@inproceedings{3119,
abstract = {We present an approach for artist-directed animation of liquids using multiple levels of control over the simulation, ranging from the overall tracking of desired shapes to highly detailed secondary effects such as dripping streams, separating sheets of fluid, surface waves and ripples. The first portion of our technique is a volume preserving morph that allows the animator to produce a plausible fluid-like motion from a sparse set of control meshes. By rasterizing the resulting control meshes onto the simulation grid, the mesh velocities act as boundary conditions during the projection step of the fluid simulation. We can then blend this motion together with uncontrolled fluid velocities to achieve a more relaxed control over the fluid that captures natural inertial effects. Our method can produce highly detailed liquid surfaces with control over sub-grid details by using a mesh-based surface tracker on top of a coarse grid-based fluid simulation. We can create ripples and waves on the fluid surface attracting the surface mesh to the control mesh with spring-like forces and also by running a wave simulation over the surface mesh. Our video results demonstrate how our control scheme can be used to create animated characters and shapes that are made of water.
},
author = {Raveendran, Karthik and Thuerey, Nils and Wojtan, Christopher J and Turk, Greg},
booktitle = {Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation},
location = {Aire-la-Ville, Switzerland},
pages = {255 -- 264},
publisher = {ACM},
title = {{Controlling liquids using meshes}},
year = {2012},
}
@article{3120,
abstract = {We introduce a strategy based on Kustin-Miller unprojection that allows us to construct many hundreds of Gorenstein codimension 4 ideals with 9 × 16 resolutions (that is, nine equations and sixteen first syzygies). Our two basic games are called Tom and Jerry; the main application is the biregular construction of most of the anticanonically polarised Mori Fano 3-folds of Altinok's thesis. There are 115 cases whose numerical data (in effect, the Hilbert series) allow a Type I projection. In every case, at least one Tom and one Jerry construction works, providing at least two deformation families of quasismooth Fano 3-folds having the same numerics but different topology. © 2012 Copyright Foundation Compositio Mathematica.},
author = {Brown, Gavin and Kerber, Michael and Reid, Miles},
journal = {Compositio Mathematica},
number = {4},
pages = {1171 -- 1194},
publisher = {Cambridge University Press},
title = {{Fano 3 folds in codimension 4 Tom and Jerry Part I}},
doi = {10.1112/S0010437X11007226},
volume = {148},
year = {2012},
}
@article{3121,
abstract = {Voltage-activated Ca(2+) channels (VACCs) mediate Ca(2+) influx to trigger action potential-evoked neurotransmitter release, but the mechanism by which Ca(2+) regulates spontaneous transmission is unclear. We found that VACCs are the major physiological triggers for spontaneous release at mouse neocortical inhibitory synapses. Moreover, despite the absence of a synchronizing action potential, we found that spontaneous fusion of a GABA-containing vesicle required the activation of multiple tightly coupled VACCs of variable type.},
author = {Williams, Courtney and Chen, Wenyan and Lee, Chia and Yaeger, Daniel and Vyleta, Nicholas and Smith, Stephen},
journal = {Nature Neuroscience},
number = {9},
pages = {1195 -- 1197},
publisher = {Nature Publishing Group},
title = {{Coactivation of multiple tightly coupled calcium channels triggers spontaneous release of GABA}},
doi = {10.1038/nn.3162},
volume = {15},
year = {2012},
}
@inproceedings{3123,
abstract = {We introduce the idea of using an explicit triangle mesh to track the air/fluid interface in a smoothed particle hydrodynamics (SPH) simulator. Once an initial surface mesh is created, this mesh is carried forward in time using nearby particle velocities to advect the mesh vertices. The mesh connectivity remains mostly unchanged across time-steps; it is only modified locally for topology change events or for the improvement of triangle quality. In order to ensure that the surface mesh does not diverge from the underlying particle simulation, we periodically project the mesh surface onto an implicit surface defined by the physics simulation. The mesh surface gives us several advantages over previous SPH surface tracking techniques. We demonstrate a new method for surface tension calculations that clearly outperforms the state of the art in SPH surface tension for computer graphics. We also demonstrate a method for tracking detailed surface information (like colors) that is less susceptible to numerical diffusion than competing techniques. Finally, our temporally-coherent surface mesh allows us to simulate high-resolution surface wave dynamics without being limited by the particle resolution of the SPH simulation.},
author = {Yu, Jihun and Wojtan, Christopher J and Turk, Greg and Yap, Chee},
booktitle = {Computer Graphics Forum},
location = {Cagliari, Sardinia, Italy},
number = {2},
pages = {815 -- 824},
publisher = {Blackwell Publishing},
title = {{Explicit mesh surfaces for particle based fluids}},
doi = {10.1111/j.1467-8659.2012.03062.x},
volume = {31},
year = {2012},
}
@inproceedings{3124,
abstract = {We consider the problem of inference in a graphical model with binary variables. While in theory it is arguably preferable to compute marginal probabilities, in practice researchers often use MAP inference due to the availability of efficient discrete optimization algorithms. We bridge the gap between the two approaches by introducing the Discrete Marginals technique in which approximate marginals are obtained by minimizing an objective function with unary and pairwise terms over a discretized domain. This allows the use of techniques originally developed for MAP-MRF inference and learning. We explore two ways to set up the objective function - by discretizing the Bethe free energy and by learning it from training data. Experimental results show that for certain types of graphs a learned function can outperform the Bethe approximation. We also establish a link between the Bethe free energy and submodular functions.
