this task. The recent “Sparsity May Cry” (SMC) benchmark put into question the validity of all existing methods, exhibiting a more complex setup where many known pruning methods appear to fail. We revisit the question of accurate BERT-pruning during fine-tuning on downstream datasets, and propose a set of general guidelines for successful pruning, even on the challenging SMC benchmark. First, we perform a cost-vs-benefits analysis of pruning model components, such as the embeddings and the classification head; second, we provide a simple-yet-general way of scaling training, sparsification and learning rate schedules relative to the desired target sparsity; finally, we investigate the importance of proper parametrization for Knowledge Distillation in the context of LLMs. Our simple insights lead to state-of-the-art results, both on classic BERT-pruning benchmarks, as well as on the SMC benchmark, showing that even classic gradual magnitude pruning (GMP) can yield competitive results, with the right approach.}, author = {Kurtic, Eldar and Hoefler, Torsten and Alistarh, Dan-Adrian}, booktitle = {Proceedings of Machine Learning Research}, issn = {2640-3498}, location = {Hongkong, China}, pages = {542--553}, publisher = {ML Research Press}, title = {{How to prune your language model: Recovering accuracy on the "Sparsity May Cry" benchmark}}, volume = {234}, year = {2024}, } @article{15024, abstract = {Electrostatic correlations between ions dissolved in water are known to impact their transport properties in numerous ways, from conductivity to ion selectivity. The effects of these correlations on the solvent itself remain, however, much less clear. In particular, the addition of salt has been consistently reported to affect the solution’s viscosity, but most modeling attempts fail to reproduce experimental data even at moderate salt concentrations. Here, we use an approach based on stochastic density functional theory, which accurately captures charge fluctuations and correlations. We derive a simple analytical expression for the viscosity correction in concentrated electrolytes, by directly linking it to the liquid’s structure factor. Our prediction compares quantitatively to experimental data at all temperatures and all salt concentrations up to the saturation limit. This universal link between the microscopic structure and viscosity allows us to shed light on the nanoscale dynamics of water and ions under highly concentrated and correlated conditions.}, author = {Robin, Paul}, issn = {1089-7690}, journal = {Journal of Chemical Physics}, number = {6}, publisher = {AIP Publishing}, title = {{Correlation-induced viscous dissipation in concentrated electrolytes}}, doi = {10.1063/5.0188215}, volume = {160}, year = {2024}, } @article{15025, abstract = {We consider quadratic forms of deterministic matrices A evaluated at the random eigenvectors of a large N×N GOE or GUE matrix, or equivalently evaluated at the columns of a Haar-orthogonal or Haar-unitary random matrix. We prove that, as long as the deterministic matrix has rank much smaller than √N, the distributions of the extrema of these quadratic forms are asymptotically the same as if the eigenvectors were independent Gaussians. This reduces the problem to Gaussian computations, which we carry out in several cases to illustrate our result, finding Gumbel or Weibull limiting distributions depending on the signature of A. Our result also naturally applies to the eigenvectors of any invariant ensemble.}, author = {Erdös, László and McKenna, Benjamin}, issn = {1050-5164}, journal = {Annals of Applied Probability}, number = {1B}, pages = {1623--1662}, publisher = {Institute of Mathematical Statistics}, title = {{Extremal statistics of quadratic forms of GOE/GUE eigenvectors}}, doi = {10.1214/23-AAP2000}, volume = {34}, year = {2024}, } @article{15033, abstract = {The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.}, author = {Adamowski, Maciek and Matijevic, Ivana and Friml, Jiří}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery}}, doi = {10.7554/elife.68993}, volume = {13}, year = {2024}, } @article{14479, abstract = {In animals, parasitic infections impose significant fitness costs.1,2,3,4,5,6 Infected animals can alter their feeding behavior to resist infection,7,8,9,10,11,12 but parasites can manipulate animal foraging behavior to their own benefits.13,14,15,16 How nutrition influences host-parasite interactions is not well understood, as studies have mainly focused on the host and less on the parasite.9,12,17,18,19,20,21,22,23 We used the nutritional geometry framework24 to investigate the role of amino acids (AA) and carbohydrates (C) in a host-parasite system: the Argentine ant, Linepithema humile, and the entomopathogenic fungus, Metarhizium brunneum. First, using 18 diets varying in AA:C composition, we established that the fungus performed best on the high-amino-acid diet 1:4. Second, we found that the fungus reached this optimal diet when given various diet pairings, revealing its ability to cope with nutritional challenges. Third, we showed that the optimal fungal diet reduced the lifespan of healthy ants when compared with a high-carbohydrate diet but had no effect on infected ants. Fourth, we revealed that infected ant colonies, given a choice between the optimal fungal diet and a high-carbohydrate diet, chose the optimal fungal diet, whereas healthy colonies avoided it. Lastly, by disentangling fungal infection from host immune response, we demonstrated that infected ants foraged on the optimal fungal diet in response to immune activation and not as a result of parasite manipulation. Therefore, we revealed that infected ant colonies chose a diet that is costly for survival in the long term but beneficial in the short term—a form of collective self-medication.}, author = {Csata, Eniko and Perez-Escudero, Alfonso and Laury, Emmanuel and Leitner, Hanna and Latil, Gerard and Heinze, Juerge and Simpson, Stephen and Cremer, Sylvia and Dussutour, Audrey}, issn = {1879-0445}, journal = {Current Biology}, number = {4}, pages = {902--909.e6}, publisher = {Elsevier}, title = {{Fungal infection alters collective nutritional intake of ant colonies}}, doi = {10.1016/j.cub.2024.01.017}, volume = {34}, year = {2024}, } @article{15045, abstract = {Coupling of orbital motion to a spin degree of freedom gives rise to various transport phenomena in quantum systems that are beyond the standard paradigms of classical physics. Here, we discuss features of spin-orbit dynamics that can be visualized using a classical model with two coupled angular degrees of freedom. Specifically, we demonstrate classical ‘spin’ filtering through our model and show that the interplay between angular degrees of freedom and dissipation can lead to asymmetric ‘spin’ transport.}, author = {Varshney, Atul and Ghazaryan, Areg and Volosniev, Artem}, issn = {1432-5411}, journal = {Few-Body Systems}, keywords = {Atomic and Molecular Physics, and Optics}, publisher = {Springer Nature}, title = {{Classical ‘spin’ filtering with two degrees of freedom and dissipation}}, doi = {10.1007/s00601-024-01880-x}, volume = {65}, year = {2024}, } @article{15053, abstract = {Atom-based quantum simulators have had many successes in tackling challenging quantum many-body problems, owing to the precise and dynamical control that they provide over the systems' parameters. They are, however, often optimized to address a specific type of problem. Here, we present the design and implementation of a 6Li-based quantum gas platform that provides wide-ranging capabilities and is able to address a variety of quantum many-body problems. Our two-chamber architecture relies on a robust combination of gray molasses and optical transport from a laser-cooling chamber to a glass cell with excellent optical access. There, we first create unitary Fermi superfluids in a three-dimensional axially symmetric harmonic trap and characterize them using in situ thermometry, reaching temperatures below 20 nK. This allows us to enter the deep superfluid regime with samples of extreme diluteness, where the interparticle spacing is sufficiently large for direct single-atom imaging. Second, we generate optical lattice potentials with triangular and honeycomb geometry in which we study diffraction of molecular Bose-Einstein condensates, and show how going beyond the Kapitza-Dirac regime allows us to unambiguously distinguish between the two geometries. With the ability to probe quantum many-body physics in both discrete and continuous space, and its suitability for bulk and single-atom imaging, our setup represents an important step towards achieving a wide-scope quantum simulator.}, author = {Jin, Shuwei and Dai, Kunlun and Verstraten, Joris and Dixmerias, Maxime and Al Hyder, Ragheed and Salomon, Christophe and Peaudecerf, Bruno and de Jongh, Tim and Yefsah, Tarik}, issn = {2643-1564}, journal = {Physical Review Research}, keywords = {General Physics and Astronomy}, number = {1}, publisher = {American Physical Society}, title = {{Multipurpose platform for analog quantum simulation}}, doi = {10.1103/physrevresearch.6.013158}, volume = {6}, year = {2024}, } @article{15048, abstract = {Embryogenesis results from the coordinated activities of different signaling pathways controlling cell fate specification and morphogenesis. In vertebrate gastrulation, both Nodal and BMP signaling play key roles in germ layer specification and morphogenesis, yet their interplay to coordinate embryo patterning with morphogenesis is still insufficiently understood. Here, we took a reductionist approach using zebrafish embryonic explants to study the coordination of Nodal and BMP signaling for embryo patterning and morphogenesis. We show that Nodal signaling triggers explant elongation by inducing mesendodermal progenitors but also suppressing BMP signaling activity at the site of mesendoderm induction. Consistent with this, ectopic BMP signaling in the mesendoderm blocks cell alignment and oriented mesendoderm intercalations, key processes during explant elongation. Translating these ex vivo observations to the intact embryo showed that, similar to explants, Nodal signaling suppresses the effect of BMP signaling on cell intercalations in the dorsal domain, thus allowing robust embryonic axis elongation. These findings suggest a dual function of Nodal signaling in embryonic axis elongation by both inducing mesendoderm and suppressing BMP effects in the dorsal portion of the mesendoderm.}, author = {Schauer, Alexandra and Pranjic-Ferscha, Kornelija and Hauschild, Robert and Heisenberg, Carl-Philipp J}, issn = {1477-9129}, journal = {Development}, number = {4}, pages = {1--18}, publisher = {The Company of Biologists}, title = {{Robust axis elongation by Nodal-dependent restriction of BMP signaling}}, doi = {10.1242/dev.202316}, volume = {151}, year = {2024}, } @misc{14926, author = {Hauschild, Robert}, publisher = {ISTA}, title = {{Matlab script for analysis of clone dispersal}}, doi = {10.15479/AT:ISTA:14926}, year = {2024}, } @article{15047, abstract = {Tropical precipitation extremes and their changes with surface warming are investigated using global storm resolving simulations and high-resolution observations. The simulations demonstrate that the mesoscale organization of convection, a process that cannot be physically represented by conventional global climate models, is important for the variations of tropical daily accumulated precipitation extremes. In both the simulations and observations, daily precipitation extremes increase in a more organized state, in association with larger, but less frequent, storms. Repeating the simulations for a warmer climate results in a robust increase in monthly-mean daily precipitation extremes. Higher precipitation percentiles have a greater sensitivity to convective organization, which is predicted to increase with warming. Without changes in organization, the strongest daily precipitation extremes over the tropical oceans increase at a rate close to Clausius-Clapeyron (CC) scaling. Thus, in a future warmer state with increased organization, the strongest daily precipitation extremes over oceans increase at a faster rate than CC scaling.}, author = {Bao, Jiawei and Stevens, Bjorn and Kluft, Lukas and Muller, Caroline J}, issn = {2375-2548}, journal = {Science Advances}, number = {8}, publisher = {American Association for the Advancement of Science}, title = {{Intensification of daily tropical precipitation extremes from more organized convection}}, doi = {10.1126/sciadv.adj6801}, volume = {10}, year = {2024}, } @article{12875, abstract = {The superior colliculus (SC) in the mammalian midbrain is essential for multisensory integration and is composed of a rich diversity of excitatory and inhibitory neurons and glia. However, the developmental principles directing the generation of SC cell-type diversity are not understood. Here, we pursued systematic cell lineage tracing in silico and in vivo, preserving full spatial information, using genetic mosaic analysis with double markers (MADM)-based clonal analysis with single-cell sequencing (MADM-CloneSeq). The analysis of clonally related cell lineages revealed that radial glial progenitors (RGPs) in SC are exceptionally multipotent. Individual resident RGPs have the capacity to produce all excitatory and inhibitory SC neuron types, even at the stage of terminal division. While individual clonal units show no pre-defined cellular composition, the establishment of appropriate relative proportions of distinct neuronal types occurs in a PTEN-dependent manner. Collectively, our findings provide an inaugural framework at the single-RGP/-cell level of the mammalian SC ontogeny.}, author = {Cheung, Giselle T and Pauler, Florian and Koppensteiner, Peter and Krausgruber, Thomas and Streicher, Carmen and Schrammel, Martin and Özgen, Natalie Y and Ivec, Alexis and Bock, Christoph and Shigemoto, Ryuichi and Hippenmeyer, Simon}, issn = {0896-6273}, journal = {Neuron}, number = {2}, pages = {230--246.e11}, publisher = {Elsevier}, title = {{Multipotent progenitors instruct ontogeny of the superior colliculus}}, doi = {10.1016/j.neuron.2023.11.009}, volume = {112}, year = {2024}, } @article{14979, abstract = {Poxviruses are among the largest double-stranded DNA viruses, with members such as variola virus, monkeypox virus and the vaccination strain vaccinia virus (VACV). Knowledge about the structural proteins that form the viral core has remained sparse. While major core proteins have been annotated via indirect experimental evidence, their structures have remained elusive and they could not be assigned to individual core features. Hence, which proteins constitute which layers of the core, such as the palisade layer and the inner core wall, has remained enigmatic. Here we show, using a multi-modal cryo-electron microscopy (cryo-EM) approach in combination with AlphaFold molecular modeling, that trimers formed by the cleavage product of VACV protein A10 are the key component of the palisade layer. This allows us to place previously obtained descriptions of protein interactions within the core wall into perspective and to provide a detailed model of poxvirus core architecture. Importantly, we show that interactions within A10 trimers are likely generalizable over members of orthopox- and parapoxviruses.