@article{7563, abstract = {We introduce “state space persistence analysis” for deducing the symbolic dynamics of time series data obtained from high-dimensional chaotic attractors. To this end, we adapt a topological data analysis technique known as persistent homology for the characterization of state space projections of chaotic trajectories and periodic orbits. By comparing the shapes along a chaotic trajectory to those of the periodic orbits, state space persistence analysis quantifies the shape similarity of chaotic trajectory segments and periodic orbits. We demonstrate the method by applying it to the three-dimensional Rössler system and a 30-dimensional discretization of the Kuramoto–Sivashinsky partial differential equation in (1+1) dimensions. One way of studying chaotic attractors systematically is through their symbolic dynamics, in which one partitions the state space into qualitatively different regions and assigns a symbol to each such region.1–3 This yields a “coarse-grained” state space of the system, which can then be reduced to a Markov chain encoding all possible transitions between the states of the system. While it is possible to obtain the symbolic dynamics of low-dimensional chaotic systems with standard tools such as Poincaré maps, when applied to high-dimensional systems such as turbulent flows, these tools alone are not sufficient to determine symbolic dynamics.4,5 In this paper, we develop “state space persistence analysis” and demonstrate that it can be utilized to infer the symbolic dynamics in very high-dimensional settings.}, author = {Yalniz, Gökhan and Budanur, Nazmi B}, issn = {1089-7682}, journal = {Chaos}, number = {3}, publisher = {AIP Publishing}, title = {{Inferring symbolic dynamics of chaotic flows from persistence}}, doi = {10.1063/1.5122969}, volume = {30}, year = {2020}, } @article{7554, abstract = {Slicing a Voronoi tessellation in ${R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as a power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the $k$-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in ${R}^n$, we study the expected number of simplices in the $k$-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a by-product, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in ${R}^n$.}, author = {Edelsbrunner, Herbert and Nikitenko, Anton}, issn = {10957219}, journal = {Theory of Probability and its Applications}, number = {4}, pages = {595--614}, publisher = {SIAM}, title = {{Weighted Poisson–Delaunay mosaics}}, doi = {10.1137/S0040585X97T989726}, volume = {64}, year = {2020}, } @article{7570, abstract = {The relaxation of few-body quantum systems can strongly depend on the initial state when the system’s semiclassical phase space is mixed; i.e., regions of chaotic motion coexist with regular islands. In recent years, there has been much effort to understand the process of thermalization in strongly interacting quantum systems that often lack an obvious semiclassical limit. The time-dependent variational principle (TDVP) allows one to systematically derive an effective classical (nonlinear) dynamical system by projecting unitary many-body dynamics onto a manifold of weakly entangled variational states. We demonstrate that such dynamical systems generally possess mixed phase space. When TDVP errors are small, the mixed phase space leaves a footprint on the exact dynamics of the quantum model. For example, when the system is initialized in a state belonging to a stable periodic orbit or the surrounding regular region, it exhibits persistent many-body quantum revivals. As a proof of principle, we identify new types of “quantum many-body scars,” i.e., initial states that lead to long-time oscillations in a model of interacting Rydberg atoms in one and two dimensions. Intriguingly, the initial states that give rise to most robust revivals are typically entangled states. On the other hand, even when TDVP errors are large, as in the thermalizing tilted-field Ising model, initializing the system in a regular region of phase space leads to a surprising slowdown of thermalization. Our work establishes TDVP as a method for identifying interacting quantum systems with anomalous dynamics in arbitrary dimensions. Moreover, the mixed phase space classical variational equations allow one to find slowly thermalizing initial conditions in interacting models. Our results shed light on a link between classical and quantum chaos, pointing toward possible extensions of the classical Kolmogorov-Arnold-Moser theorem to quantum systems.}, author = {Michailidis, Alexios and Turner, C. J. and Papić, Z. and Abanin, D. A. and Serbyn, Maksym}, issn = {2160-3308}, journal = {Physical Review X}, number = {1}, publisher = {American Physical Society}, title = {{Slow quantum thermalization and many-body revivals from mixed phase space}}, doi = {10.1103/physrevx.10.011055}, volume = {10}, year = {2020}, } @article{7582, abstract = {Small RNAs (smRNA, 19–25 nucleotides long), which are transcribed by RNA polymerase II, regulate the expression of genes involved in a multitude of processes in eukaryotes. miRNA biogenesis and the proteins involved in the biogenesis pathway differ across plant and animal lineages. The major proteins constituting the biogenesis pathway, namely, the Dicers (DCL/DCR) and Argonautes (AGOs), have been extensively studied. However, the accessory proteins (DAWDLE (DDL), SERRATE (SE), and TOUGH (TGH)) of the pathway that differs across the two lineages remain largely