},
author = {Korc, Filip and Kolmogorov, Vladimir and Lampert, Christoph},
location = {Edinburgh, Scotland},
publisher = {ICML},
title = {{Approximating marginals using discrete energy minimization}},
year = {2012},
}
@inproceedings{3125,
abstract = {We propose a new learning method to infer a mid-level feature representation that combines the advantage of semantic attribute representations with the higher expressive power of non-semantic features. The idea lies in augmenting an existing attribute-based representation with additional dimensions for which an autoencoder model is coupled with a large-margin principle. This construction allows a smooth transition between the zero-shot regime with no training example, the unsupervised regime with training examples but without class labels, and the supervised regime with training examples and with class labels. The resulting optimization problem can be solved efficiently, because several of the necessity steps have closed-form solutions. Through extensive experiments we show that the augmented representation achieves better results in terms of object categorization accuracy than the semantic representation alone.},
author = {Sharmanska, Viktoriia and Quadrianto, Novi and Lampert, Christoph},
location = {Florence, Italy},
number = {PART 5},
pages = {242 -- 255},
publisher = {Springer},
title = {{Augmented attribute representations}},
doi = {10.1007/978-3-642-33715-4_18},
volume = {7576},
year = {2012},
}
@inproceedings{3127,
abstract = {When searching for characteristic subpatterns in potentially noisy graph data, it appears self-evident that having multiple observations would be better than having just one. However, it turns out that the inconsistencies introduced when different graph instances have different edge sets pose a serious challenge. In this work we address this challenge for the problem of finding maximum weighted cliques.
We introduce the concept of most persistent soft-clique. This is subset of vertices, that 1) is almost fully or at least densely connected, 2) occurs in all or almost all graph instances, and 3) has the maximum weight. We present a measure of clique-ness, that essentially counts the number of edge missing to make a subset of vertices into a clique. With this measure, we show that the problem of finding the most persistent soft-clique problem can be cast either as: a) a max-min two person game optimization problem, or b) a min-min soft margin optimization problem. Both formulations lead to the same solution when using a partial Lagrangian method to solve the optimization problems. By experiments on synthetic data and on real social network data, we show that the proposed method is able to reliably find soft cliques in graph data, even if that is distorted by random noise or unreliable observations.},
author = {Quadrianto, Novi and Lampert, Christoph and Chen, Chao},
booktitle = {Proceedings of the 29th International Conference on Machine Learning},
location = {Edinburgh, United Kingdom},
pages = {211--218},
publisher = {Omnipress},
title = {{The most persistent soft-clique in a set of sampled graphs}},
year = {2012},
}
@article{3128,
abstract = {We consider two-player zero-sum stochastic games on graphs with ω-regular winning conditions specified as parity objectives. These games have applications in the design and control of reactive systems. We survey the complexity results for the problem of deciding the winner in such games, and in classes of interest obtained as special cases, based on the information and the power of randomization available to the players, on the class of objectives and on the winning mode. On the basis of information, these games can be classified as follows: (a) partial-observation (both players have partial view of the game); (b) one-sided partial-observation (one player has partial-observation and the other player has complete-observation); and (c) complete-observation (both players have complete view of the game). The one-sided partial-observation games have two important subclasses: the one-player games, known as partial-observation Markov decision processes (POMDPs), and the blind one-player games, known as probabilistic automata. On the basis of randomization, (a) the players may not be allowed to use randomization (pure strategies), or (b) they may choose a probability distribution over actions but the actual random choice is external and not visible to the player (actions invisible), or (c) they may use full randomization. Finally, various classes of games are obtained by restricting the parity objective to a reachability, safety, Büchi, or coBüchi condition. We also consider several winning modes, such as sure-winning (i.e., all outcomes of a strategy have to satisfy the winning condition), almost-sure winning (i.e., winning with probability 1), limit-sure winning (i.e., winning with probability arbitrarily close to 1), and value-threshold winning (i.e., winning with probability at least ν, where ν is a given rational). },
