@article{15001, abstract = {Self-replication of amyloid fibrils via secondary nucleation is an intriguing physicochemical phenomenon in which existing fibrils catalyze the formation of their own copies. The molecular events behind this fibril surface-mediated process remain largely inaccessible to current structural and imaging techniques. Using statistical mechanics, computer modeling, and chemical kinetics, we show that the catalytic structure of the fibril surface can be inferred from the aggregation behavior in the presence and absence of a fibril-binding inhibitor. We apply our approach to the case of Alzheimer’s A amyloid fibrils formed in the presence of proSP-C Brichos inhibitors. We find that self-replication of A fibrils occurs on small catalytic sites on the fibril surface, which are far apart from each other, and each of which can be covered by a single Brichos inhibitor.}, author = {Curk, Samo and Krausser, Johannes and Meisl, Georg and Frenkel, Daan and Linse, Sara and Michaels, Thomas C.T. and Knowles, Tuomas P.J. and Šarić, Anđela}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {7}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites}}, doi = {10.1073/pnas.2220075121}, volume = {121}, year = {2024}, } @article{15002, abstract = {The lattice Schwinger model, the discrete version of QED in 1 + 1 dimensions, is a well-studied test bench for lattice gauge theories. Here, we study the fractal properties of this model. We reveal the self-similarity of the ground state, which allows us to develop a recurrent procedure for finding the ground-state wave functions and predicting ground-state energies. We present the results of recurrently calculating ground-state wave functions using the fractal Ansatz and automized software package for fractal image processing. In certain parameter regimes, just a few terms are enough for our recurrent procedure to predict ground-state energies close to the exact ones for several hundreds of sites. Our findings pave the way to understanding the complexity of calculating many-body wave functions in terms of their fractal properties as well as finding new links between condensed matter and high-energy lattice models.}, author = {Petrova, Elena and Tiunov, Egor S. and Bañuls, Mari Carmen and Fedorov, Aleksey K.}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {5}, publisher = {American Physical Society}, title = {{Fractal states of the Schwinger model}}, doi = {10.1103/PhysRevLett.132.050401}, volume = {132}, year = {2024}, } @article{12485, abstract = {In this paper we introduce the critical variational setting for parabolic stochastic evolution equations of quasi- or semi-linear type. Our results improve many of the abstract results in the classical variational setting. In particular, we are able to replace the usual weak or local monotonicity condition by a more flexible local Lipschitz condition. Moreover, the usual growth conditions on the multiplicative noise are weakened considerably. Our new setting provides general conditions under which local and global existence and uniqueness hold. Moreover, we prove continuous dependence on the initial data. We show that many classical SPDEs, which could not be covered by the classical variational setting, do fit in the critical variational setting. In particular, this is the case for the Cahn-Hilliard equations, tamed Navier-Stokes equations, and Allen-Cahn equation.}, author = {Agresti, Antonio and Veraar, Mark}, issn = {1432-2064}, journal = {Probability Theory and Related Fields}, publisher = {Springer Nature}, title = {{The critical variational setting for stochastic evolution equations}}, doi = {10.1007/s00440-023-01249-x}, year = {2024}, } @inproceedings{15008, abstract = {Oblivious routing is a well-studied paradigm that uses static precomputed routing tables for selecting routing paths within a network. Existing oblivious routing schemes with polylogarithmic competitive ratio for general networks are tree-based, in the sense that routing is performed according to a convex combination of trees. However, this restriction to trees leads to a construction that has time quadratic in the size of the network and does not parallelize well. In this paper we study oblivious routing schemes based on electrical routing. In particular, we show that general networks with n vertices and m edges admit a routing scheme that has competitive ratio O(log² n) and consists of a convex combination of only O(√m) electrical routings. This immediately leads to an improved construction algorithm with time Õ(m^{3/2}) that can also be implemented in parallel with Õ(√m) depth.}, author = {Goranci, Gramoz and Henzinger, Monika H and Räcke, Harald and Sachdeva, Sushant and Sricharan, A. R.