@inproceedings{3838,
abstract = {We present a numerical approximation technique for the analysis of continuous-time Markov chains that describe net- works of biochemical reactions and play an important role in the stochastic modeling of biological systems. Our approach is based on the construction of a stochastic hybrid model in which certain discrete random variables of the original Markov chain are approximated by continuous deterministic variables. We compute the solution of the stochastic hybrid model using a numerical algorithm that discretizes time and in each step performs a mutual update of the transient prob- ability distribution of the discrete stochastic variables and the values of the continuous deterministic variables. We im- plemented the algorithm and we demonstrate its usefulness and efficiency on several case studies from systems biology.},
author = {Henzinger, Thomas A and Mateescu, Maria and Mikeev, Linar and Wolf, Verena},
location = {Trento, Italy},
pages = {55 -- 65},
publisher = {Springer},
title = {{Hybrid numerical solution of the chemical master equation}},
doi = {10.1145/1839764.1839772},
year = {2010},
}
@inproceedings{3839,
abstract = {We present a loop property generation method for loops iterating over multi-dimensional arrays. When used on matrices, our method is able to infer their shapes (also called types), such as upper-triangular, diagonal, etc. To gen- erate loop properties, we first transform a nested loop iterating over a multi- dimensional array into an equivalent collection of unnested loops. Then, we in- fer quantified loop invariants for each unnested loop using a generalization of a recurrence-based invariant generation technique. These loop invariants give us conditions on matrices from which we can derive matrix types automatically us- ing theorem provers. Invariant generation is implemented in the software package Aligator and types are derived by theorem provers and SMT solvers, including Vampire and Z3. When run on the Java matrix package JAMA, our tool was able to infer automatically all matrix types describing the matrix shapes guaranteed by JAMA’s API.},
author = {Henzinger, Thomas A and Hottelier, Thibaud and Kovács, Laura and Voronkov, Andrei},
location = {Madrid, Spain},
pages = {163 -- 179},
publisher = {Springer},
title = {{Invariant and type inference for matrices}},
doi = {10.1007/978-3-642-11319-2_14},
volume = {5944},
year = {2010},
}
@article{3842,
abstract = {Within systems biology there is an increasing interest in the stochastic behavior of biochemical reaction networks. An appropriate stochastic description is provided by the chemical master equation, which represents a continuous-time Markov chain (CTMC). The uniformization technique is an efficient method to compute probability distributions of a CTMC if the number of states is manageable. However, the size of a CTMC that represents a biochemical reaction network is usually far beyond what is feasible. In this paper we present an on-the-fly variant of uniformization, where we improve the original algorithm at the cost of a small approximation error. By means of several examples, we show that our approach is particularly well-suited for biochemical reaction networks.},
author = {Didier, Frédéric and Henzinger, Thomas A and Mateescu, Maria and Wolf, Verena},
journal = {IET Systems Biology},
number = {6},
pages = {441 -- 452},
publisher = {Institution of Engineering and Technology},
title = {{Fast adaptive uniformization of the chemical master equation}},
doi = {10.1049/iet-syb.2010.0005},
volume = {4},
year = {2010},
}
@inproceedings{3845,
abstract = {This paper presents Aligators, a tool for the generation of universally quantified array invariants. Aligators leverages recurrence solving and algebraic techniques to carry out inductive reasoning over array content. The Aligators’ loop extraction module allows treatment of multi-path loops by exploiting their commutativity and serializability properties. Our experience in applying Aligators on a collection of loops from open source software projects indicates the applicability of recurrence and algebraic solving techniques for reasoning about arrays.},
author = {Henzinger, Thomas A and Hottelier, Thibaud and Kovács, Laura and Rybalchenko, Andrey},
location = {Yogyakarta, Indonesia},
pages = {348 -- 356},
publisher = {Springer},
title = {{Aligators for arrays}},
doi = {10.1007/978-3-642-16242-8_25},
volume = {6397},
year = {2010},
}
@inproceedings{3847,
abstract = {The importance of stochasticity within biological systems has been shown repeatedly during the last years and has raised the need for efficient stochastic tools. We present SABRE, a tool for stochastic analysis of biochemical reaction networks. SABRE implements fast adaptive uniformization (FAU), a direct numerical approximation algorithm for computing transient solutions of biochemical reaction networks. Biochemical reactions networks represent biological systems studied at a molecular level and these reactions can be modeled as transitions of a Markov chain. SABRE accepts as input the formalism of guarded commands, which it interprets either as continuous-time or as discrete-time Markov chains. Besides operating in a stochastic mode, SABRE may also perform a deterministic analysis by directly computing a mean-field approximation of the system under study. We illustrate the different functionalities of SABRE by means of biological case studies.},