}, author = {Datler, Julia and Hansen, Jesse and Thader, Andreas and Schlögl, Alois and Bauer, Lukas W and Hodirnau, Victor-Valentin and Schur, Florian KM}, issn = {1545-9985}, journal = {Nature Structural & Molecular Biology}, keywords = {Molecular Biology, Structural Biology}, publisher = {Springer Nature}, title = {{Multi-modal cryo-EM reveals trimers of protein A10 to form the palisade layer in poxvirus cores}}, doi = {10.1038/s41594-023-01201-6}, year = {2024}, } @article{14846, abstract = {Contraction and flow of the actin cell cortex have emerged as a common principle by which cells reorganize their cytoplasm and take shape. However, how these cortical flows interact with adjacent cytoplasmic components, changing their form and localization, and how this affects cytoplasmic organization and cell shape remains unclear. Here we show that in ascidian oocytes, the cooperative activities of cortical actomyosin flows and deformation of the adjacent mitochondria-rich myoplasm drive oocyte cytoplasmic reorganization and shape changes following fertilization. We show that vegetal-directed cortical actomyosin flows, established upon oocyte fertilization, lead to both the accumulation of cortical actin at the vegetal pole of the zygote and compression and local buckling of the adjacent elastic solid-like myoplasm layer due to friction forces generated at their interface. Once cortical flows have ceased, the multiple myoplasm buckles resolve into one larger buckle, which again drives the formation of the contraction pole—a protuberance of the zygote’s vegetal pole where maternal mRNAs accumulate. Thus, our findings reveal a mechanism where cortical actomyosin network flows determine cytoplasmic reorganization and cell shape by deforming adjacent cytoplasmic components through friction forces.}, author = {Caballero Mancebo, Silvia and Shinde, Rushikesh and Bolger-Munro, Madison and Peruzzo, Matilda and Szep, Gregory and Steccari, Irene and Labrousse Arias, David and Zheden, Vanessa and Merrin, Jack and Callan-Jones, Andrew and Voituriez, Raphaël and Heisenberg, Carl-Philipp J}, issn = {1745-2481}, journal = {Nature Physics}, publisher = {Springer Nature}, title = {{Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization}}, doi = {10.1038/s41567-023-02302-1}, year = {2024}, } @phdthesis{15020, abstract = {This thesis consists of four distinct pieces of work within theoretical biology, with two themes in common: the concept of optimization in biological systems, and the use of information-theoretic tools to quantify biological stochasticity and statistical uncertainty. Chapter 2 develops a statistical framework for studying biological systems which we believe to be optimized for a particular utility function, such as retinal neurons conveying information about visual stimuli. We formalize such beliefs as maximum-entropy Bayesian priors, constrained by the expected utility. We explore how such priors aid inference of system parameters with limited data and enable optimality hypothesis testing: is the utility higher than by chance? Chapter 3 examines the ultimate biological optimization process: evolution by natural selection. As some individuals survive and reproduce more successfully than others, populations evolve towards fitter genotypes and phenotypes. We formalize this as accumulation of genetic information, and use population genetics theory to study how much such information can be accumulated per generation and maintained in the face of random mutation and genetic drift. We identify the population size and fitness variance as the key quantities that control information accumulation and maintenance. Chapter 4 reuses the concept of genetic information from Chapter 3, but from a different perspective: we ask how much genetic information organisms actually need, in particular in the context of gene regulation. For example, how much information is needed to bind transcription factors at correct locations within the genome? Population genetics provides us with a refined answer: with an increasing population size, populations achieve higher fitness by maintaining more genetic information. Moreover, regulatory parameters experience selection pressure to optimize the fitness-information trade-off, i.e. minimize the information needed for a given fitness. This provides an evolutionary derivation of the optimization priors introduced in Chapter 2. Chapter 5 proves an upper bound on mutual information between a signal and a communication channel output (such as neural activity). Mutual information is an important utility measure for biological systems, but its practical use can be difficult due to the large dimensionality of many biological channels. Sometimes, a lower bound on mutual information is computed by replacing the high-dimensional channel outputs with decodes (signal estimates). Our result provides a corresponding upper bound, provided that the decodes are the maximum posterior estimates of the signal.}, author = {Hledik, Michal}, issn = {2663 - 337X}, keywords = {Theoretical biology, Optimality, Evolution, Information}, pages = {158}, publisher = {Institute of Science and Technology Austria}, title = {{Genetic information and biological optimization}}, doi = {10.15479/at:ista:15020}, year = {2024}, } @misc{14842, abstract = {Eva Benkova received a PhD in Biophysics at the Institute of Biophysics of the Czech Academy of Sciences in 1998. After working as a postdoc at the Max Planck Institute in Cologne and the Center for Plant Molecular Biology (ZMBP) in Tübingen, she became a group leader at the Plant Systems Biology Department of the Vlaams Instituut voor Biotechnologie (VIB) in Gent. In 2012, she transitioned to an Assistant Professor position at the Institute of Science and Technology Austria (ISTA) where she was later promoted to Professor. Since 2021, she has served as the Dean of the ISTA Graduate School. As a plant developmental biologist, she focuses on unraveling the molecular mechanisms and principles that underlie hormonal interactions in plants. In her current work, she explores the intricate connections between hormones and regulatory pathways that mediate the perception of environmental stimuli, including abiotic stress and nitrate availability.}, author = {Benková, Eva}, booktitle = {Current Biology}, issn = {1879-0445}, number = {1}, pages = {R3--R5}, publisher = {Elsevier}, title = {{Eva Benkova}}, doi = {10.1016/j.cub.2023.11.039}, volume = {34}, year = {2024}, } @article{15084, abstract = {GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca 2+ -dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the “Flash and Freeze-fracture” method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals.}, author = {Koppensteiner, Peter and Bhandari, Pradeep and Önal, Hüseyin C and Borges Merjane, Carolina and Le Monnier, Elodie and Roy, Utsa and Nakamura, Yukihiro and Sadakata, Tetsushi and Sanbo, Makoto and Hirabayashi, Masumi and Rhee, JeongSeop and Brose, Nils and Jonas, Peter M and Shigemoto, Ryuichi}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {8}, publisher = {Proceedings of the National Academy of Sciences}, title = {{GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles}}, doi = {10.1073/pnas.2301449121}, volume = {121}, year = {2024}, } @article{15083, abstract = {Direct reciprocity is a powerful mechanism for cooperation in social dilemmas. The very logic of reciprocity, however, seems to require that individuals are symmetric, and that everyone has the same means to influence each others’ payoffs. Yet in many applications, individuals are asymmetric. Herein, we study the effect of asymmetry in linear public good games. Individuals may differ in their endowments (their ability to contribute to a public good) and in their productivities (how effective their contributions are). Given the individuals’ productivities, we ask which allocation of endowments is optimal for cooperation. To this end, we consider two notions of optimality. The first notion focuses on the resilience of cooperation. The respective endowment distribution ensures that full cooperation is feasible even under the most adverse conditions. The second notion focuses on efficiency. The corresponding endowment distribution maximizes group welfare. Using analytical methods, we fully characterize these two endowment distributions. This analysis reveals that both optimality notions favor some endowment inequality: More productive players ought to get higher endowments. Yet the two notions disagree on how unequal endowments are supposed to be. A focus on resilience results in less inequality. With additional simulations, we show that the optimal endowment allocation needs to account for both the resilience and the efficiency of cooperation.}, author = {Hübner, Valentin and Staab, Manuel and Hilbe, Christian and Chatterjee, Krishnendu and Kleshnina, Maria}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {10}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Efficiency and resilience of cooperation in asymmetric social dilemmas}}, doi = {10.1073/pnas.2315558121}, volume = {121}, year = {2024}, } @misc{15108, abstract = {in the research article "Efficiency and resilience of cooperation in asymmetric social dilemmas" (by Valentin Hübner, Manuel Staab, Christian Hilbe, Krishnendu Chatterjee, and Maria Kleshnina). We used different implementations for the case of two and three players, both described below.}, author = {Hübner, Valentin and Kleshnina, Maria}, publisher = {Zenodo}, title = {{Computer code for "Efficiency and resilience of cooperation in asymmetric social dilemmas"}}, doi = {10.5281/ZENODO.10639167}, year = {2024}, } @article{15097, abstract = {Global storm-resolving models (GSRMs) use strongly refined horizontal grids compared with the climate models typically used in the Coupled Model Intercomparison Project (CMIP) but employ comparable vertical grid spacings. Here, we study how changes in the vertical grid spacing and adjustments to the integration time step affect the basic climate quantities simulated by the ICON-Sapphire atmospheric GSRM. Simulations are performed over a 45 d period for five different vertical grids with between 55 and 540 vertical layers and maximum tropospheric vertical grid spacings of between 800 and 50 m, respectively. The effects of changes in the vertical grid spacing are compared with the effects of reducing the horizontal grid spacing from 5 to 2.5 km. For most of the quantities considered, halving the vertical grid spacing has a smaller effect than halving the horizontal grid spacing, but it is not negligible. Each halving of the vertical grid spacing, along with the necessary reductions in time step length, increases cloud liquid water by about 7 %, compared with an approximate 16 % decrease for halving the horizontal grid spacing. The effect is due to both the vertical grid refinement and the time step reduction. There is no tendency toward convergence in the range of grid spacings tested here. The cloud ice amount also increases with a refinement in the vertical grid, but it is hardly affected by the time step length and does show a tendency to converge. While the effect on shortwave radiation is globally dominated by the altered reflection due to the change in the cloud liquid water content, the effect on longwave radiation is more difficult to interpret because changes in the cloud ice concentration and cloud fraction are anticorrelated in some regions. The simulations show that using a maximum tropospheric vertical grid spacing larger than 400 m would increase the truncation error strongly. Computing time investments in a further vertical grid refinement can affect the truncation errors of GSRMs similarly to comparable investments in horizontal refinement, because halving the vertical grid spacing is generally cheaper than halving the horizontal grid spacing. However, convergence of boundary layer cloud properties cannot be expected, even for the smallest maximum tropospheric grid spacing of 50 m used in this study.}, author = {Schmidt, Hauke and Rast, Sebastian and Bao, Jiawei and Cassim, Amrit and Fang, Shih Wei and Jimenez-De La Cuesta, Diego and Keil, Paul and Kluft, Lukas and Kroll, Clarissa and Lang, Theresa and Niemeier, Ulrike and Schneidereit, Andrea and Williams, Andrew I.L. and Stevens, Bjorn}, issn = {1991-9603}, journal = {Geoscientific Model Development}, number = {4}, pages = {1563--1584}, publisher = {European Geosciences Union}, title = {{Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model}}, doi = {10.5194/gmd-17-1563-2024}, volume = {17}, year = {2024}, } @article{12311, abstract = {In this note, we prove a formula for the cancellation exponent kv,n between division polynomials ψn and ϕn associated with a sequence {nP}n∈N of points on an elliptic curve E defined over a discrete valuation field K. The formula greatly generalizes the previously known special cases and treats also the case of non-standard Kodaira types for non-perfect residue fields.}, author = {Naskręcki, Bartosz and Verzobio, Matteo}, issn = {1473-7124}, journal = {Proceedings of the Royal Society of Edinburgh Section A: Mathematics}, keywords = {Elliptic curves, Néron models, division polynomials, height functions, discrete valuation rings}, publisher = {Cambridge University Press}, title = {{Common valuations of division polynomials}}, doi = {10.1017/prm.2024.7}, year = {2024}, } @article{15099, abstract = {Speciation is a key evolutionary process that is not yet fully understood. Combining population genomic and ecological data from multiple diverging pairs of marine snails (Littorina) supports the search for speciation mechanisms. Placing pairs on a one-dimensional speciation continuum, from undifferentiated populations to species, obscured the complexity of speciation. Adding multiple axes helped to describe either speciation routes or reproductive isolation in the snails. Divergent ecological selection repeatedly generated barriers between ecotypes, but appeared less important in completing speciation while genetic incompatibilities played a key role. Chromosomal inversions contributed to genomic barriers, but with variable impact. A multidimensional (hypercube) approach supported framing of questions and identification of knowledge gaps and can be useful to understand speciation in many other systems.}, author = {Johannesson, Kerstin and Faria, Rui and Le Moan, Alan and Rafajlović, Marina and Westram, Anja M and Butlin, Roger K. and Stankowski, Sean}, issn = {1362-4555}, journal = {Trends in Genetics}, publisher = {Cell Press}, title = {{Diverse pathways to speciation revealed by marine snails}}, doi = {10.1016/j.tig.2024.01.002}, year = {2024}, } @article{15098, abstract = {The paper is devoted to the analysis of the global well-posedness and the interior regularity of the 2D Navier–Stokes equations with inhomogeneous stochastic boundary conditions. The noise, white in time and coloured in space, can be interpreted as the physical law describing the driving mechanism on the atmosphere–ocean interface, i.e. as a balance of the shear stress of the ocean and the horizontal wind force.}, author = {Agresti, Antonio and Luongo, Eliseo}, issn = {1432-1807}, journal = {Mathematische Annalen}, publisher = {Springer Nature}, title = {{Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions}}, doi = {10.1007/s00208-024-02812-0}, year = {2024}, } @article{15122, abstract = {Quantum computers are increasing in size and quality but are still very noisy. Error mitigation extends the size of the quantum circuits that noisy devices can meaningfully execute. However, state-of-the-art error mitigation methods are hard to implement and the limited qubit connectivity in superconducting qubit devices restricts most applications to the hardware's native topology. Here we show a quantum approximate optimization algorithm (QAOA) on nonplanar random regular graphs with up to 40 nodes enabled by a machine learning-based error mitigation. We use a swap network with careful decision-variable-to-qubit mapping and a feed-forward neural network to optimize a depth-two QAOA on up to 40 qubits. We observe a meaningful parameter optimization for the largest graph which requires running quantum circuits with 958 two-qubit gates. Our paper emphasizes the need to mitigate samples, and not only expectation values, in quantum approximate optimization. These results are a step towards executing quantum approximate optimization at a scale that is not classically simulable. Reaching such system sizes is key to properly understanding the true potential of heuristic algorithms like QAOA.}, author = {Sack, Stefan and Egger, Daniel J.