}, booktitle = {15th Innovations in Theoretical Computer Science Conference}, isbn = {9783959773096}, issn = {1868-8969}, location = {Berkeley, CA, United States}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Electrical flows for polylogarithmic competitive oblivious routing}}, doi = {10.4230/LIPIcs.ITCS.2024.55}, volume = {287}, year = {2024}, } @inproceedings{15007, abstract = {Traditional blockchains grant the miner of a block full control not only over which transactions but also their order. This constitutes a major flaw discovered with the introduction of decentralized finance and allows miners to perform MEV attacks. In this paper, we address the issue of sandwich attacks by providing a construction that takes as input a blockchain protocol and outputs a new blockchain protocol with the same security but in which sandwich attacks are not profitable. Furthermore, our protocol is fully decentralized with no trusted third parties or heavy cryptography primitives and carries a linear increase in latency and minimum computation overhead.}, author = {Alpos, Orestis and Amores-Sesar, Ignacio and Cachin, Christian and Yeo, Michelle X}, booktitle = {27th International Conference on Principles of Distributed Systems}, isbn = {9783959773089}, issn = {1868-8969}, location = {Tokyo, Japan}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Eating sandwiches: Modular and lightweight elimination of transaction reordering attacks}}, doi = {10.4230/LIPIcs.OPODIS.2023.12}, volume = {286}, year = {2024}, } @inproceedings{14769, abstract = {For a set of points in Rd, the Euclidean k-means problems consists of finding k centers such that the sum of distances squared from each data point to its closest center is minimized. Coresets are one the main tools developed recently to solve this problem in a big data context. They allow to compress the initial dataset while preserving its structure: running any algorithm on the coreset provides a guarantee almost equivalent to running it on the full data. In this work, we study coresets in a fully-dynamic setting: points are added and deleted with the goal to efficiently maintain a coreset with which a k-means solution can be computed. Based on an algorithm from Henzinger and Kale [ESA'20], we present an efficient and practical implementation of a fully dynamic coreset algorithm, that improves the running time by up to a factor of 20 compared to our non-optimized implementation of the algorithm by Henzinger and Kale, without sacrificing more than 7% on the quality of the k-means solution.}, author = {Henzinger, Monika H and Saulpic, David and Sidl, Leonhard}, booktitle = {2024 Proceedings of the Symposium on Algorithm Engineering and Experiments}, location = {Alexandria, VA, United States}, pages = {220--233}, publisher = {Society for Industrial & Applied Mathematics}, title = {{Experimental evaluation of fully dynamic k-means via coresets}}, doi = {10.1137/1.9781611977929.17}, year = {2024}, } @article{15009, abstract = {Since the commercialization of brine shrimp (genus Artemia) in the 1950s, this lineage, and in particular the model species Artemia franciscana, has been the subject of extensive research. However, our understanding of the genetic mechanisms underlying various aspects of their reproductive biology, including sex determination, is still lacking. This is partly due to the scarcity of genomic resources for Artemia species and crustaceans in general. Here, we present a chromosome-level genome assembly of A. franciscana (Kellogg 1906), from the Great Salt Lake, United States. The genome is 1 GB, and the majority of the genome (81%) is scaffolded into 21 linkage groups using a previously published high-density linkage map. We performed coverage and FST analyses using male and female genomic and transcriptomic reads to quantify the extent of differentiation between the Z and W chromosomes. Additionally, we quantified the expression levels in male and female heads and gonads and found further evidence for dosage compensation in this species.