@article{7622, abstract = {The International Young Physicists' Tournament (IYPT) continued in 2018 in Beijing, China and 2019 in Warsaw, Poland with its 31st and 32nd editions. The IYPT is a modern scientific competition for teams of high school students, also known as the Physics World Cup. It involves long-term theoretical and experimental work focused on solving 17 publicly announced open-ended problems in teams of five. On top of that, teams have to present their solutions in front of other teams and a scientific jury, and get opposed and reviewed by their peers. Here we present a brief information about the competition with a specific focus on one of the IYPT 2018 tasks, the 'Ring Oiler'. This seemingly simple mechanical problem appeared to be of such a complexity that even the dozens of participating teams and jurying scientists were not able to solve all of its subtleties.}, author = {Plesch, Martin and Plesník, Samuel and Ruzickova, Natalia}, issn = {13616404}, journal = {European Journal of Physics}, number = {3}, publisher = {IOP Publishing}, title = {{The IYPT and the 'Ring Oiler' problem}}, doi = {10.1088/1361-6404/ab6414}, volume = {41}, year = {2020}, } @article{7623, abstract = {A two-dimensional mathematical model for cells migrating without adhesion capabilities is presented and analyzed. Cells are represented by their cortex, which is modeled as an elastic curve, subject to an internal pressure force. Net polymerization or depolymerization in the cortex is modeled via local addition or removal of material, driving a cortical flow. The model takes the form of a fully nonlinear degenerate parabolic system. An existence analysis is carried out by adapting ideas from the theory of gradient flows. Numerical simulations show that these simple rules can account for the behavior observed in experiments, suggesting a possible mechanical mechanism for adhesion-independent motility.}, author = {Jankowiak, Gaspard and Peurichard, Diane and Reversat, Anne and Schmeiser, Christian and Sixt, Michael K}, issn = {02182025}, journal = {Mathematical Models and Methods in Applied Sciences}, number = {3}, pages = {513--537}, publisher = {World Scientific}, title = {{Modeling adhesion-independent cell migration}}, doi = {10.1142/S021820252050013X}, volume = {30}, year = {2020}, } @article{7646, abstract = {In plant cells, environmental stressors promote changes in connectivity between the cortical ER and the PM. Although this process is tightly regulated in space and time, the molecular signals and structural components mediating these changes in inter-organelle communication are only starting to be characterized. In this report, we confirm the presence of a putative tethering complex containing the synaptotagmins 1 and 5 (SYT1 and SYT5) and the Ca2+ and lipid binding protein 1 (CLB1/SYT7). This complex is enriched at ER-PM contact sites (EPCS), have slow responses to changes in extracellular Ca2+, and display severe cytoskeleton-dependent rearrangements in response to the trivalent lanthanum (La3+) and gadolinium (Gd3+) rare earth elements (REEs). Although REEs are generally used as non-selective cation channel blockers at the PM, here we show that the slow internalization of REEs into the cytosol underlies the activation of the Ca2+/Calmodulin intracellular signaling, the accumulation of phosphatidylinositol-4-phosphate (PI4P) at the PM, and the cytoskeleton-dependent rearrangement of the SYT1/SYT5 EPCS complexes. We propose that the observed EPCS rearrangements act as a slow adaptive response to sustained stress conditions, and that this process involves the accumulation of stress-specific phosphoinositides species at the PM.}, author = {Lee, E and Vila Nova Santana, B and Samuels, E and Benitez-Fuente, F and Corsi, E and Botella, MA and Perez-Sancho, J and Vanneste, S and Friml, Jiří and Macho, A and Alves Azevedo, A and Rosado, A}, issn = {1460-2431}, journal = {Journal of Experimental Botany}, number = {14}, pages = {3986–3998}, publisher = {Oxford University Press}, title = {{Rare earth elements induce cytoskeleton-dependent and PI4P-associated rearrangement of SYT1/SYT5 ER-PM contact site complexes in Arabidopsis}}, doi = {10.1093/jxb/eraa138}, volume = {71}, year = {2020}, } @article{7656, abstract = {We propose that correlations among neurons are generically strong enough to organize neural activity patterns into a discrete set of clusters, which can each be viewed as a population codeword. Our reasoning starts with the analysis of retinal ganglion cell data using maximum entropy models, showing that the population is robustly in a frustrated, marginally sub-critical, or glassy, state. This leads to an argument that neural populations in many other brain areas might share this structure. Next, we use latent variable models to show that this glassy state possesses well-defined clusters of neural activity. Clusters have three appealing properties: (i) clusters exhibit error correction, i.e., they are reproducibly elicited by the same stimulus despite variability at the level of constituent neurons; (ii) clusters encode qualitatively different visual features than their constituent neurons; and (iii) clusters can be learned by downstream neural circuits in an unsupervised fashion. We hypothesize that these properties give rise to a “learnable” neural code which the cortical hierarchy uses to extract increasingly complex features without supervision or reinforcement.