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
journal = {Formal Methods in System Design},
number = {2},
pages = {268 -- 284},
publisher = {Springer},
title = {{A survey of partial-observation stochastic parity games}},
doi = {10.1007/s10703-012-0164-2},
volume = {43},
year = {2012},
}
@inproceedings{3129,
abstract = {Let K be a simplicial complex and g the rank of its p-th homology group Hp(K) defined with ℤ2 coefficients. We show that we can compute a basis H of Hp(K) and annotate each p-simplex of K with a binary vector of length g with the following property: the annotations, summed over all p-simplices in any p-cycle z, provide the coordinate vector of the homology class [z] in the basis H. The basis and the annotations for all simplices can be computed in O(n ω ) time, where n is the size of K and ω < 2.376 is a quantity so that two n×n matrices can be multiplied in O(n ω ) time. The precomputed annotations permit answering queries about the independence or the triviality of p-cycles efficiently.
Using annotations of edges in 2-complexes, we derive better algorithms for computing optimal basis and optimal homologous cycles in 1 - dimensional homology. Specifically, for computing an optimal basis of H1(K) , we improve the previously known time complexity from O(n 4) to O(n ω + n 2 g ω − 1). Here n denotes the size of the 2-skeleton of K and g the rank of H1(K) . Computing an optimal cycle homologous to a given 1-cycle is NP-hard even for surfaces and an algorithm taking 2 O(g) nlogn time is known for surfaces. We extend this algorithm to work with arbitrary 2-complexes in O(n ω ) + 2 O(g) n 2logn time using annotations.
},
author = {Busaryev, Oleksiy and Cabello, Sergio and Chen, Chao and Dey, Tamal and Wang, Yusu},
location = {Helsinki, Finland},
pages = {189 -- 200},
publisher = {Springer},
title = {{Annotating simplices with a homology basis and its applications}},
doi = {10.1007/978-3-642-31155-0_17},
volume = {7357},
year = {2012},
}
@article{3130,
abstract = {Essential genes code for fundamental cellular functions required for the viability of an organism. For this reason, essential genes are often highly conserved across organisms. However, this is not always the case: orthologues of genes that are essential in one organism are sometimes not essential in other organisms or are absent from their genomes. This suggests that, in the course of evolution, essential genes can be rendered nonessential. How can a gene become non-essential? Here we used genetic manipulation to deplete the products of 26 different essential genes in Escherichia coli. This depletion results in a lethal phenotype, which could often be rescued by the overexpression of a non-homologous, non-essential gene, most likely through replacement of the essential function. We also show that, in a smaller number of cases, the essential genes can be fully deleted from the genome, suggesting that complete functional replacement is possible. Finally, we show that essential genes whose function can be replaced in the laboratory are more likely to be non-essential or not present in other taxa. These results are consistent with the notion that patterns of evolutionary conservation of essential genes are influenced by their compensability-that is, by how easily they can be functionally replaced, for example through increased expression of other genes.},
author = {Bergmiller, Tobias and Ackermann, Martin and Silander, Olin},
journal = {PLoS Genetics},
number = {6},
publisher = {Public Library of Science},
title = {{Patterns of evolutionary conservation of essential genes correlate with their compensability}},
doi = {10.1371/journal.pgen.1002803},
volume = {8},
year = {2012},
}