uncharacterized. We present the first detailed report on the molecular evolution and divergence of these proteins across eukaryotes. Although DDL is present in eukaryotes and prokaryotes, SE and TGH appear to be specific to eukaryotes. The addition/deletion of specific domains and/or domain-specific sequence divergence in the three proteins points to the observed functional divergence of these proteins across the two lineages, which correlates with the differences in miRNA length across the two lineages. Our data enhance the current understanding of the structure–function relationship of these proteins and reveals previous unexplored crucial residues in the three proteins that can be used as a basis for further functional characterization. The data presented here on the number of miRNAs in crown eukaryotic lineages are consistent with the notion of the expansion of the number of miRNA-coding genes in animal and plant lineages correlating with organismal complexity. Whether this difference in functionally correlates with the diversification (or presence/absence) of the three proteins studied here or the miRNA signaling in the plant and animal lineages is unclear. Based on our results of the three proteins studied here and previously available data concerning the evolution of miRNA genes in the plant and animal lineages, we believe that miRNAs probably evolved once in the ancestor to crown eukaryotes and have diversified independently in the eukaryotes.}, author = {Moturu, Taraka Ramji and Sinha, Sansrity and Salava, Hymavathi and Thula, Sravankumar and Nodzyński, Tomasz and Vařeková, Radka Svobodová and Friml, Jiří and Simon, Sibu}, issn = {22237747}, journal = {Plants}, number = {3}, publisher = {MDPI}, title = {{Molecular evolution and diversification of proteins involved in miRNA maturation pathway}}, doi = {10.3390/plants9030299}, volume = {9}, year = {2020}, } @article{7593, abstract = {Heterozygous loss of human PAFAH1B1 (coding for LIS1) results in the disruption of neurogenesis and neuronal migration via dysregulation of microtubule (MT) stability and dynein motor function/localization that alters mitotic spindle orientation, chromosomal segregation, and nuclear migration. Recently, human induced pluripotent stem cell (iPSC) models revealed an important role for LIS1 in controlling the length of terminal cell divisions of outer radial glial (oRG) progenitors, suggesting cellular functions of LIS1 in regulating neural progenitor cell (NPC) daughter cell separation. Here we examined the late mitotic stages NPCs in vivo and mouse embryonic fibroblasts (MEFs) in vitro from Pafah1b1-deficient mutants. Pafah1b1-deficient neocortical NPCs and MEFs similarly exhibited cleavage plane displacement with mislocalization of furrow-associated markers, associated with actomyosin dysfunction and cell membrane hyper-contractility. Thus, it suggests LIS1 acts as a key molecular link connecting MTs/dynein and actomyosin, ensuring that cell membrane contractility is tightly controlled to execute proper daughter cell separation.}, author = {Moon, Hyang Mi and Hippenmeyer, Simon and Luo, Liqun and Wynshaw-Boris, Anthony}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility}}, doi = {10.7554/elife.51512}, volume = {9}, year = {2020}, } @article{7600, abstract = {Directional intercellular transport of the phytohormone auxin mediated by PIN FORMED (PIN) efflux carriers plays essential roles in both coordinating patterning processes and integrating multiple external cues by rapidly redirecting auxin fluxes. Multilevel regulations of PIN activity under internal and external cues are complicated; however, the underlying molecular mechanism remains elusive. Here we demonstrate that 3’-Phosphoinositide-Dependent Protein Kinase1 (PDK1), which is conserved in plants and mammals, functions as a molecular hub integrating the upstream lipid signalling and the downstream substrate activity through phosphorylation. Genetic analysis uncovers that loss-of-function Arabidopsis mutant pdk1.1 pdk1.2 exhibits a plethora of abnormalities in organogenesis and growth, due to the defective PIN-dependent auxin transport. Further cellular and biochemical analyses reveal that PDK1 phosphorylates D6 Protein Kinase to facilitate its activity towards PIN proteins. Our studies establish a lipid-dependent phosphorylation cascade connecting membrane composition-based cellular signalling with plant growth and patterning by regulating morphogenetic auxin fluxes.}, author = {Tan, Shutang and Zhang, Xixi and Kong, Wei and Yang, Xiao-Li and Molnar, Gergely and Vondráková, Zuzana and Filepová, Roberta and Petrášek, Jan and Friml, Jiří and Xue, Hong-Wei}, issn = {20550278}, journal = {Nature Plants}, pages = {556--569}, publisher = {Springer Nature}, title = {{The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis}}, doi = {10.1038/s41477-020-0648-9}, volume = {6}, year = {2020}, } @article{7603, abstract = {Plants are exposed to a variety of abiotic and biotic stresses that may result in DNA damage. Endogenous processes - such as DNA replication, DNA recombination, respiration, or photosynthesis - are also a threat to DNA integrity. It is therefore essential to understand the strategies plants have developed for DNA damage detection, signaling, and repair. Alternative splicing (AS) is a key post-transcriptional process with a role in regulation of gene expression. Recent studies demonstrate that the majority of intron-containing genes in plants are alternatively spliced, highlighting the importance of AS in plant development and stress response. Not only does AS ensure a versatile proteome and influence the abundance and availability of proteins greatly, it has also emerged as an important player in the DNA damage response (DDR) in animals. Despite extensive studies of DDR carried out in plants, its regulation at the level of AS has not been comprehensively addressed. Here, we provide some insights into the interplay between AS and DDR in plants.