}, issn = {2643-1564}, journal = {Physical Review Research}, number = {1}, publisher = {American Physical Society}, title = {{Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation}}, doi = {10.1103/PhysRevResearch.6.013223}, volume = {6}, year = {2024}, } @article{15119, abstract = {In this paper we consider an SPDE where the leading term is a second order operator with periodic boundary conditions, coefficients which are measurable in (t,ω) , and Hölder continuous in space. Assuming stochastic parabolicity conditions, we prove Lp((0,T)×Ω,tκdt;Hσ,q(Td)) -estimates. The main novelty is that we do not require p=q . Moreover, we allow arbitrary σ∈R and weights in time. Such mixed regularity estimates play a crucial role in applications to nonlinear SPDEs which is clear from our previous work. To prove our main results we develop a general perturbation theory for SPDEs. Moreover, we prove a new result on pointwise multiplication in spaces with fractional smoothness.}, author = {Agresti, Antonio and Veraar, Mark}, issn = {0246-0203}, journal = {Annales de l'institut Henri Poincare Probability and Statistics}, number = {1}, pages = {413--430}, publisher = {Institute of Mathematical Statistics}, title = {{Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary conditions}}, doi = {10.1214/22-AIHP1333}, volume = {60}, year = {2024}, } @article{14478, abstract = {Entire chromosomes are typically only transmitted vertically from one generation to the next. The horizontal transfer of such chromosomes has long been considered improbable, yet gained recent support in several pathogenic fungi where it may affect the fitness or host specificity. To date, it is unknown how these transfers occur, how common they are and whether they can occur between different species. In this study, we show multiple independent instances of horizontal transfers of the same accessory chromosome between two distinct strains of the asexual entomopathogenic fungusMetarhizium robertsiiduring experimental co-infection of its insect host, the Argentine ant. Notably, only the one chromosome – but no other – was transferred from the donor to the recipient strain. The recipient strain, now harboring the accessory chromosome, exhibited a competitive advantage under certain host conditions. By phylogenetic analysis we further demonstrate that the same accessory chromosome was horizontally transferred in a natural environment betweenM. robertsiiand another congeneric insect pathogen,M. guizhouense. Hence horizontal chromosome transfer is not limited to the observed frequent events within species during experimental infections but also occurs naturally across species. The transferred accessory chromosome contains genes that might be involved in its preferential horizontal transfer, encoding putative histones and histone-modifying enzymes, but also putative virulence factors that may support its establishment. Our study reveals that both intra- and interspecies horizontal transfer of entire chromosomes is more frequent than previously assumed, likely representing a not uncommon mechanism for gene exchange.Significance StatementThe enormous success of bacterial pathogens has been attributed to their ability to exchange genetic material between one another. Similarly, in eukaryotes, horizontal transfer of genetic material allowed the spread of virulence factors across species. The horizontal transfer of whole chromosomes could be an important pathway for such exchange of genetic material, but little is known about the origin of transferable chromosomes and how frequently they are exchanged. Here, we show that the transfer of accessory chromosomes - chromosomes that are non-essential but may provide fitness benefits - is common during fungal co-infections and is even possible between distant pathogenic species, highlighting the importance of horizontal gene transfer via chromosome transfer also for the evolution and function of eukaryotic pathogens.}, author = {Habig, Michael and Grasse, Anna V and Müller, Judith and Stukenbrock, Eva H. and Leitner, Hanna and Cremer, Sylvia}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {11}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Frequent horizontal chromosome transfer between asexual fungal insect pathogens}}, doi = {10.1073/pnas.2316284121}, volume = {121}, year = {2024}, } @article{10045, abstract = {Given a fixed finite metric space (V,μ), the {\em minimum 0-extension problem}, denoted as 0-Ext[μ], is equivalent to the following optimization problem: minimize function of the form minx∈Vn∑ifi(xi)+∑ijcijμ(xi,xj) where cij,cvi are given nonnegative costs and fi:V→R are functions given by fi(xi)=∑v∈Vcviμ(xi,v). The computational complexity of 0-Ext[μ] has been recently established by Karzanov and by Hirai: if metric μ is {\em orientable modular} then 0-Ext[μ] can be solved in polynomial time, otherwise 0-Ext[μ] is NP-hard. To prove the tractability part, Hirai developed a theory of discrete convex functions on orientable modular graphs generalizing several known classes of functions in discrete convex analysis, such as L♮-convex functions. We consider a more general version of the problem in which unary functions fi(xi) can additionally have terms of the form cuv;iμ(xi,{u,v}) for {u,v}∈F, where set F⊆(V2) is fixed. We extend the complexity classification above by providing an explicit condition on (μ,F) for the problem to be tractable. In order to prove the tractability part, we generalize Hirai's theory and define a larger class of discrete convex functions. It covers, in particular, another well-known class of functions, namely submodular functions on an integer lattice. Finally, we improve the complexity of Hirai's algorithm for solving 0-Ext on orientable modular graphs. }, author = {Dvorak, Martin and Kolmogorov, Vladimir}, issn = {1436-4646}, journal = {Mathematical Programming}, keywords = {minimum 0-extension problem, metric labeling problem, discrete metric spaces, metric extensions, computational complexity, valued constraint satisfaction problems, discrete convex analysis, L-convex functions}, publisher = {Springer Nature}, title = {{Generalized minimum 0-extension problem and discrete convexity}}, doi = {10.1007/s10107-024-02064-5}, year = {2024}, } @article{15121, abstract = {We present an auction algorithm using multiplicative instead of constant weight updates to compute a (1-E)-approximate maximum weight matching (MWM) in a bipartite graph with n vertices and m edges in time 0(mE-1), beating the running time of the fastest known approximation algorithm of Duan and Pettie [JACM ’14] that runs in 0(mE-1 log E-1). Our algorithm is very simple and it can be extended to give a dynamic data structure that maintains a (1-E)-approximate maximum weight matching under (1) one-sided vertex deletions (with incident edges) and (2) one-sided vertex insertions (with incident edges sorted by weight) to the other side. The total time time used is 0(mE-1), where m is the sum of the number of initially existing and inserted edges.}, author = {Zheng, Da Wei and Henzinger, Monika H}, issn = {1436-4646}, journal = {Mathematical Programming}, publisher = {Springer Nature}, title = {{Multiplicative auction algorithm for approximate maximum weight bipartite matching}}, doi = {10.1007/s10107-024-02066-3}, year = {2024}, } @article{15116, abstract = {Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water–collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H2O/D2O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H2O and D2O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D2O than in H2O, and collagen in D2O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H2O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D2O is less hydrated than in H2O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen–water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly.}, author = {Giubertoni, Giulia and Feng, Liru and Klein, Kevin and Giannetti, Guido and Rutten, Luco and Choi, Yeji and Van Der Net, Anouk and Castro-Linares, Gerard and Caporaletti, Federico and Micha, Dimitra and Hunger, Johannes and Deblais, Antoine and Bonn, Daniel and Sommerdijk, Nico and Šarić, Anđela and Ilie, Ioana M. and Koenderink, Gijsje H. and Woutersen, Sander}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {11}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration}}, doi = {10.1073/pnas.2313162121}, volume = {121}, year = {2024}, } @phdthesis{15094, abstract = {Point sets, geometric networks, and arrangements of hyperplanes are fundamental objects in discrete geometry that have captivated mathematicians for centuries, if not millennia. This thesis seeks to cast new light on these structures by illustrating specific instances where a topological perspective, specifically through discrete Morse theory and persistent homology, provides valuable insights. At first glance, the topology of these geometric objects might seem uneventful: point sets essentially lack of topology, arrangements of hyperplanes are a decomposition of Rd, which is a contractible space, and the topology of a network primarily involves the enumeration of connected components and cycles within the network. However, beneath this apparent simplicity, there lies an array of intriguing structures, a small subset of which will be uncovered in this thesis. Focused on three case studies, each addressing one of the mentioned objects, this work will showcase connections that intertwine topology with diverse fields such as combinatorial geometry, algorithms and data structures, and emerging applications like spatial biology. }, author = {Cultrera di Montesano, Sebastiano}, issn = {2663 - 337X}, pages = {108}, publisher = {Institute of Science and Technology Austria}, title = {{Persistence and Morse theory for discrete geometric structures}}, doi = {10.15479/at:ista:15094}, year = {2024}, } @inproceedings{15093, abstract = {We present a dynamic data structure for maintaining the persistent homology of a time series of real numbers. The data structure supports local operations, including the insertion and deletion of an item and the cutting and concatenating of lists, each in time O(log n + k), in which n counts the critical items and k the changes in the augmented persistence diagram. To achieve this, we design a tailor-made tree structure with an unconventional representation, referred to as banana tree, which may be useful in its own right.}, author = {Cultrera di Montesano, Sebastiano and Edelsbrunner, Herbert and Henzinger, Monika H and Ost, Lara}, booktitle = {Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)}, editor = {Woodruff, David P.}, location = {Alexandria, VA, USA}, pages = {243 -- 295}, publisher = {Society for Industrial and Applied Mathematics}, title = {{Dynamically maintaining the persistent homology of time series}}, doi = {10.1137/1.9781611977912.11}, year = {2024}, } @unpublished{15091, abstract = {Motivated by applications in the medical sciences, we study finite chromatic sets in Euclidean space from a topological perspective. Based on the persistent homology for images, kernels and cokernels, we design provably stable homological quantifiers that describe the geometric micro- and macro-structure of how the color classes mingle. These can be efficiently computed using chromatic variants of Delaunay and alpha complexes, and code that does these computations is provided.}, author = {Cultrera di Montesano, Sebastiano and Draganov, Ondrej and Edelsbrunner, Herbert and Saghafian, Morteza}, booktitle = {arXiv}, title = {{Chromatic alpha complexes}}, year = {2024}, } @article{15171, abstract = {The brain’s functionality is developed and maintained through synaptic plasticity. As synapses undergo plasticity, they also affect each other. The nature of such ‘co-dependency’ is difficult to disentangle experimentally, because multiple synapses must be monitored simultaneously. To help understand the experimentally observed phenomena, we introduce a framework that formalizes synaptic co-dependency between different connection types. The resulting model explains how inhibition can gate excitatory plasticity while neighboring excitatory–excitatory interactions determine the strength of long-term potentiation. Furthermore, we show how the interplay between excitatory and inhibitory synapses can account for the quick rise and long-term stability of a variety of synaptic weight profiles, such as orientation tuning and dendritic clustering of co-active synapses. In recurrent neuronal networks, co-dependent plasticity produces rich and stable motor cortex-like dynamics with high input sensitivity. Our results suggest an essential role for the neighborly synaptic interaction during learning, connecting micro-level physiology with network-wide phenomena.}, author = {Agnes, Everton J. and Vogels, Tim P}, issn = {1546-1726}, journal = {Nature Neuroscience}, publisher = {Springer Nature}, title = {{Co-dependent excitatory and inhibitory plasticity accounts for quick, stable and long-lasting memories in biological networks}}, doi = {10.1038/s41593-024-01597-4}, year = {2024}, } @article{15170, abstract = {The James Webb Space Telescope is revealing a new population of dust-reddened broad-line active galactic nuclei (AGN) at redshifts z ≳ 5. Here we present deep NIRSpec/Prism spectroscopy from the Cycle 1 Treasury program Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) of 15 AGN candidates selected to be compact, with red continua in the rest-frame optical but with blue slopes in the UV. From NIRCam photometry alone, they could have been dominated by dusty star formation or an AGN. Here we show that the majority of the compact red sources in UNCOVER are dust-reddened AGN: 60% show definitive evidence for broad-line Hα with a FWHM > 2000 km s −1, 20% of the current data are inconclusive, and 20% are brown dwarf stars. We propose an updated photometric criterion to select red z > 5 AGN that excludes brown dwarfs and is expected to yield >80% AGN. Remarkably, among all zphot > 5 galaxies with F277W – F444W > 1 in UNCOVER at least 33% are AGN regardless of compactness, climbing to at least 80% AGN for sources with F277W – F444W > 1.6. The confirmed AGN have black hole masses of 107–109M⊙. While their UV luminosities (−16 > MUV > −20 AB mag) are low compared to UV-selected AGN at these epochs, consistent with percent-level scattered AGN light or low levels of unobscured star formation, the inferred bolometric luminosities are typical of 107–109M⊙ black holes radiating at ∼10%–40% the Eddington limit. The number densities are surprisingly high at ∼10−5 Mpc−3 mag−1, 100 times more common than the faintest UV-selected quasars, while accounting for ∼1% of the UV-selected galaxies. While their UV faintness suggests they may not contribute strongly to reionization, their ubiquity poses challenges to models of black hole growth.}, author = {Greene, Jenny E. and Labbe, Ivo and Goulding, Andy D. and Furtak, Lukas J. and Chemerynska, Iryna and Kokorev, Vasily and Dayal, Pratika and Volonteri, Marta and Williams, Christina C. and Wang, Bingjie and Setton, David J. and Burgasser, Adam J. and Bezanson, Rachel and Atek, Hakim and Brammer, Gabriel and Cutler, Sam E. and Feldmann, Robert and Fujimoto, Seiji and Glazebrook, Karl and De Graaff, Anna and Khullar, Gourav and Leja, Joel and Marchesini, Danilo and Maseda, Michael V. and Matthee, Jorryt J and Miller, Tim B. and Naidu, Rohan P. and Nanayakkara, Themiya and Oesch, Pascal A. and Pan, Richard and Papovich, Casey and Price, Sedona H. and Van Dokkum, Pieter and Weaver, John R. and Whitaker, Katherine E. and Zitrin, Adi}, issn = {1538-4357}, journal = {Astrophysical Journal}, publisher = {IOP Publishing}, title = {{UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5}}, doi = {10.3847/1538-4357/ad1e5f}, volume = {964}, year = {2024}, } @inproceedings{15168, abstract = {A linearly ordered (LO) k-colouring of a hypergraph is a colouring of its vertices with colours 1, … , k such that each edge contains a unique maximal colour. Deciding whether an input hypergraph admits LO k-colouring with a fixed number of colours is NP-complete (and in the special case of graphs, LO colouring coincides with the usual graph colouring). Here, we investigate the complexity of approximating the "linearly ordered chromatic number" of a hypergraph. We prove that the following promise problem is NP-complete: Given a 3-uniform hypergraph, distinguish between the case that it is LO 3-colourable, and the case that it is not even LO 4-colourable. We prove this result by a combination of algebraic, topological, and combinatorial methods, building on and extending a topological approach for studying approximate graph colouring introduced by Krokhin, Opršal, Wrochna, and Živný (2023).