author = {Didier, Frédéric and Henzinger, Thomas A and Mateescu, Maria and Wolf, Verena},
location = {Williamsburg, USA},
pages = {193 -- 194},
publisher = {IEEE},
title = {{SABRE: A tool for the stochastic analysis of biochemical reaction networks}},
doi = {10.1109/QEST.2010.33},
year = {2010},
}
@inproceedings{3849,
abstract = {Using ideas from persistent homology, the robustness of a level set of a real-valued function is defined in terms of the magnitude of the perturbation necessary to kill the classes. Prior work has shown that the homology and robustness information can be read off the extended persistence diagram of the function. This paper extends these results to a non-uniform error model in which perturbations vary in their magnitude across the domain.},
author = {Bendich, Paul and Edelsbrunner, Herbert and Kerber, Michael and Patel, Amit},
location = {Brno, Czech Republic},
pages = {12 -- 23},
publisher = {Springer},
title = {{Persistent homology under non-uniform error}},
doi = {10.1007/978-3-642-15155-2_2},
volume = {6281},
year = {2010},
}
@inproceedings{3851,
abstract = {Energy parity games are infinite two-player turn-based games played on weighted graphs. The objective of the game combines a (qualitative) parity condition with the (quantitative) requirement that the sum of the weights (i.e., the level of energy in the game) must remain positive. Beside their own interest in the design and synthesis of resource-constrained omega-regular specifications, energy parity games provide one of the simplest model of games with combined qualitative and quantitative objective. Our main results are as follows: (a) exponential memory is sufficient and may be necessary for winning strategies in energy parity games; (b) the problem of deciding the winner in energy parity games can be solved in NP ∩ coNP; and (c) we give an algorithm to solve energy parity by reduction to energy games. We also show that the problem of deciding the winner in energy parity games is polynomially equivalent to the problem of deciding the winner in mean-payoff parity games, which can thus be solved in NP ∩ coNP. As a consequence we also obtain a conceptually simple algorithm to solve mean-payoff parity games.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
location = {Bordeaux, France},
pages = {599 -- 610},
publisher = {Springer},
title = {{Energy parity games}},
doi = {10.1007/978-3-642-14162-1_50},
volume = {6199},
year = {2010},
}
@inproceedings{3852,
abstract = {We introduce two-level discounted games played by two players on a perfect-information stochastic game graph. The upper level game is a discounted game and the lower level game is an undiscounted reachability game. Two-level games model hierarchical and sequential decision making under uncertainty across different time scales. We show the existence of pure memoryless optimal strategies for both players and an ordered field property for such games. We show that if there is only one player (Markov decision processes), then the values can be computed in polynomial time. It follows that whether the value of a player is equal to a given rational constant in two-level discounted games can be decided in NP intersected coNP. We also give an alternate strategy improvement algorithm to compute the value. },
author = {Chatterjee, Krishnendu and Majumdar, Ritankar},
location = {Minori, Italy},
pages = {22 -- 29},
publisher = {EPTCS},
title = {{Discounting in games across time scales}},
doi = {10.4204/EPTCS.25.6},
volume = {25},
year = {2010},
}
@inproceedings{3853,
abstract = {Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable. We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic meanpayoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Edelsbrunner, Herbert and Henzinger, Thomas A and Rannou, Philippe},
location = {Paris, France},
pages = {269 -- 283},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Mean-payoff automaton expressions}},
doi = {10.1007/978-3-642-15375-4_19},
volume = {6269},
year = {2010},
}
@inproceedings{3855,
abstract = {We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with parity objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observations. We consider qualitative analysis problems: given a POMDP with a parity objective, decide whether there exists an observation-based strategy to achieve the objective with probability 1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis problem for POMDPs with parity objectives and its subclasses: safety, reachability, Büchi, and coBüchi objectives. We establish several upper and lower bounds that were not known in the literature. Second, we give optimal bounds (matching upper and lower bounds) for the memory required by pure and randomized observation-based strategies for each class of objectives.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
location = {Brno, Czech Republic},
pages = {258 -- 269},
publisher = {Springer},
title = {{Qualitative analysis of partially-observable Markov Decision Processes}},
doi = {10.1007/978-3-642-15155-2_24},
volume = {6281},
year = {2010},
}