}, author = {Berry, Michael J. and Tkačik, Gašper}, issn = {16625188}, journal = {Frontiers in Computational Neuroscience}, publisher = {Frontiers}, title = {{Clustering of neural activity: A design principle for population codes}}, doi = {10.3389/fncom.2020.00020}, volume = {14}, year = {2020}, } @article{7638, abstract = {Following on from our recent work, we investigate a stochastic approach to non-equilibrium quantum spin systems. We show how the method can be applied to a variety of physical observables and for different initial conditions. We provide exact formulae of broad applicability for the time-dependence of expectation values and correlation functions following a quantum quench in terms of averages over classical stochastic processes. We further explore the behavior of the classical stochastic variables in the presence of dynamical quantum phase transitions, including results for their distributions and correlation functions. We provide details on the numerical solution of the associated stochastic differential equations, and examine the growth of fluctuations in the classical description. We discuss the strengths and limitations of the current implementation of the stochastic approach and the potential for further development.}, author = {De Nicola, Stefano and Doyon, B. and Bhaseen, M. J.}, issn = {17425468}, journal = {Journal of Statistical Mechanics: Theory and Experiment}, number = {1}, publisher = {IOP Publishing}, title = {{Non-equilibrium quantum spin dynamics from classical stochastic processes}}, doi = {10.1088/1742-5468/ab6093}, volume = {2020}, year = {2020}, } @article{7637, abstract = {The evolution of finitely many particles obeying Langevin dynamics is described by Dean–Kawasaki equations, a class of stochastic equations featuring a non-Lipschitz multiplicative noise in divergence form. We derive a regularised Dean–Kawasaki model based on second order Langevin dynamics by analysing a system of particles interacting via a pairwise potential. Key tools of our analysis are the propagation of chaos and Simon's compactness criterion. The model we obtain is a small-noise stochastic perturbation of the undamped McKean–Vlasov equation. We also provide a high-probability result for existence and uniqueness for our model.}, author = {Cornalba, Federico and Shardlow, Tony and Zimmer, Johannes}, issn = {13616544}, journal = {Nonlinearity}, number = {2}, pages = {864--891}, publisher = {IOP Publishing}, title = {{From weakly interacting particles to a regularised Dean-Kawasaki model}}, doi = {10.1088/1361-6544/ab5174}, volume = {33}, year = {2020}, } @article{7664, abstract = {Metabotropic γ-aminobutyric acid (GABAB) receptors contribute to the control of network activity and information processing in hippocampal circuits by regulating neuronal excitability and synaptic transmission. The dysfunction in the dentate gyrus (DG) has been implicated in Alzheimer´s disease (AD). Given the involvement of GABAB receptors in AD, to determine their subcellular localisation and possible alteration in granule cells of the DG in a mouse model of AD at 12 months of age, we used high-resolution immunoelectron microscopic analysis. Immunohistochemistry at the light microscopic level showed that the regional and cellular expression pattern of GABAB1 was similar in an AD model mouse expressing mutated human amyloid precursor protein and presenilin1 (APP/PS1) and in age-matched wild type mice. High-resolution immunoelectron microscopy revealed a distance-dependent gradient of immunolabelling for GABAB receptors, increasing from proximal to distal dendrites in both wild type and APP/PS1 mice. However, the overall density of GABAB receptors at the neuronal surface of these postsynaptic compartments of granule cells was significantly reduced in APP/PS1 mice. Parallel to this reduction in surface receptors, we found a significant increase in GABAB1 at cytoplasmic sites. GABAB receptors were also detected at presynaptic sites in the molecular layer of the DG. We also found a decrease in plasma membrane GABAB receptors in axon terminals contacting dendritic spines of granule cells, which was more pronounced in the outer than in the inner molecular layer. Altogether, our data showing