}, author = {Filakovský, Marek and Nakajima, Tamio Vesa and Opršal, Jakub and Tasinato, Gianluca and Wagner, Uli}, booktitle = {41st International Symposium on Theoretical Aspects of Computer Science}, isbn = {9783959773119}, issn = {1868-8969}, location = {Clermont-Ferrand, France}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs}}, doi = {10.4230/LIPIcs.STACS.2024.34}, volume = {289}, year = {2024}, } @article{15164, abstract = {Primary implant stability, which refers to the stability of the implant during the initial healing period is a crucial factor in determining the long-term success of the implant and lays the foundation for secondary implant stability achieved through osseointegration. Factors affecting primary stability include implant design, surgical technique, and patient-specific factors like bone quality and morphology. In vivo, the cyclic nature of anatomical loading puts osteosynthesis locking screws under dynamic loads, which can lead to the formation of micro cracks and defects that slowly degrade the mechanical connection between the bone and screw, thus compromising the initial stability and secondary stability of the implant. Monotonic quasi-static loading used for testing the holding capacity of implanted screws is not well suited to capture this behavior since it cannot capture the progressive deterioration of peri‑implant bone at small displacements. In order to address this issue, this study aims to determine a critical point of loss of primary implant stability in osteosynthesis locking screws under cyclic overloading by investigating the evolution of damage, dissipated energy, and permanent deformation. A custom-made test setup was used to test implanted 2.5 mm locking screws under cyclic overloading test. For each loading cycle, maximum forces and displacement were recorded as well as initial and final cycle displacements and used to calculate damage and energy dissipation evolution. The results of this study demonstrate that for axial, shear, and mixed loading significant damage and energy dissipation can be observed at approximately 20 % of the failure force. Additionally, at this load level, permanent deformations on the screw-bone interface were found to be in the range of 50 to 150 mm which promotes osseointegration and secondary implant stability. This research can assist surgeons in making informed preoperative decisions by providing a better understanding of the critical point of loss of primary implant stability, thus improving the long-term success of the implant and overall patient satisfaction.}, author = {Silva-Henao, Juan D. and Schober, Sophie and Pahr, Dieter H. and Reisinger, Andreas G.}, issn = {1873-4030}, journal = {Medical Engineering and Physics}, publisher = {Elsevier}, title = {{Critical loss of primary implant stability in osteosynthesis locking screws under cyclic overloading}}, doi = {10.1016/j.medengphy.2024.104143}, volume = {126}, year = {2024}, } @article{15167, abstract = {We perform a diagrammatic analysis of the energy of a mobile impurity immersed in a strongly interacting two-component Fermi gas to second order in the impurity-bath interaction. These corrections demonstrate divergent behavior in the limit of large impurity momentum. We show the fundamental processes responsible for these logarithmically divergent terms. We study the problem in the general case without any assumptions regarding the fermion-fermion interactions in the bath. We show that the divergent term can be summed up to all orders in the Fermi-Fermi interaction and that the resulting expression is equivalent to the one obtained in the few-body calculation. Finally, we provide a perturbative calculation to the second order in the Fermi-Fermi interaction, and we show the diagrams responsible for these terms.}, author = {Al Hyder, Ragheed and Chevy, F. and Leyronas, X.}, issn = {2469-9934}, journal = {Physical Review A}, number = {3}, publisher = {American Physical Society}, title = {{Exploring beyond-mean-field logarithmic divergences in Fermi-polaron energy}}, doi = {10.1103/PhysRevA.109.033315}, volume = {109}, year = {2024}, } @article{15163, abstract = {For some k∈Z≥0∪{∞}, we call a linear forest k-bounded if each of its components has at most k edges. We will say a (k,ℓ)-bounded linear forest decomposition of a graph G is a partition of E(G) into the edge sets of two linear forests Fk,Fℓ where Fk is k-bounded and Fℓ is ℓ-bounded. We show that the problem of deciding whether a given graph has such a decomposition is NP-complete if both k and ℓ are at least 2, NP-complete if k≥9 and ℓ=1, and is in P for (k,ℓ)=(2,1). Before this, the only known NP-complete cases were the (2,2) and (3,3) cases. Our hardness result answers a question of Bermond et al. from 1984. We also show that planar graphs of girth at least nine decompose into a linear forest and a matching, which in particular is stronger than 3-edge-colouring such graphs.}, author = {Campbell, Rutger and Hörsch, Florian and Moore, Benjamin}, issn = {0012-365X}, journal = {Discrete Mathematics}, number = {6}, publisher = {Elsevier}, title = {{Decompositions into two linear forests of bounded lengths}}, doi = {10.1016/j.disc.2024.113962}, volume = {347}, year = {2024}, } @article{15180, abstract = {Characterizing the prevalence and properties of faint active galactic nuclei (AGNs) in the early Universe is key for understanding the formation of supermassive black holes (SMBHs) and determining their role in cosmic reionization. We perform a spectroscopic search for broad Hα emitters at z ≈ 4–6 using deep JWST/NIRCam imaging and wide field slitless spectroscopy from the EIGER and FRESCO surveys. We identify 20 Hα lines at z = 4.2–5.5 that have broad components with line widths from ∼1200–3700 km s−1, contributing ∼30%–90% of the total line flux. We interpret these broad components as being powered by accretion onto SMBHs with implied masses ∼107–8M⊙. In the UV luminosity range MUV,AGN+host = −21 to −18, we measure number densities of ≈10−5 cMpc−3. This is an order of magnitude higher than expected from extrapolating quasar UV luminosity functions (LFs). Yet, such AGN are found in only <1% of star-forming galaxies at z ∼ 5. The number density discrepancy is much lower when compared to the broad Hα LF. The SMBH mass function agrees with large cosmological simulations. In two objects, we detect complex Hα profiles that we tentatively interpret as caused by absorption signatures from dense gas fueling SMBH growth and outflows. We may be witnessing early AGN feedback that will clear dust-free pathways through which more massive blue quasars are seen. We uncover a strong correlation between reddening and the fraction of total galaxy luminosity arising from faint AGN. This implies that early SMBH growth is highly obscured and that faint AGN are only minor contributors to cosmic reionization.}, author = {Matthee, Jorryt J and Naidu, Rohan P. and Brammer, Gabriel and Chisholm, John and Eilers, Anna-Christina and Goulding, Andy and Greene, Jenny and Kashino, Daichi and Labbe, Ivo and Lilly, Simon J. and Mackenzie, Ruari and Oesch, Pascal A. and Weibel, Andrea and Wuyts, Stijn and Xiao, Mengyuan and Bordoloi, Rongmon and Bouwens, Rychard and van Dokkum, Pieter and Illingworth, Garth and Kramarenko, Ivan and Maseda, Michael V. and Mason, Charlotte and Meyer, Romain A. and Nelson, Erica J. and Reddy, Naveen A. and Shivaei, Irene and Simcoe, Robert A. and Yue, Minghao}, issn = {1538-4357}, journal = {The Astrophysical Journal}, keywords = {Space and Planetary Science, Astronomy and Astrophysics}, number = {2}, publisher = {American Astronomical Society}, title = {{Little Red Dots: An abundant population of faint active galactic nuclei at z ∼ 5 revealed by the EIGER and FRESCO JWST surveys}}, doi = {10.3847/1538-4357/ad2345}, volume = {963}, year = {2024}, } @article{15179, abstract = {The fungal bioluminescence pathway can be reconstituted in other organisms allowing luminescence imaging without exogenously supplied substrate. The pathway starts from hispidin biosynthesis—a step catalyzed by a large fungal polyketide synthase that requires a posttranslational modification for activity. Here, we report identification of alternative compact hispidin synthases encoded by a phylogenetically diverse group of plants. A hybrid bioluminescence pathway that combines plant and fungal genes is more compact, not dependent on availability of machinery for posttranslational modifications, and confers autonomous bioluminescence in yeast, mammalian, and plant hosts. The compact size of plant hispidin synthases enables additional modes of delivery of autoluminescence, such as delivery with viral vectors.}, author = {Palkina, Kseniia A. and Karataeva, Tatiana A. and Perfilov, Maxim M. and Fakhranurova, Liliia I. and Markina, Nadezhda M. and Gonzalez Somermeyer, Louisa and Garcia-Perez, Elena and Vazquez-Vilar, Marta and Rodriguez-Rodriguez, Marta and Vazquez-Vilriales, Victor and Shakhova, Ekaterina S. and Mitiouchkina, Tatiana and Belozerova, Olga A. and Kovalchuk, Sergey I. and Alekberova, Anna and Malyshevskaia, Alena K. and Bugaeva, Evgenia N. and Guglya, Elena B. and Balakireva, Anastasia and Sytov, Nikita and Bezlikhotnova, Anastasia and Boldyreva, Daria I. and Babenko, Vladislav V. and Kondrashov, Fyodor and Choob, Vladimir V. and Orzaez, Diego and Yampolsky, Ilia V. and Mishin, Alexander S. and Sarkisyan, Karen S.}, issn = {2375-2548}, journal = {Science Advances}, number = {10}, publisher = {American Association for the Advancement of Science}, title = {{A hybrid pathway for self-sustained luminescence}}, doi = {10.1126/sciadv.adk1992}, volume = {10}, year = {2024}, } @article{15186, abstract = {The elimination of rain evaporation in the planetary boundary layer (PBL) has been found to lead to convective self‐aggregation (CSA) even without radiative feedback, but the precise mechanisms underlying this phenomenon remain unclear. We conducted cloud‐resolving simulations with two domain sizes and progressively reduced rain evaporation in the PBL. Surprisingly, CSA only occurred when rain evaporation was almost completely removed. The additional convective heating resulting from the reduction of evaporative cooling in the moist patch was found to be the trigger, thereafter a dry subsidence intrusion into the PBL in the dry patch takes over and sets CSA in motion. Temperature and moisture anomalies oppose each other in their buoyancy effects, hence explaining the need for almost total rain evaporation removal. We also found radiative cooling and not cold pools to be the leading cause for the comparative ease of CSA to take place in the larger domain.}, author = {Hwong, Yi-Ling and Muller, Caroline J}, issn = {1944-8007}, journal = {Geophysical Research Letters}, keywords = {General Earth and Planetary Sciences, Geophysics}, number = {6}, publisher = {American Geophysical Union}, title = {{The unreasonable efficiency of total rain evaporation removal in triggering convective self‐aggregation}}, doi = {10.1029/2023gl106523}, volume = {51}, year = {2024}, } @article{15181, abstract = {We demonstrate the failure of the adiabatic Born-Oppenheimer approximation to describe the ground state of a quantum impurity within an ultracold Fermi gas despite substantial mass differences between the bath and impurity species. Increasing repulsion leads to the appearance of nonadiabatic couplings between the fast bath and slow impurity degrees of freedom, which reduce the parity symmetry of the latter according to the pseudo Jahn-Teller effect. The presence of this mechanism is associated to a conical intersection involving the impurity position and the inverse of the interaction strength, which acts as a synthetic dimension. We elucidate the presence of these effects via a detailed ground-state analysis involving the comparison of ab initio fully correlated simulations with effective models. Our study suggests ultracold atomic ensembles as potent emulators of complex molecular phenomena.}, author = {Becker, A. and Koutentakis, Georgios and Schmelcher, P.}, issn = {2643-1564}, journal = {Physical Review Research}, number = {1}, publisher = {American Physical Society}, title = {{Synthetic dimension-induced pseudo Jahn-Teller effect in one-dimensional confined fermions}}, doi = {10.1103/physrevresearch.6.013257}, volume = {6}, year = {2024}, } @article{15182, abstract = {Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high-performance materials is limited. Traditional high-temperature synthetic methods constrain the range of materials achievable, hindering the ability to surpass crystal structure limitations and engineer defects. Here, a solution-based synthetic approach is introduced, enabling RT synthesis of powders and exploration of densification at lower temperatures to influence the material's microstructure. The approach is exemplified by Ag2Se, an n-type alternative to bismuth telluride. It is demonstrated that the concentration of Ag interstitials, grain boundaries, and dislocations are directly correlated to the sintering temperature, and achieve a figure of merit of 1.1 from RT to 100 °C after optimization. Moreover, insights into and resolve Ag2Se's challenges are provided, including stoichiometry issues leading to irreproducible performances. This work highlights the potential of RT solution synthesis in expanding the repertoire of high-performance thermoelectric materials for practical applications.}, author = {Kleinhanns, Tobias and Milillo, Francesco and Calcabrini, Mariano and Fiedler, Christine and Horta, Sharona and Balazs, Daniel and Strumolo, Marissa J. and Hasler, Roger and Llorca, Jordi and Tkadletz, Michael and Brutchey, Richard L. and Ibáñez, Maria}, issn = {1614-6840}, journal = {Advanced Energy Materials}, publisher = {Wiley}, title = {{A route to high thermoelectric performance: Solution‐based control of microstructure and composition in Ag2Se}}, doi = {10.1002/aenm.202400408}, year = {2024}, } @article{15165, abstract = {Current knowledge suggests a drought Indian monsoon (perhaps a severe one) when the El Nino Southern Oscillation and Pacific Decadal Oscillation each exhibit positive phases (a joint positive phase). For the monsoons, which are exceptions in this regard, we found northeast India often gets excess pre-monsoon rainfall. Further investigation reveals that this excess pre-monsoon rainfall is produced by the interaction of the large-scale circulation associated with the joint phase with the mountains in northeast India. We posit that a warmer troposphere, a consequence of excess rainfall over northeast India, drives a stronger monsoon circulation and enhances monsoon rainfall over central India. Hence, we argue that pre-monsoon rainfall over northeast India can be used for seasonal monsoon rainfall prediction over central India. Most importantly, its predictive value is at its peak when the Pacific Ocean exhibits a joint positive phase and the threat of extreme drought monsoon looms over India.}, author = {Goswami, Bidyut B}, issn = {1944-8007}, journal = {Geophysical Research Letters}, number = {5}, publisher = {Wiley}, title = {{A pre-monsoon signal of false alarms of Indian monsoon droughts}}, doi = {10.1029/2023GL106569}, volume = {51}, year = {2024}, } @article{15146, abstract = {The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.