}, author = {Bett, Vincent K and Macon, Ariana and Vicoso, Beatriz and Elkrewi, Marwan N}, issn = {1759-6653}, journal = {Genome Biology and Evolution}, number = {1}, publisher = {Oxford University Press}, title = {{Chromosome-level assembly of Artemia franciscana sheds light on sex chromosome differentiation}}, doi = {10.1093/gbe/evae006}, volume = {16}, year = {2024}, } @article{15004, abstract = {The impulsive limit (the “sudden approximation”) has been widely employed to describe the interaction between molecules and short, far-off-resonant laser pulses. This approximation assumes that the timescale of the laser-molecule interaction is significantly shorter than the internal rotational period of the molecule, resulting in the rotational motion being instantaneously “frozen” during the interaction. This simplified description of the laser-molecule interaction is incorporated in various theoretical models predicting rotational dynamics of molecules driven by short laser pulses. In this theoretical work, we develop an effective theory for ultrashort laser pulses by examining the full time-evolution operator and solving the time-dependent Schrödinger equation at the operator level. Our findings reveal a critical angular momentum, lcrit, at which the impulsive limit breaks down. In other words, the validity of the sudden approximation depends not only on the pulse duration but also on its intensity, since the latter determines how many angular momentum states are populated. We explore both ultrashort multicycle (Gaussian) pulses and the somewhat less studied half-cycle pulses, which produce distinct effective potentials. We discuss the limitations of the impulsive limit and propose a method that rescales the effective matrix elements, enabling an improved and more accurate description of laser-molecule interactions.}, author = {Karle, Volker and Lemeshko, Mikhail}, issn = {2469-9934}, journal = {Physical Review A}, number = {2}, publisher = {American Physical Society}, title = {{Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics}}, doi = {10.1103/PhysRevA.109.023101}, volume = {109}, year = {2024}, } @misc{14705, abstract = {Since the commercialization of brine shrimp (genus Artemia) in the 1950s, this lineage, and in particular the model species Artemia franciscana, has been the subject of extensive research. However, our understanding of the genetic mechanisms underlying various aspects of their reproductive biology, including sex determination, are still lacking. This is partly due to the scarcity of genomic resources for Artemia species and crustaceans in general. Here, we present a chromosome-level genome assembly of Artemia franciscana (Kellogg 1906), from the Great Salt Lake, USA. The genome is 1GB, and the majority of the genome (81%) is scaffolded into 21 linkage groups using a previously published high-density linkage map. We performed coverage and FST analyses using male and female genomic and transcriptomic reads to quantify the extent of differentiation between the Z and W chromosomes. Additionally, we quantified the expression levels in male and female heads and gonads and found further evidence for dosage compensation in this species.}, author = {Elkrewi, Marwan N}, keywords = {sex chromosome evolution, genome assembly, dosage compensation}, publisher = {Institute of Science and Technology Austria}, title = {{Data from "Chromosome-level assembly of Artemia franciscana sheds light on sex-chromosome differentiation"}}, doi = {10.15479/AT:ISTA:14705}, year = {2024}, } @article{15018, abstract = {The epitaxial growth of a strained Ge layer, which is a promising candidate for the channel material of a hole spin qubit, has been demonstrated on 300 mm Si wafers using commercially available Si0.3Ge0.7 strain relaxed buffer (SRB) layers. The assessment of the layer and the interface qualities for a buried strained Ge layer embedded in Si0.3Ge0.7 layers is reported. The XRD reciprocal space mapping confirmed that the reduction of the growth temperature enables the 2-dimensional growth of the Ge layer fully strained with respect to the Si0.3Ge0.7. Nevertheless, dislocations at the top and/or bottom interface of the Ge layer were observed by means of electron channeling contrast imaging, suggesting the importance of the careful dislocation assessment. The interface abruptness does not depend on the selection of the precursor gases, but it is strongly influenced by the growth temperature which affects the coverage of the surface H-passivation. The mobility of 2.7 × 105 cm2/Vs is promising, while the low percolation density of 3 × 1010 /cm2 measured with a Hall-bar device at 7 K illustrates the high quality of the heterostructure thanks to the high Si0.3Ge0.7 SRB quality.}, author = {Shimura, Yosuke and Godfrin, Clement and Hikavyy, Andriy and Li, Roy and Aguilera Servin, Juan L and Katsaros, Georgios and Favia, Paola and Han, Han and Wan, Danny and de Greve, Kristiaan and Loo, Roger}, issn = {1369-8001}, journal = {Materials Science in Semiconductor Processing}, keywords = {Mechanical Engineering, Mechanics of Materials, Condensed Matter Physics, General Materials Science}, number = {5}, publisher = {Elsevier}, title = {{Compressively strained epitaxial Ge layers for quantum computing applications}}, doi = {10.1016/j.mssp.2024.108231}, volume = {174}, year = {2024}, }