post- and presynaptic reduction in surface GABAB receptors in the DG suggest the alteration of the GABAB-mediated modulation of excitability and synaptic transmission in granule cells, which may contribute to the cognitive dysfunctions in the APP/PS1 model of AD}, author = {Martín-Belmonte, Alejandro and Aguado, Carolina and Alfaro-Ruíz, Rocío and Moreno-Martínez, Ana Esther and De La Ossa, Luis and Martínez-Hernández, José and Buisson, Alain and Shigemoto, Ryuichi and Fukazawa, Yugo and Luján, Rafael}, issn = {14220067}, journal = {International journal of molecular sciences}, number = {7}, publisher = {MDPI}, title = {{Density of GABAB receptors is reduced in granule cells of the hippocampus in a mouse model of Alzheimer's disease}}, doi = {10.3390/ijms21072459}, volume = {21}, year = {2020}, } @article{7665, abstract = {Acute brain slice preparation is a powerful experimental model for investigating the characteristics of synaptic function in the brain. Although brain tissue is usually cut at ice-cold temperature (CT) to facilitate slicing and avoid neuronal damage, exposure to CT causes molecular and architectural changes of synapses. To address these issues, we investigated ultrastructural and electrophysiological features of synapses in mouse acute cerebellar slices prepared at ice-cold and physiological temperature (PT). In the slices prepared at CT, we found significant spine loss and reconstruction, synaptic vesicle rearrangement and decrease in synaptic proteins, all of which were not detected in slices prepared at PT. Consistent with these structural findings, slices prepared at PT showed higher release probability. Furthermore, preparation at PT allows electrophysiological recording immediately after slicing resulting in higher detectability of long-term depression (LTD) after motor learning compared with that at CT. These results indicate substantial advantages of the slice preparation at PT for investigating synaptic functions in different physiological conditions.}, author = {Eguchi, Kohgaku and Velicky, Philipp and Hollergschwandtner, Elena and Itakura, Makoto and Fukazawa, Yugo and Danzl, Johann G and Shigemoto, Ryuichi}, issn = {16625102}, journal = {Frontiers in Cellular Neuroscience}, publisher = {Frontiers Media}, title = {{Advantages of acute brain slices prepared at physiological temperature in the characterization of synaptic functions}}, doi = {10.3389/fncel.2020.00063}, volume = {14}, year = {2020}, } @article{7663, abstract = {Wood, as the most abundant carbon dioxide storing bioresource, is currently driven beyond its traditional use through creative innovations and nanotechnology. For many properties the micro- and nanostructure plays a crucial role and one key challenge is control and detection of chemical and physical processes in the confined microstructure and nanopores of the wooden cell wall. In this study, correlative Raman and atomic force microscopy show high potential for tracking in situ molecular rearrangement of wood polymers during compression. More water molecules (interpreted as wider cellulose microfibril distances) and disentangling of hemicellulose chains are detected in the opened cell wall regions, whereas an increase of lignin is revealed in the compressed areas. These results support a new more “loose” cell wall model based on flexible lignin nanodomains and advance our knowledge of the molecular reorganization during deformation of wood for optimized processing and utilization.}, author = {Felhofer, Martin and Bock, Peter and Singh, Adya and Prats Mateu, Batirtze and Zirbs, Ronald and Gierlinger, Notburga}, issn = {15306992}, journal = {Nano Letters}, number = {4}, pages = {2647--2653}, publisher = {American Chemical Society}, title = {{Wood deformation leads to rearrangement of molecules at the nanoscale}}, doi = {10.1021/acs.nanolett.0c00205}, volume = {20}, year = {2020}, } @article{7666, abstract = {Generalizing the decomposition of a connected planar graph into a tree and a dual tree, we prove a combinatorial analog of the classic Helmholtz–Hodge decomposition of a smooth vector field. Specifically, we show that for every polyhedral complex, K, and every dimension, p, there is a partition of the set of p-cells into a maximal p-tree, a maximal p-cotree, and a collection of p-cells whose cardinality is the p-th reduced Betti number of K. Given an ordering of the p-cells, this tri-partition is unique, and it can be computed by a matrix reduction algorithm that also constructs canonical bases of cycle and boundary groups.}, author = {Edelsbrunner, Herbert and Ölsböck, Katharina}, issn = {14320444}, journal = {Discrete and Computational Geometry}, pages = {759--775}, publisher = {Springer Nature}, title = {{Tri-partitions and bases of an ordered complex}}, doi = {10.1007/s00454-020-00188-x}, volume = {64}, year = {2020}, }