}, author = {Zens, Bettina and Fäßler, Florian and Hansen, Jesse and Hauschild, Robert and Datler, Julia and Hodirnau, Victor-Valentin and Zheden, Vanessa and Alanko, Jonna H and Sixt, Michael K and Schur, Florian KM}, issn = {1540-8140}, journal = {Journal of Cell Biology}, number = {6}, publisher = {Rockefeller University Press}, title = {{Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix}}, doi = {10.1083/jcb.202309125}, volume = {223}, year = {2024}, } @inbook{12428, abstract = {The mammary gland consists of a bilayered epithelial structure with an extensively branched morphology. The majority of this epithelial tree is laid down during puberty, during which actively proliferating terminal end buds repeatedly elongate and bifurcate to form the basic structure of the ductal tree. Mammary ducts consist of a basal and luminal cell layer with a multitude of identified sub-lineages within both layers. The understanding of how these different cell lineages are cooperatively driving branching morphogenesis is a problem of crossing multiple scales, as this requires information on the macroscopic branched structure of the gland, as well as data on single-cell dynamics driving the morphogenic program. Here we describe a method to combine genetic lineage tracing with whole-gland branching analysis. Quantitative data on the global organ structure can be used to derive a model for mammary gland branching morphogenesis and provide a backbone on which the dynamics of individual cell lineages can be simulated and compared to lineage-tracing approaches. Eventually, these quantitative models and experiments allow to understand the couplings between the macroscopic shape of the mammary gland and the underlying single-cell dynamics driving branching morphogenesis.}, author = {Hannezo, Edouard B and Scheele, Colinda L.G.J.}, booktitle = {Cell Migration in Three Dimensions}, editor = {Margadant, Coert}, isbn = {9781071628867}, issn = {1940-6029}, pages = {183--205}, publisher = {Springer Nature}, title = {{A Guide Toward Multi-scale and Quantitative Branching Analysis in the Mammary Gland}}, doi = {10.1007/978-1-0716-2887-4_12}, volume = {2608}, year = {2023}, } @article{12534, abstract = {Brownian motion of a mobile impurity in a bath is affected by spin-orbit coupling (SOC). Here, we discuss a Caldeira-Leggett-type model that can be used to propose and interpret quantum simulators of this problem in cold Bose gases. First, we derive a master equation that describes the model and explore it in a one-dimensional (1D) setting. To validate the standard assumptions needed for our derivation, we analyze available experimental data without SOC; as a byproduct, this analysis suggests that the quench dynamics of the impurity is beyond the 1D Bose-polaron approach at temperatures currently accessible in a cold-atom laboratory—motion of the impurity is mainly driven by dissipation. For systems with SOC, we demonstrate that 1D spin-orbit coupling can be gauged out even in the presence of dissipation—the information about SOC is incorporated in the initial conditions. Observables sensitive to this information (such as spin densities) can be used to study formation of steady spin polarization domains during quench dynamics.}, author = {Ghazaryan, Areg and Cappellaro, Alberto and Lemeshko, Mikhail and Volosniev, Artem}, issn = {2643-1564}, journal = {Physical Review Research}, number = {1}, publisher = {American Physical Society}, title = {{Dissipative dynamics of an impurity with spin-orbit coupling}}, doi = {10.1103/physrevresearch.5.013029}, volume = {5}, year = {2023}, } @article{12158, abstract = {Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages.}, author = {Zeller, Peter and Yeung, Jake and Viñas Gaza, Helena and de Barbanson, Buys Anton and Bhardwaj, Vivek and Florescu, Maria and van der Linden, Reinier and van Oudenaarden, Alexander}, issn = {1546-1718}, journal = {Nature Genetics}, keywords = {Genetics}, pages = {333--345}, publisher = {Springer Nature}, title = {{Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis}}, doi = {10.1038/s41588-022-01260-3}, volume = {55}, year = {2023}, } @inproceedings{12676, abstract = {Turn-based stochastic games (aka simple stochastic games) are two-player zero-sum games played on directed graphs with probabilistic transitions. The goal of player-max is to maximize the probability to reach a target state against the adversarial player-min. These games lie in NP ∩ coNP and are among the rare combinatorial problems that belong to this complexity class for which the existence of polynomial-time algorithm is a major open question. While randomized sub-exponential time algorithm exists, all known deterministic algorithms require exponential time in the worst-case. An important open question has been whether faster algorithms can be obtained parametrized by the treewidth of the game graph. Even deterministic sub-exponential time algorithm for constant treewidth turn-based stochastic games has remain elusive. In this work our main result is a deterministic algorithm to solve turn-based stochastic games that, given a game with n states, treewidth at most t, and the bit-complexity of the probabilistic transition function log D, has running time O ((tn2 log D)t log n). In particular, our algorithm is quasi-polynomial time for games with constant or poly-logarithmic treewidth.}, author = {Chatterjee, Krishnendu and Meggendorfer, Tobias and Saona Urmeneta, Raimundo J and Svoboda, Jakub}, booktitle = {Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms}, isbn = {9781611977554}, location = {Florence, Italy}, pages = {4590--4605}, publisher = {Society for Industrial and Applied Mathematics}, title = {{Faster algorithm for turn-based stochastic games with bounded treewidth}}, doi = {10.1137/1.9781611977554.ch173}, year = {2023}, } @inproceedings{12735, abstract = {Asynchronous programming has gained significant popularity over the last decade: support for this programming pattern is available in many popular languages via libraries and native language implementations, typically in the form of coroutines or the async/await construct. Instead of programming via shared memory, this concept assumes implicit synchronization through message passing. The key data structure enabling such communication is the rendezvous channel. Roughly, a rendezvous channel is a blocking queue of size zero, so both send(e) and receive() operations wait for each other, performing a rendezvous when they meet. To optimize the message passing pattern, channels are usually equipped with a fixed-size buffer, so sends do not suspend and put elements into the buffer until its capacity is exceeded. This primitive is known as a buffered channel. This paper presents a fast and scalable algorithm for both rendezvous and buffered channels. Similarly to modern queues, our solution is based on an infinite array with two positional counters for send(e) and receive() operations, leveraging the unconditional Fetch-And-Add instruction to update them. Yet, the algorithm requires non-trivial modifications of this classic pattern, in order to support the full channel semantics, such as buffering and cancellation of waiting requests. We compare the performance of our solution to that of the Kotlin implementation, as well as against other academic proposals, showing up to 9.8× speedup. To showcase its expressiveness and performance, we also integrated the proposed algorithm into the standard Kotlin Coroutines library, replacing the previous channel implementations.}, author = {Koval, Nikita and Alistarh, Dan-Adrian and Elizarov, Roman}, booktitle = {Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming}, isbn = {9798400700156}, location = {Montreal, QC, Canada}, pages = {107--118}, publisher = {Association for Computing Machinery}, title = {{Fast and scalable channels in Kotlin Coroutines}}, doi = {10.1145/3572848.3577481}, year = {2023}, } @misc{12736, abstract = {Although a wide variety of handcrafted concurrent data structures have been proposed, there is considerable interest in universal approaches (Universal Constructions or UCs) for building concurrent data structures. UCs (semi-)automatically convert a sequential data structure into a concurrent one. The simplest approach uses locks [3, 6] that protect a sequential data structure and allow only one process to access it at a time. However, the resulting data structure is blocking. Most work on UCs instead focuses on obtaining non-blocking progress guarantees such as obstruction-freedom, lock-freedom or wait-freedom. Many non-blocking UCs have appeared. Key examples include the seminal wait-free UC [2] by Herlihy, a NUMA-aware UC [10] by Yi et al., and an efficient UC for large objects [1] by Fatourou et al.}, author = {Aksenov, Vitaly and Brown, Trevor A and Fedorov, Alexander and Kokorin, Ilya}, booktitle = {Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming}, isbn = {9798400700156}, location = {Montreal, QB, Canada}, pages = {438--440}, publisher = {Association for Computing Machinery}, title = {{Unexpected scaling in path copying trees}}, doi = {10.1145/3572848.3577512}, year = {2023}, } @inproceedings{12760, abstract = {Dynamic programming (DP) is one of the fundamental paradigms in algorithm design. However, many DP algorithms have to fill in large DP tables, represented by two-dimensional arrays, which causes at least quadratic running times and space usages. This has led to the development of improved algorithms for special cases when the DPs satisfy additional properties like, e.g., the Monge property or total monotonicity. In this paper, we consider a new condition which assumes (among some other technical assumptions) that the rows of the DP table are monotone. Under this assumption, we introduce a novel data structure for computing (1 + ϵ)-approximate DP solutions in near-linear time and space in the static setting, and with polylogarithmic update times when the DP entries change dynamically. To the best of our knowledge, our new condition is incomparable to previous conditions and is the first which allows to derive dynamic algorithms based on existing DPs. Instead of using two-dimensional arrays to store the DP tables, we store the rows of the DP tables using monotone piecewise constant functions. This allows us to store length-n DP table rows with entries in [0, W] using only polylog(n, W) bits, and to perform operations, such as (min, +)-convolution or rounding, on these functions in polylogarithmic time. We further present several applications of our data structure. For bicriteria versions of k-balanced graph partitioning and simultaneous source location, we obtain the first dynamic algorithms with subpolynomial update times, as well as the first static algorithms using only near-linear time and space. Additionally, we obtain the currently fastest algorithm for fully dynamic knapsack.}, author = {Henzinger, Monika H and Neumann, Stefan and Räcke, Harald and Schmid, Stefan}, booktitle = {40th International Symposium on Theoretical Aspects of Computer Science}, isbn = {9783959772662}, issn = {1868-8969}, location = {Hamburg, Germany}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Dynamic maintenance of monotone dynamic programs and applications}}, doi = {10.4230/LIPIcs.STACS.2023.36}, volume = {254}, year = {2023}, } @phdthesis{12716, abstract = {The process of detecting and evaluating sensory information to guide behaviour is termed perceptual decision-making (PDM), and is critical for the ability of an organism to interact with its external world. Individuals with autism, a neurodevelopmental condition primarily characterised by social and communication difficulties, frequently exhibit altered sensory processing and PDM difficulties are widely reported. Recent technological advancements have pushed forward our understanding of the genetic changes accompanying this condition, however our understanding of how these mutations affect the function of specific neuronal circuits and bring about the corresponding behavioural changes remains limited. Here, we use an innate PDM task, the looming avoidance response (LAR) paradigm, to identify a convergent behavioural abnormality across three molecularly distinct genetic mouse models of autism (Cul3, Setd5 and Ptchd1). Although mutant mice can rapidly detect threatening visual stimuli, their responses are consistently delayed, requiring longer to initiate an appropriate response than their wild-type siblings. Mutant animals show abnormal adaptation in both their stimulus- evoked escape responses and exploratory dynamics following repeated stimulus presentations. Similarly delayed behavioural responses are observed in wild-type animals when faced with more ambiguous threats, suggesting the mutant phenotype could arise from a dysfunction in the flexible control of this PDM process. Our knowledge of the core neuronal circuitry mediating the LAR facilitated a detailed dissection of the neuronal mechanisms underlying the behavioural impairment. In vivo extracellular recording revealed that visual responses were unaffected within a key brain region for the rapid processing of visual threats, the superior colliculus (SC), indicating that the behavioural delay was unlikely to originate from sensory impairments. Delayed behavioural responses were recapitulated in the Setd5 model following optogenetic stimulation of the excitatory output neurons of the SC, which are known to mediate escape initiation through the activation of cells in the underlying dorsal periaqueductal grey (dPAG). In vitro patch-clamp recordings of dPAG cells uncovered a stark hypoexcitability phenotype in two out of the three genetic models investigated (Setd5 and Ptchd1), that in Setd5, is mediated by the misregulation of voltage-gated potassium channels. Overall, our results show that the ability to use visual information to drive efficient escape responses is impaired in three diverse genetic mouse models of autism and that, in one of the models studied, this behavioural delay likely originates from differences in the intrinsic excitability of a key subcortical node, the dPAG. Furthermore, this work showcases the use of an innate behavioural paradigm to mechanistically dissect PDM processes in autism.}, author = {Burnett, Laura}, issn = {2663-337X}, pages = {178}, publisher = {Institute of Science and Technology Austria}, title = {{To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism}}, doi = {10.15479/at:ista:12716}, year = {2023}, } @inproceedings{12854, abstract = {The main idea behind BUBAAK is to run multiple program analyses in parallel and use runtime monitoring and enforcement to observe and control their progress in real time. The analyses send information about (un)explored states of the program and discovered invariants to a monitor. The monitor processes the received data and can force an analysis to stop the search of certain program parts (which have already been analyzed by other analyses), or to make it utilize a program invariant found by another analysis. At SV-COMP 2023, the implementation of data exchange between the monitor and the analyses was not yet completed, which is why BUBAAK only ran several analyses in parallel, without any coordination. Still, BUBAAK won the meta-category FalsificationOverall and placed very well in several other (sub)-categories of the competition.}, author = {Chalupa, Marek and Henzinger, Thomas A}, booktitle = {Tools and Algorithms for the Construction and Analysis of Systems}, isbn = {9783031308192}, issn = {1611-3349}, location = {Paris, France}, pages = {535--540}, publisher = {Springer Nature}, title = {{Bubaak: Runtime monitoring of program verifiers}}, doi = {10.1007/978-3-031-30820-8_32}, volume = {13994}, year = {2023}, } @unpublished{12846, abstract = {We present a formula for the signed area of a spherical polygon via prequantization. In contrast to the traditional formula based on the Gauss-Bonnet theorem that requires measuring angles, the new formula mimics Green's theorem and is applicable to a wider range of degenerate spherical curves and polygons.}, author = {Chern, Albert and Ishida, Sadashige}, booktitle = {arXiv}, title = {{Area formula for spherical polygons via prequantization}}, doi = {10.48550/arXiv.2303.14555}, year = {2023}, } @inproceedings{12856, abstract = {As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both. We present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems. We implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch.}, author = {Chalupa, Marek and Mühlböck, Fabian and Muroya Lei, Stefanie and Henzinger, Thomas A}, booktitle = {Fundamental Approaches to Software Engineering}, isbn = {9783031308253}, issn = {1611-3349}, location = {Paris, France}, pages = {260--281}, publisher = {Springer Nature}, title = {{Vamos: Middleware for best-effort third-party monitoring}}, doi = {10.1007/978-3-031-30826-0_15}, volume = {13991}, year = {2023}, } @misc{12407, abstract = {As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both. We present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems. We implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch.}, author = {Chalupa, Marek and Mühlböck, Fabian and Muroya Lei, Stefanie and Henzinger, Thomas A}, issn = {2664-1690}, keywords = {runtime monitoring, best effort, third party}, pages = {38}, publisher = {Institute of Science and Technology Austria}, title = {{VAMOS: Middleware for Best-Effort Third-Party Monitoring}}, doi = {10.15479/AT:ISTA:12407}, year = {2023}, } @inproceedings{13048, abstract = {In this paper we introduce a pruning of the medial axis called the (λ,α)-medial axis (axλα). We prove that the (λ,α)-medial axis of a set K is stable in a Gromov-Hausdorff sense under weak assumptions. More formally we prove that if K and K′ are close in the Hausdorff (dH) sense then the (λ,α)-medial axes of K and K′ are close as metric spaces, that is the Gromov-Hausdorff distance (dGH) between the two is 1/4-Hölder in the sense that dGH (axλα(K),axλα(K′)) ≲ dH(K,K′)1/4. The Hausdorff distance between the two medial axes is also bounded, by dH (axλα(K),λα(K′)) ≲ dH(K,K′)1/2. These quantified stability results provide guarantees for practical computations of medial axes from approximations. Moreover, they provide key ingredients for studying the computability of the medial axis in the context of computable analysis.}, author = {Lieutier, André and Wintraecken, Mathijs}, booktitle = {Proceedings of the 55th Annual ACM Symposium on Theory of Computing}, isbn = {9781450399135}, location = {Orlando, FL, United States}, pages = {1768--1776}, publisher = {Association for Computing Machinery}, title = {{Hausdorff and Gromov-Hausdorff stable subsets of the medial axis}}, doi = {10.1145/3564246.3585113}, year = {2023}, } @inproceedings{13053, abstract = {Deep neural networks (DNNs) often have to be compressed, via pruning and/or quantization, before they can be deployed in practical settings. In this work we propose a new compression-aware minimizer dubbed CrAM that modifies the optimization step in a principled way, in order to produce models whose local loss behavior is stable under compression operations such as pruning. Thus, dense models trained via CrAM should be compressible post-training, in a single step, without significant accuracy loss. Experimental results on standard benchmarks, such as residual networks for ImageNet classification and BERT models for language modelling, show that CrAM produces dense models that can be more accurate than the standard SGD/Adam-based baselines, but which are stable under weight pruning: specifically, we can prune models in one-shot to 70-80% sparsity with almost no accuracy loss, and to 90% with reasonable (∼1%) accuracy loss, which is competitive with gradual compression methods. Additionally, CrAM can produce sparse models which perform well for transfer learning, and it also works for semi-structured 2:4 pruning patterns supported by GPU hardware. The code for reproducing the results is available at this https URL .}, author = {Peste, Elena-Alexandra and Vladu, Adrian and Kurtic, Eldar and Lampert, Christoph and Alistarh, Dan-Adrian}, booktitle = {11th International Conference on Learning Representations }, location = {Kigali, Rwanda }, title = {{CrAM: A Compression-Aware Minimizer}}, year = {2023}, } @inproceedings{13143, abstract = {GIMPS and PrimeGrid are large-scale distributed projects dedicated to searching giant prime numbers, usually of special forms like Mersenne and Proth primes. The numbers in the current search-space are millions of digits large and the participating volunteers need to run resource-consuming primality tests. Once a candidate prime N has been found, the only way for another party to independently verify the primality of N used to be by repeating the expensive primality test. To avoid the need for second recomputation of each primality test, these projects have recently adopted certifying mechanisms that enable efficient verification of performed tests. However, the mechanisms presently in place only detect benign errors and there is no guarantee against adversarial behavior: a malicious volunteer can mislead the project to reject a giant prime as being non-prime. In this paper, we propose a practical, cryptographically-sound mechanism for certifying the non-primality of Proth numbers. That is, a volunteer can – parallel to running the primality test for N – generate an efficiently verifiable proof at a little extra cost certifying that N is not prime. The interactive protocol has statistical soundness and can be made non-interactive using the Fiat-Shamir heuristic. Our approach is based on a cryptographic primitive called Proof of Exponentiation (PoE) which, for a group G, certifies that a tuple (x,y,T)∈G2×N satisfies x2T=y (Pietrzak, ITCS 2019 and Wesolowski, J. Cryptol. 2020). In particular, we show how to adapt Pietrzak’s PoE at a moderate additional cost to make it a cryptographically-sound certificate of non-primality.}, author = {Hoffmann, Charlotte and Hubáček, Pavel and Kamath, Chethan and Pietrzak, Krzysztof Z}, booktitle = {Public-Key Cryptography - PKC 2023}, isbn = {9783031313677}, issn = {1611-3349}, location = {Atlanta, GA, United States}, pages = {530--553}, publisher = {Springer Nature}, title = {{Certifying giant nonprimes}}, doi = {10.1007/978-3-031-31368-4_19}, volume = {13940}, year = {2023}, } @inproceedings{13142, abstract = {Reinforcement learning has received much attention for learning controllers of deterministic systems. We consider a learner-verifier framework for stochastic control systems and survey recent methods that formally guarantee a conjunction of reachability and safety properties. Given a property and a lower bound on the probability of the property being satisfied, our framework jointly learns a control policy and a formal certificate to ensure the satisfaction of the property with a desired probability threshold. Both the control policy and the formal certificate are continuous functions from states to reals, which are learned as parameterized neural networks. While in the deterministic case, the certificates are invariant and barrier functions for safety, or Lyapunov and ranking functions for liveness, in the stochastic case the certificates are supermartingales. For certificate verification, we use interval arithmetic abstract interpretation to bound the expected values of neural network functions.}, author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Lechner, Mathias and Zikelic, Dorde}, booktitle = {Tools and Algorithms for the Construction and Analysis of Systems }, isbn = {9783031308222}, issn = {1611-3349}, location = {Paris, France}, pages = {3--25}, publisher = {Springer Nature}, title = {{A learner-verifier framework for neural network controllers and certificates of stochastic systems}}, doi = {10.1007/978-3-031-30823-9_1}, volume = {13993}, year = {2023}, } @inproceedings{13141, abstract = {We automatically compute a new class of environment assumptions in two-player turn-based finite graph games which characterize an “adequate cooperation” needed from the environment to allow the system player to win. Given an ω-regular winning condition Φ for the system player, we compute an ω-regular assumption Ψ for the environment player, such that (i) every environment strategy compliant with Ψ allows the system to fulfill Φ (sufficiency), (ii) Ψ can be fulfilled by the environment for every strategy of the system (implementability), and (iii) Ψ does not prevent any cooperative strategy choice (permissiveness). For parity games, which are canonical representations of ω-regular games, we present a polynomial-time algorithm for the symbolic computation of adequately permissive assumptions and show that our algorithm runs faster and produces better assumptions than existing approaches—both theoretically and empirically. To the best of our knowledge, for ω -regular games, we provide the first algorithm to compute sufficient and implementable environment assumptions that are also permissive.}, author = {Anand, Ashwani and Mallik, Kaushik and Nayak, Satya Prakash and Schmuck, Anne Kathrin}, booktitle = {TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems}, isbn = {9783031308192}, issn = {1611-3349}, location = {Paris, France}, pages = {211--228}, publisher = {Springer Nature}, title = {{Computing adequately permissive assumptions for synthesis}}, doi = {10.1007/978-3-031-30820-8_15}, volume = {13994}, year = {2023}, } @phdthesis{12826, abstract = {During navigation, animals can infer the structure of the environment by computing the optic flow cues elicited by their own movements, and subsequently use this information to instruct proper locomotor actions. These computations require a panoramic assessment of the visual environment in order to disambiguate similar sensory experiences that may require distinct behavioral responses. The estimation of the global motion patterns is therefore essential for successful navigation. Yet, our understanding of the algorithms and implementations that enable coherent panoramic visual perception remains scarce. Here I pursue this problem by dissecting the functional aspects of interneuronal communication in the lobula plate tangential cell network in Drosophila melanogaster. The results presented in the thesis demonstrate that the basis for effective interpretation of the optic flow in this circuit are stereotyped synaptic connections that mediate the formation of distinct subnetworks, each extracting a particular pattern of global motion. Firstly, I show that gap junctions are essential for a correct interpretation of binocular motion cues by horizontal motion-sensitive cells. HS cells form electrical synapses with contralateral H2 neurons that are involved in detecting yaw rotation and translation. I developed an FlpStop-mediated mutant of a gap junction protein ShakB that disrupts these electrical synapses. While the loss of electrical synapses does not affect the tuning of the direction selectivity in HS neurons, it severely alters their sensitivity to horizontal motion in the contralateral side. These physiological changes result in an inappropriate integration of binocular motion cues in walking animals. While wild-type flies form a binocular perception of visual motion by non-linear integration of monocular optic flow cues, the mutant flies sum the monocular inputs linearly. These results indicate that rather than averaging signals in neighboring neurons, gap-junctions operate in conjunction with chemical synapses to mediate complex non-linear optic flow computations. Secondly, I show that stochastic manipulation of neuronal activity in the lobula plate tangential cell network is a powerful approach to study the neuronal implementation of optic flow-based navigation in flies. Tangential neurons form multiple subnetworks, each mediating course-stabilizing response to a particular global pattern of visual motion. Application of genetic mosaic techniques can provide sparse optogenetic activation of HS cells in numerous combinations. These distinct combinations of activated neurons drive an array of distinct behavioral responses, providing important insights into how visuomotor transformation is performed in the lobula plate tangential cell network. This approach can be complemented by stochastic silencing of tangential neurons, enabling direct assessment of the functional role of individual tangential neurons in the processing of specific visual motion patterns. Taken together, the findings presented in this thesis suggest that establishing specific activity patterns of tangential cells via stereotyped synaptic connectivity is a key to efficient optic flow-based navigation in Drosophila melanogaster.}, author = {Pokusaeva, Victoria}, issn = {2663 - 337X}, pages = {106}, publisher = {Institute of Science and Technology Austria}, title = {{Neural control of optic flow-based navigation in Drosophila melanogaster}}, doi = {10.15479/at:ista:12826}, year = {2023}, } @article{12086, abstract = {We present a simple algorithm for computing higher-order Delaunay mosaics that works in Euclidean spaces of any finite dimensions. The algorithm selects the vertices of the order-k mosaic from incrementally constructed lower-order mosaics and uses an algorithm for weighted first-order Delaunay mosaics as a black-box to construct the order-k mosaic from its vertices. Beyond this black-box, the algorithm uses only combinatorial operations, thus facilitating easy implementation. We extend this algorithm to compute higher-order α-shapes and provide open-source implementations. We present experimental results for properties of higher-order Delaunay mosaics of random point sets.}, author = {Edelsbrunner, Herbert and Osang, Georg F}, issn = {1432-0541}, journal = {Algorithmica}, pages = {277--295}, publisher = {Springer Nature}, title = {{A simple algorithm for higher-order Delaunay mosaics and alpha shapes}}, doi = {10.1007/s00453-022-01027-6}, volume = {85}, year = {2023}, } @article{12104, abstract = {We study ergodic decompositions of Dirichlet spaces under intertwining via unitary order isomorphisms. We show that the ergodic decomposition of a quasi-regular Dirichlet space is unique up to a unique isomorphism of the indexing space. Furthermore, every unitary order isomorphism intertwining two quasi-regular Dirichlet spaces is decomposable over their ergodic decompositions up to conjugation via an isomorphism of the corresponding indexing spaces.}, author = {Dello Schiavo, Lorenzo and Wirth, Melchior}, issn = {1424-3202}, journal = {Journal of Evolution Equations}, number = {1}, publisher = {Springer Nature}, title = {{Ergodic decompositions of Dirichlet forms under order isomorphisms}}, doi = {10.1007/s00028-022-00859-7}, volume = {23}, year = {2023}, } @inproceedings{12467, abstract = {Safety and liveness are elementary concepts of computation, and the foundation of many verification paradigms. The safety-liveness classification of boolean properties characterizes whether a given property can be falsified by observing a finite prefix of an infinite computation trace (always for safety, never for liveness). In quantitative specification and verification, properties assign not truth values, but quantitative values to infinite traces (e.g., a cost, or the distance to a boolean property). We introduce quantitative safety and liveness, and we prove that our definitions induce conservative quantitative generalizations of both (1)~the safety-progress hierarchy of boolean properties and (2)~the safety-liveness decomposition of boolean properties. In particular, we show that every quantitative property can be written as the pointwise minimum of a quantitative safety property and a quantitative liveness property. Consequently, like boolean properties, also quantitative properties can be min-decomposed into safety and liveness parts, or alternatively, max-decomposed into co-safety and co-liveness parts. Moreover, quantitative properties can be approximated naturally. We prove that every quantitative property that has both safe and co-safe approximations can be monitored arbitrarily precisely by a monitor that uses only a finite number of states.