}, author = {Nimeth, Barbara Anna and Riegler, Stefan and Kalyna, Maria}, issn = {1664462X}, journal = {Frontiers in Plant Science}, publisher = {Frontiers}, title = {{Alternative splicing and DNA damage response in plants}}, doi = {10.3389/fpls.2020.00091}, volume = {11}, year = {2020}, } @article{7586, abstract = {CLC chloride/proton exchangers may support acidification of endolysosomes and raise their luminal Cl− concentration. Disruption of endosomal ClC‐3 causes severe neurodegeneration. To assess the importance of ClC‐3 Cl−/H+ exchange, we now generate Clcn3unc/unc mice in which ClC‐3 is converted into a Cl− channel. Unlike Clcn3−/− mice, Clcn3unc/unc mice appear normal owing to compensation by ClC‐4 with which ClC‐3 forms heteromers. ClC‐4 protein levels are strongly reduced in Clcn3−/−, but not in Clcn3unc/unc mice because ClC‐3unc binds and stabilizes ClC‐4 like wild‐type ClC‐3. Although mice lacking ClC‐4 appear healthy, its absence in Clcn3unc/unc/Clcn4−/− mice entails even stronger neurodegeneration than observed in Clcn3−/− mice. A fraction of ClC‐3 is found on synaptic vesicles, but miniature postsynaptic currents and synaptic vesicle acidification are not affected in Clcn3unc/unc or Clcn3−/− mice before neurodegeneration sets in. Both, Cl−/H+‐exchange activity and the stabilizing effect on ClC‐4, are central to the biological function of ClC‐3.}, author = {Weinert, Stefanie and Gimber, Niclas and Deuschel, Dorothea and Stuhlmann, Till and Puchkov, Dmytro and Farsi, Zohreh and Ludwig, Carmen F. and Novarino, Gaia and López-Cayuqueo, Karen I. and Planells-Cases, Rosa and Jentsch, Thomas J.}, issn = {14602075}, journal = {EMBO Journal}, publisher = {EMBO Press}, title = {{Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration}}, doi = {10.15252/embj.2019103358}, volume = {39}, year = {2020}, } @article{7618, abstract = {This short note aims to study quantum Hellinger distances investigated recently by Bhatia et al. (Lett Math Phys 109:1777–1804, 2019) with a particular emphasis on barycenters. We introduce the family of generalized quantum Hellinger divergences that are of the form ϕ(A,B)=Tr((1−c)A+cB−AσB), where σ is an arbitrary Kubo–Ando mean, and c∈(0,1) is the weight of σ. We note that these divergences belong to the family of maximal quantum f-divergences, and hence are jointly convex, and satisfy the data processing inequality. We derive a characterization of the barycenter of finitely many positive definite operators for these generalized quantum Hellinger divergences. We note that the characterization of the barycenter as the weighted multivariate 1/2-power mean, that was claimed in Bhatia et al. (2019), is true in the case of commuting operators, but it is not correct in the general case. }, author = {Pitrik, Jozsef and Virosztek, Daniel}, issn = {1573-0530}, journal = {Letters in Mathematical Physics}, number = {8}, pages = {2039--2052}, publisher = {Springer Nature}, title = {{Quantum Hellinger distances revisited}}, doi = {10.1007/s11005-020-01282-0}, volume = {110}, year = {2020}, } @article{7632, abstract = {The posterior parietal cortex (PPC) and frontal motor areas comprise a cortical network supporting goal-directed behaviour, with functions including sensorimotor transformations and decision making. In primates, this network links performed and observed actions via mirror neurons, which fire both when individuals perform an action and when they observe the same action performed by a conspecific. Mirror neurons are believed to be important for social learning, but it is not known whether mirror-like neurons occur in similar networks in other social species, such as rodents, or if they can be measured in such models using paradigms where observers passively view a demonstrator. Therefore, we imaged Ca2+ responses in PPC and secondary motor cortex (M2) while mice performed and observed pellet-reaching and wheel-running tasks, and found that cell populations in both areas robustly encoded several naturalistic behaviours. However, neural responses to the same set of observed actions were absent, although we verified that observer mice were attentive to performers and that PPC neurons responded reliably to visual cues. Statistical modelling also indicated that executed actions outperformed observed actions in predicting neural responses. These results raise the possibility that sensorimotor action recognition in rodents could take place outside of the parieto-frontal circuit, and underscore that detecting socially-driven neural coding depends critically on the species and behavioural paradigm used.}, author = {Tombaz, Tuce and Dunn, Benjamin A. and Hovde, Karoline and Cubero, Ryan J and Mimica, Bartul and Mamidanna, Pranav and Roudi, Yasser and Whitlock, Jonathan R.}, issn = {20452322}, journal = {Scientific reports}, number = {1}, publisher = {Springer Nature}, title = {{Action representation in the mouse parieto-frontal network}}, doi = {10.1038/s41598-020-62089-6}, volume = {10}, year = {2020}, }