}, author = {Henzinger, Thomas A and Mazzocchi, Nicolas Adrien and Sarac, Naci E}, booktitle = {26th International Conference Foundations of Software Science and Computation Structures}, isbn = {9783031308284}, issn = {1611-3349}, location = {Paris, France}, pages = {349--370}, publisher = {Springer Nature}, title = {{Quantitative safety and liveness}}, doi = {10.1007/978-3-031-30829-1_17}, volume = {13992}, year = {2023}, } @article{13179, abstract = {Writing concurrent code that is both correct and efficient is notoriously difficult. Thus, programmers often prefer to use synchronization abstractions, which render code simpler and easier to reason about. Despite a wealth of work on this topic, there is still a gap between the rich semantics provided by synchronization abstractions in modern programming languages—specifically, fair FIFO ordering of synchronization requests and support for abortable operations—and frameworks for implementing it correctly and efficiently. Supporting such semantics is critical given the rising popularity of constructs for asynchronous programming, such as coroutines, which abort frequently and are cheaper to suspend and resume compared to native threads. This paper introduces a new framework called CancellableQueueSynchronizer (CQS), which enables simple yet efficient implementations of a wide range of fair and abortable synchronization primitives: mutexes, semaphores, barriers, count-down latches, and blocking pools. Our main contribution is algorithmic, as implementing both fairness and abortability efficiently at this level of generality is non-trivial. Importantly, all our algorithms, including the CQS framework and the primitives built on top of it, come with formal proofs in the Iris framework for Coq for many of their properties. These proofs are modular, so it is easy to show correctness for new primitives implemented on top of CQS. From a practical perspective, implementation of CQS for native threads on the JVM improves throughput by up to two orders of magnitude over Java’s AbstractQueuedSynchronizer, the only practical abstraction offering similar semantics. Further, we successfully integrated CQS as a core component of the popular Kotlin Coroutines library, validating the framework’s practical impact and expressiveness in a real-world environment. In sum, CancellableQueueSynchronizer is the first framework to combine expressiveness with formal guarantees and solid practical performance. Our approach should be extensible to other languages and families of synchronization primitives.}, author = {Koval, Nikita and Khalanskiy, Dmitry and Alistarh, Dan-Adrian}, issn = {2475-1421}, journal = {Proceedings of the ACM on Programming Languages}, publisher = {Association for Computing Machinery }, title = {{CQS: A formally-verified framework for fair and abortable synchronization}}, doi = {10.1145/3591230}, volume = {7}, year = {2023}, } @article{13180, abstract = {We study the density of everywhere locally soluble diagonal quadric surfaces, parameterised by rational points that lie on a split quadric surface}, author = {Browning, Timothy D and Lyczak, Julian and Sarapin, Roman}, issn = {1944-4184}, journal = {Involve}, number = {2}, pages = {331--342}, publisher = {Mathematical Sciences Publishers}, title = {{Local solubility for a family of quadrics over a split quadric surface}}, doi = {10.2140/involve.2023.16.331}, volume = {16}, year = {2023}, } @inproceedings{13162, author = {Elefante, Stefano and Stadlbauer, Stephan and Alexander, Michael F and Schlögl, Alois}, booktitle = {ASHPC23 - Austrian-Slovenian HPC Meeting 2023}, location = {Maribor, Slovenia}, pages = {42--42}, publisher = {EuroCC}, title = {{Cryo-EM software packages: A sys-admins point of view}}, year = {2023}, } @inproceedings{13161, author = {Schlögl, Alois and Elefante, Stefano and Hodirnau, Victor-Valentin}, booktitle = {ASHPC23 - Austrian-Slovenian HPC Meeting 2023}, location = {Maribor, Slovenia}, pages = {59--59}, publisher = {EuroCC}, title = {{Running Windows-applications on a Linux HPC cluster using WINE}}, year = {2023}, } @article{13251, abstract = {A rotating organic cation and a dynamically disordered soft inorganic cage are the hallmark features of organic-inorganic lead-halide perovskites. Understanding the interplay between these two subsystems is a challenging problem, but it is this coupling that is widely conjectured to be responsible for the unique behavior of photocarriers in these materials. In this work, we use the fact that the polarizability of the organic cation strongly depends on the ambient electrostatic environment to put the molecule forward as a sensitive probe of the local crystal fields inside the lattice cell. We measure the average polarizability of the C/N–H bond stretching mode by means of infrared spectroscopy, which allows us to deduce the character of the motion of the cation molecule, find the magnitude of the local crystal field, and place an estimate on the strength of the hydrogen bond between the hydrogen and halide atoms. Our results pave the way for understanding electric fields in lead-halide perovskites using infrared bond spectroscopy.}, author = {Wei, Yujing and Volosniev, Artem and Lorenc, Dusan and Zhumekenov, Ayan A. and Bakr, Osman M. and Lemeshko, Mikhail and Alpichshev, Zhanybek}, issn = {1948-7185}, journal = {The Journal of Physical Chemistry Letters}, keywords = {General Materials Science, Physical and Theoretical Chemistry}, number = {27}, pages = {6309--6314}, publisher = {American Chemical Society}, title = {{Bond polarizability as a probe of local crystal fields in hybrid lead-halide perovskites}}, doi = {10.1021/acs.jpclett.3c01158}, volume = {14}, year = {2023}, } @inproceedings{13292, abstract = {The operator precedence languages (OPLs) represent the largest known subclass of the context-free languages which enjoys all desirable closure and decidability properties. This includes the decidability of language inclusion, which is the ultimate verification problem. Operator precedence grammars, automata, and logics have been investigated and used, for example, to verify programs with arithmetic expressions and exceptions (both of which are deterministic pushdown but lie outside the scope of the visibly pushdown languages). In this paper, we complete the picture and give, for the first time, an algebraic characterization of the class of OPLs in the form of a syntactic congruence that has finitely many equivalence classes exactly for the operator precedence languages. This is a generalization of the celebrated Myhill-Nerode theorem for the regular languages to OPLs. As one of the consequences, we show that universality and language inclusion for nondeterministic operator precedence automata can be solved by an antichain algorithm. Antichain algorithms avoid determinization and complementation through an explicit subset construction, by leveraging a quasi-order on words, which allows the pruning of the search space for counterexample words without sacrificing completeness. Antichain algorithms can be implemented symbolically, and these implementations are today the best-performing algorithms in practice for the inclusion of finite automata. We give a generic construction of the quasi-order needed for antichain algorithms from a finite syntactic congruence. This yields the first antichain algorithm for OPLs, an algorithm that solves the ExpTime-hard language inclusion problem for OPLs in exponential time.}, author = {Henzinger, Thomas A and Kebis, Pavol and Mazzocchi, Nicolas Adrien and Sarac, Naci E}, booktitle = {50th International Colloquium on Automata, Languages, and Programming}, isbn = {9783959772785}, issn = {1868-8969}, location = {Paderborn, Germany}, pages = {129:1----129:20}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Regular methods for operator precedence languages}}, doi = {10.4230/LIPIcs.ICALP.2023.129}, volume = {261}, year = {2023}, } @article{13277, abstract = {Recent experimental advances have inspired the development of theoretical tools to describe the non-equilibrium dynamics of quantum systems. Among them an exact representation of quantum spin systems in terms of classical stochastic processes has been proposed. Here we provide first steps towards the extension of this stochastic approach to bosonic systems by considering the one-dimensional quantum quartic oscillator. We show how to exactly parameterize the time evolution of this prototypical model via the dynamics of a set of classical variables. We interpret these variables as stochastic processes, which allows us to propose a novel way to numerically simulate the time evolution of the system. We benchmark our findings by considering analytically solvable limits and providing alternative derivations of known results.}, author = {Tucci, Gennaro and De Nicola, Stefano and Wald, Sascha and Gambassi, Andrea}, issn = {2666-9366}, journal = {SciPost Physics Core}, keywords = {Statistical and Nonlinear Physics, Atomic and Molecular Physics, and Optics, Nuclear and High Energy Physics, Condensed Matter Physics}, number = {2}, publisher = {SciPost Foundation}, title = {{Stochastic representation of the quantum quartic oscillator}}, doi = {10.21468/scipostphyscore.6.2.029}, volume = {6}, year = {2023}, } @article{13276, abstract = {We introduce a generic and accessible implementation of an exact diagonalization method for studying few-fermion models. Our aim is to provide a testbed for the newcomers to the field as well as a stepping stone for trying out novel optimizations and approximations. This userguide consists of a description of the algorithm, and several examples in varying orders of sophistication. In particular, we exemplify our routine using an effective-interaction approach that fixes the low-energy physics. We benchmark this approach against the existing data, and show that it is able to deliver state-of-the-art numerical results at a significantly reduced computational cost.}, author = {Rammelmüller, Lukas and Huber, David and Volosniev, Artem}, issn = {2949-804X}, journal = {SciPost Physics Codebases}, publisher = {SciPost Foundation}, title = {{A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D}}, doi = {10.21468/scipostphyscodeb.12}, year = {2023}, } @misc{13275, abstract = {We introduce a generic and accessible implementation of an exact diagonalization method for studying few-fermion models. Our aim is to provide a testbed for the newcomers to the field as well as a stepping stone for trying out novel optimizations and approximations. This userguide consists of a description of the algorithm, and several examples in varying orders of sophistication. In particular, we exemplify our routine using an effective-interaction approach that fixes the low-energy physics. We benchmark this approach against the existing data, and show that it is able to deliver state-of-the-art numerical results at a significantly reduced computational cost.}, author = {Rammelmüller, Lukas and Huber, David and Volosniev, Artem}, publisher = {SciPost Foundation}, title = {{Codebase release 1.0 for FermiFCI}}, doi = {10.21468/scipostphyscodeb.12-r1.0}, year = {2023}, } @inproceedings{13262, abstract = {Determining the degree of inherent parallelism in classical sequential algorithms and leveraging it for fast parallel execution is a key topic in parallel computing, and detailed analyses are known for a wide range of classical algorithms. In this paper, we perform the first such analysis for the fundamental Union-Find problem, in which we are given a graph as a sequence of edges, and must maintain its connectivity structure under edge additions. We prove that classic sequential algorithms for this problem are well-parallelizable under reasonable assumptions, addressing a conjecture by [Blelloch, 2017]. More precisely, we show via a new potential argument that, under uniform random edge ordering, parallel union-find operations are unlikely to interfere: T concurrent threads processing the graph in parallel will encounter memory contention O(T2 · log |V| · log |E|) times in expectation, where |E| and |V| are the number of edges and nodes in the graph, respectively. We leverage this result to design a new parallel Union-Find algorithm that is both internally deterministic, i.e., its results are guaranteed to match those of a sequential execution, but also work-efficient and scalable, as long as the number of threads T is O(|E|1 over 3 - ε), for an arbitrarily small constant ε > 0, which holds for most large real-world graphs. We present lower bounds which show that our analysis is close to optimal, and experimental results suggesting that the performance cost of internal determinism is limited.}, author = {Fedorov, Alexander and Hashemi, Diba and Nadiradze, Giorgi and Alistarh, Dan-Adrian}, booktitle = {Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures}, isbn = {9781450395458}, location = {Orlando, FL, United States}, pages = {261--271}, publisher = {Association for Computing Machinery}, title = {{Provably-efficient and internally-deterministic parallel Union-Find}}, doi = {10.1145/3558481.3591082}, year = {2023}, } @article{11479, abstract = {Understanding population divergence that eventually leads to speciation is essential for evolutionary biology. High species diversity in the sea was regarded as a paradox when strict allopatry was considered necessary for most speciation events because geographical barriers seemed largely absent in the sea, and many marine species have high dispersal capacities. Combining genome-wide data with demographic modelling to infer the demographic history of divergence has introduced new ways to address this classical issue. These models assume an ancestral population that splits into two subpopulations diverging according to different scenarios that allow tests for periods of gene flow. Models can also test for heterogeneities in population sizes and migration rates along the genome to account, respectively, for background selection and selection against introgressed ancestry. To investigate how barriers to gene flow arise in the sea, we compiled studies modelling the demographic history of divergence in marine organisms and extracted preferred demographic scenarios together with estimates of demographic parameters. These studies show that geographical barriers to gene flow do exist in the sea but that divergence can also occur without strict isolation. Heterogeneity of gene flow was detected in most population pairs suggesting the predominance of semipermeable barriers during divergence. We found a weak positive relationship between the fraction of the genome experiencing reduced gene flow and levels of genome-wide differentiation. Furthermore, we found that the upper bound of the ‘grey zone of speciation’ for our dataset extended beyond that found before, implying that gene flow between diverging taxa is possible at higher levels of divergence than previously thought. Finally, we list recommendations for further strengthening the use of demographic modelling in speciation research. These include a more balanced representation of taxa, more consistent and comprehensive modelling, clear reporting of results and simulation studies to rule out nonbiological explanations for general results.}, author = {De Jode, Aurélien and Le Moan, Alan and Johannesson, Kerstin and Faria, Rui and Stankowski, Sean and Westram, Anja M and Butlin, Roger K. and Rafajlović, Marina and Fraisse, Christelle}, issn = {1752-4571}, journal = {Evolutionary Applications}, number = {2}, pages = {542--559}, publisher = {Wiley}, title = {{Ten years of demographic modelling of divergence and speciation in the sea}}, doi = {10.1111/eva.13428}, volume = {16}, year = {2023}, } @article{12329, abstract = {In this article, we develop two independent and new approaches to model epidemic spread in a network. Contrary to the most studied models, those developed here allow for contacts with different probabilities of transmitting the disease (transmissibilities). We then examine each of these models using some mean field type approximations. The first model looks at the late-stage effects of an epidemic outbreak and allows for the computation of the probability that a given vertex was infected. This computation is based on a mean field approximation and only depends on the number of contacts and their transmissibilities. This approach shares many similarities with percolation models in networks. The second model we develop is a dynamic model which we analyze using a mean field approximation which highly reduces the dimensionality of the system. In particular, the original system which individually analyses each vertex of the network is reduced to one with as many equations as different transmissibilities. Perhaps the greatest contribution of this article is the observation that, in both these models, the existence and size of an epidemic outbreak are linked to the properties of a matrix which we call the R-matrix. This is a generalization of the basic reproduction number which more precisely characterizes the main routes of infection.}, author = {Gómez, Arturo and Oliveira, Goncalo}, issn = {2045-2322}, journal = {Scientific Reports}, publisher = {Springer Nature}, title = {{New approaches to epidemic modeling on networks}}, doi = {10.1038/s41598-022-19827-9}, volume = {13}, year = {2023}, } @article{9034, abstract = {We determine an asymptotic formula for the number of integral points of bounded height on a blow-up of P3 outside certain planes using universal torsors.}, author = {Wilsch, Florian Alexander}, issn = {1687-0247}, journal = {International Mathematics Research Notices}, number = {8}, pages = {6780--6808}, publisher = {Oxford Academic}, title = {{Integral points of bounded height on a log Fano threefold}}, doi = {10.1093/imrn/rnac048}, volume = {2023}, year = {2023}, } @article{12469, abstract = {Hosts can carry many viruses in their bodies, but not all of them cause disease. We studied ants as a social host to determine both their overall viral repertoire and the subset of actively infecting viruses across natural populations of three subfamilies: the Argentine ant (Linepithema humile, Dolichoderinae), the invasive garden ant (Lasius neglectus, Formicinae) and the red ant (Myrmica rubra, Myrmicinae). We used a dual sequencing strategy to reconstruct complete virus genomes by RNA-seq and to simultaneously determine the small interfering RNAs (siRNAs) by small RNA sequencing (sRNA-seq), which constitute the host antiviral RNAi immune response. This approach led to the discovery of 41 novel viruses in ants and revealed a host ant-specific RNAi response (21 vs. 22 nt siRNAs) in the different ant species. The efficiency of the RNAi response (sRNA/RNA read count ratio) depended on the virus and the respective ant species, but not its population. Overall, we found the highest virus abundance and diversity per population in Li. humile, followed by La. neglectus and M. rubra. Argentine ants also shared a high proportion of viruses between populations, whilst overlap was nearly absent in M. rubra. Only one of the 59 viruses was found to infect two of the ant species as hosts, revealing high host-specificity in active infections. In contrast, six viruses actively infected one ant species, but were found as contaminants only in the others. Disentangling spillover of disease-causing infection from non-infecting contamination across species is providing relevant information for disease ecology and ecosystem management.}, author = {Viljakainen, Lumi and Fürst, Matthias and Grasse, Anna V and Jurvansuu, Jaana and Oh, Jinook and Tolonen, Lassi and Eder, Thomas and Rattei, Thomas and Cremer, Sylvia}, issn = {1664-302X}, journal = {Frontiers in Microbiology}, publisher = {Frontiers}, title = {{Antiviral immune response reveals host-specific virus infections in natural ant populations}}, doi = {10.3389/fmicb.2023.1119002}, volume = {14}, year = {2023}, } @article{12287, abstract = {We present criteria for establishing a triangulation of a manifold. Given a manifold M, a simplicial complex A, and a map H from the underlying space of A to M, our criteria are presented in local coordinate charts for M, and ensure that H is a homeomorphism. These criteria do not require a differentiable structure, or even an explicit metric on M. No Delaunay property of A is assumed. The result provides a triangulation guarantee for algorithms that construct a simplicial complex by working in local coordinate patches. Because the criteria are easily verified in such a setting, they are expected to be of general use.}, author = {Boissonnat, Jean-Daniel and Dyer, Ramsay and Ghosh, Arijit and Wintraecken, Mathijs}, issn = {1432-0444}, journal = {Discrete & Computational Geometry}, keywords = {Computational Theory and Mathematics, Discrete Mathematics and Combinatorics, Geometry and Topology, Theoretical Computer Science}, pages = {156--191}, publisher = {Springer Nature}, title = {{Local criteria for triangulating general manifolds}}, doi = {10.1007/s00454-022-00431-7}, volume = {69}, year = {2023}, } @article{12421, abstract = {The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions.}, author = {Fäßler, Florian and Javoor, Manjunath and Schur, Florian KM}, issn = {1470-8752}, journal = {Biochemical Society Transactions}, keywords = {Biochemistry}, number = {1}, pages = {87--99}, publisher = {Portland Press}, title = {{Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM}}, doi = {10.1042/bst20220221}, volume = {51}, year = {2023}, } @article{12105, abstract = {Data-driven dimensionality reduction methods such as proper orthogonal decomposition and dynamic mode decomposition have proven to be useful for exploring complex phenomena within fluid dynamics and beyond. A well-known challenge for these techniques is posed by the continuous symmetries, e.g. translations and rotations, of the system under consideration, as drifts in the data dominate the modal expansions without providing an insight into the dynamics of the problem. In the present study, we address this issue for fluid flows in rectangular channels by formulating a continuous symmetry reduction method that eliminates the translations in the streamwise and spanwise directions simultaneously. We demonstrate our method by computing the symmetry-reduced dynamic mode decomposition (SRDMD) of sliding windows of data obtained from the transitional plane-Couette and turbulent plane-Poiseuille flow simulations. In the former setting, SRDMD captures the dynamics in the vicinity of the invariant solutions with translation symmetries, i.e. travelling waves and relative periodic orbits, whereas in the latter, our calculations reveal episodes of turbulent time evolution that can be approximated by a low-dimensional linear expansion.}, author = {Marensi, Elena and Yalniz, Gökhan and Hof, Björn and Budanur, Nazmi B}, issn = {1469-7645}, journal = {Journal of Fluid Mechanics}, publisher = {Cambridge University Press}, title = {{Symmetry-reduced dynamic mode decomposition of near-wall turbulence}}, doi = {10.1017/jfm.2022.1001}, volume = {954}, year = {2023}, } @article{12514, abstract = {The concept of a “speciation continuum” has gained popularity in recent decades. It emphasizes speciation as a continuous process that may be studied by comparing contemporary population pairs that show differing levels of divergence. In their recent perspective article in Evolution, Stankowski and Ravinet provided a valuable service by formally defining the speciation continuum as a continuum of reproductive isolation, based on opinions gathered from a survey of speciation researchers. While we agree that the speciation continuum has been a useful concept to advance the understanding of the speciation process, some intrinsic limitations exist. Here, we advocate for a multivariate extension, the speciation hypercube, first proposed by Dieckmann et al. in 2004, but rarely used since. We extend the idea of the speciation cube and suggest it has strong conceptual and practical advantages over a one-dimensional model. We illustrate how the speciation hypercube can be used to visualize and compare different speciation trajectories, providing new insights into the processes and mechanisms of speciation. A key strength of the speciation hypercube is that it provides a unifying framework for speciation research, as it allows questions from apparently disparate subfields to be addressed in a single conceptual model.}, author = {Bolnick, Daniel I. and Hund, Amanda K. and Nosil, Patrik and Peng, Foen and Ravinet, Mark and Stankowski, Sean and Subramanian, Swapna and Wolf, Jochen B.W. and Yukilevich, Roman}, issn = {1558-5646}, journal = {Evolution: International journal of organic evolution}, number = {1}, pages = {318--328}, publisher = {Oxford University Press}, title = {{A multivariate view of the speciation continuum}}, doi = {10.1093/evolut/qpac004}, volume = {77}, year = {2023}, } @inproceedings{12548, abstract = {The limited exchange between human communities is a key factor in preventing the spread of COVID-19. This paper introduces a digital framework that combines an integration of real mobility data at the country scale with a series of modeling techniques and visual capabilities that highlight mobility patterns before and during the pandemic. The findings not only significantly exhibit mobility trends and different degrees of similarities at regional and local levels but also provide potential insight into the emergence of a pandemic on human behavior patterns and their likely socio-economic impacts.}, author = {Forghani, Mohammad and Claramunt, Christophe and Karimipour, Farid and Heiler, Georg}, booktitle = {2022 IEEE International Conference on Data Mining Workshops}, issn = {2375-9259}, location = {Orlando, FL, United States}, publisher = {Institute of Electrical and Electronics Engineers}, title = {{Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic}}, doi = {10.1109/icdmw58026.2022.00093}, year = {2023}, } @article{12563, abstract = {he approximate graph coloring problem, whose complexity is unresolved in most cases, concerns finding a c-coloring of a graph that is promised to be k-colorable, where c≥k. This problem naturally generalizes to promise graph homomorphism problems and further to promise constraint satisfaction problems. The complexity of these problems has recently been studied through an algebraic approach. In this paper, we introduce two new techniques to analyze the complexity of promise CSPs: one is based on topology and the other on adjunction. We apply these techniques, together with the previously introduced algebraic approach, to obtain new unconditional NP-hardness results for a significant class of approximate graph coloring and promise graph homomorphism problems.}, author = {Krokhin, Andrei and Opršal, Jakub and Wrochna, Marcin and Živný, Stanislav}, issn = {1095-7111}, journal = {SIAM Journal on Computing}, keywords = {General Mathematics, General Computer Science}, number = {1}, pages = {38--79}, publisher = {Society for Industrial & Applied Mathematics}, title = {{Topology and adjunction in promise constraint satisfaction}}, doi = {10.1137/20m1378223}, volume = {52}, year = {2023}, } @article{12545, abstract = {We study active surface wetting using a minimal model of bacteria that takes into account the intrinsic motility diversity of living matter. A mixture of “fast” and “slow” self-propelled Brownian particles is considered in the presence of a wall. The evolution of the wetting layer thickness shows an overshoot before stationarity and its composition evolves in two stages, equilibrating after a slow elimination of excess particles. Nonmonotonic evolutions are shown to arise from delayed avalanches towards the dilute phase combined with the emergence of a transient particle front.}, author = {Rojas Vega, Mauricio Nicolas and De Castro, Pablo and Soto, Rodrigo}, issn = {2470-0053}, journal = {Physical Review E}, number = {1}, publisher = {American Physical Society}, title = {{Wetting dynamics by mixtures of fast and slow self-propelled particles}}, doi = {10.1103/PhysRevE.107.014608}, volume = {107}, year = {2023}, } @article{12427, abstract = {Let k be a number field and X a smooth, geometrically integral quasi-projective variety over k. For any linear algebraic group G over k and any G-torsor g : Z → X, we observe that if the étale-Brauer obstruction is the only one for strong approximation off a finite set of places S for all twists of Z by elements in H^1(k, G), then the étale-Brauer obstruction is the only one for strong approximation off a finite set of places S for X. As an application, we show that any homogeneous space of the form G/H with G a connected linear algebraic group over k satisfies strong approximation off the infinite places with étale-Brauer obstruction, under some compactness assumptions when k is totally real. We also prove more refined strong approximation results for homogeneous spaces of the form G/H with G semisimple simply connected and H finite, using the theory of torsors and descent.}, author = {Balestrieri, Francesca}, issn = {1088-6826}, journal = {Proceedings of the American Mathematical Society}, number = {3}, pages = {907--914}, publisher = {American Mathematical Society}, title = {{Some remarks on strong approximation and applications to homogeneous spaces of linear algebraic groups}}, doi = {10.1090/proc/15239}, volume = {151}, year = {2023}, } @article{12567, abstract = {Single-molecule localization microscopy (SMLM) greatly advances structural studies of diverse biological tissues. For example, presynaptic active zone (AZ) nanotopology is resolved in increasing detail. Immunofluorescence imaging of AZ proteins usually relies on epitope preservation using aldehyde-based immunocompetent fixation. Cryofixation techniques, such as high-pressure freezing (HPF) and freeze substitution (FS), are widely used for ultrastructural studies of presynaptic architecture in electron microscopy (EM). HPF/FS demonstrated nearer-to-native preservation of AZ ultrastructure, e.g., by facilitating single filamentous structures. Here, we present a protocol combining the advantages of HPF/FS and direct stochastic optical reconstruction microscopy (dSTORM) to quantify nanotopology of the AZ scaffold protein Bruchpilot (Brp) at neuromuscular junctions (NMJs) of Drosophila melanogaster. Using this standardized model, we tested for preservation of Brp clusters in different FS protocols compared to classical aldehyde fixation. In HPF/FS samples, presynaptic boutons were structurally well preserved with ~22% smaller Brp clusters that allowed quantification of subcluster topology. In summary, we established a standardized near-to-native preparation and immunohistochemistry protocol for SMLM analyses of AZ protein clusters in a defined model synapse. Our protocol could be adapted to study protein arrangements at single-molecule resolution in other intact tissue preparations.}, author = {Mrestani, Achmed and Lichter, Katharina and Sirén, Anna Leena and Heckmann, Manfred and Paul, Mila M. and Pauli, Martin}, issn = {1422-0067}, journal = {International Journal of Molecular Sciences}, number = {3}, publisher = {MDPI}, title = {{Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation}}, doi = {10.3390/ijms24032128}, volume = {24}, year = {2023}, } @article{12566, abstract = {Approximate agreement is one of the few variants of consensus that can be solved in a wait-free manner in asynchronous systems where processes communicate by reading and writing to shared memory. In this work, we consider a natural generalisation of approximate agreement on arbitrary undirected connected graphs. Each process is given a node of the graph as input and, if non-faulty, must output a node such that – all the outputs are within distance 1 of one another, and – each output value lies on a shortest path between two input values. From prior work, it is known that there is no wait-free algorithm among processes for this problem on any cycle of length , by reduction from 2-set agreement (Castañeda et al., 2018). In this work, we investigate the solvability of this task on general graphs. We give a new, direct proof of the impossibility of approximate agreement on cycles of length , via a generalisation of Sperner's Lemma to convex polygons. We also extend the reduction from 2-set agreement to a larger class of graphs, showing that approximate agreement on these graphs is unsolvable. On the positive side, we present a wait-free algorithm for a different class of graphs, which properly contains the class of chordal graphs.}, author = {Alistarh, Dan-Adrian and Ellen, Faith and Rybicki, Joel}, issn = {0304-3975}, journal = {Theoretical Computer Science}, number = {2}, publisher = {Elsevier}, title = {{Wait-free approximate agreement on graphs}}, doi = {10.1016/j.tcs.2023.113733}, volume = {948}, year = {2023}, }