@article{1622,
abstract = {We prove analogues of the Lieb–Thirring and Hardy–Lieb–Thirring inequalities for many-body quantum systems with fractional kinetic operators and homogeneous interaction potentials, where no anti-symmetry on the wave functions is assumed. These many-body inequalities imply interesting one-body interpolation inequalities, and we show that the corresponding one- and many-body inequalities are actually equivalent in certain cases.},
author = {Lundholm, Douglas and Nam, Phan and Portmann, Fabian},
journal = {Archive for Rational Mechanics and Analysis},
number = {3},
pages = {1343 -- 1382},
publisher = {Springer},
title = {{Fractional Hardy–Lieb–Thirring and related Inequalities for interacting systems}},
doi = {10.1007/s00205-015-0923-5},
volume = {219},
year = {2016},
}
@article{1631,
abstract = {Ancestral processes are fundamental to modern population genetics and spatial structure has been the subject of intense interest for many years. Despite this interest, almost nothing is known about the distribution of the locations of pedigree or genetic ancestors. Using both spatially continuous and stepping-stone models, we show that the distribution of pedigree ancestors approaches a travelling wave, for which we develop two alternative approximations. The speed and width of the wave are sensitive to the local details of the model. After a short time, genetic ancestors spread far more slowly than pedigree ancestors, ultimately diffusing out with radius ## rather than spreading at constant speed. In contrast to the wave of pedigree ancestors, the spread of genetic ancestry is insensitive to the local details of the models.},
author = {Kelleher, Jerome and Etheridge, Alison and Véber, Amandine and Barton, Nicholas H},
journal = {Theoretical Population Biology},
pages = {1 -- 12},
publisher = {Academic Press},
title = {{Spread of pedigree versus genetic ancestry in spatially distributed populations}},
doi = {10.1016/j.tpb.2015.10.008},
volume = {108},
year = {2016},
}
@article{1641,
abstract = {The plant hormone auxin (indole-3-acetic acid) is a major regulator of plant growth and development including embryo and root patterning, lateral organ formation and growth responses to environmental stimuli. Auxin is directionally transported from cell to cell by the action of specific auxin influx [AUXIN-RESISTANT1 (AUX1)] and efflux [PIN-FORMED (PIN)] transport regulators, whose polar, subcellular localizations are aligned with the direction of the auxin flow. Auxin itself regulates its own transport by modulation of the expression and subcellular localization of the auxin transporters. Increased auxin levels promote the transcription of PIN2 and AUX1 genes as well as stabilize PIN proteins at the plasma membrane, whereas prolonged auxin exposure increases the turnover of PIN proteins and their degradation in the vacuole. In this study, we applied a forward genetic approach, to identify molecular components playing a role in the auxin-mediated degradation. We generated EMS-mutagenized Arabidopsis PIN2::PIN2:GFP, AUX1::AUX1:YFP eir1aux1 populations and designed a screen for mutants with persistently strong fluorescent signals of the tagged PIN2 and AUX1 after prolonged treatment with the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D). This approach yielded novel auxin degradation mutants defective in trafficking and degradation of PIN2 and AUX1 proteins and established a role for auxin-mediated degradation in plant development.},
author = {Zemová, Radka and Zwiewka, Marta and Bielach, Agnieszka and Robert, Hélène and Friml, Jirí},
journal = {Journal of Plant Growth Regulation},
number = {2},
pages = {465 -- 476},
publisher = {Springer},
title = {{A forward genetic screen for new regulators of auxin mediated degradation of auxin transport proteins in Arabidopsis thaliana}},
doi = {10.1007/s00344-015-9553-2},
volume = {35},
year = {2016},
}
@inproceedings{1653,
abstract = {A somewhere statistically binding (SSB) hash, introduced by Hubáček and Wichs (ITCS ’15), can be used to hash a long string x to a short digest y = H hk (x) using a public hashing-key hk. Furthermore, there is a way to set up the hash key hk to make it statistically binding on some arbitrary hidden position i, meaning that: (1) the digest y completely determines the i’th bit (or symbol) of x so that all pre-images of y have the same value in the i’th position, (2) it is computationally infeasible to distinguish the position i on which hk is statistically binding from any other position i’. Lastly, the hash should have a local opening property analogous to Merkle-Tree hashing, meaning that given x and y = H hk (x) it should be possible to create a short proof π that certifies the value of the i’th bit (or symbol) of x without having to provide the entire input x. A similar primitive called a positional accumulator, introduced by Koppula, Lewko and Waters (STOC ’15) further supports dynamic updates of the hashed value. These tools, which are interesting in their own right, also serve as one of the main technical components in several recent works building advanced applications from indistinguishability obfuscation (iO).
The prior constructions of SSB hashing and positional accumulators required fully homomorphic encryption (FHE) and iO respectively. In this work, we give new constructions of these tools based on well studied number-theoretic assumptions such as DDH, Phi-Hiding and DCR, as well as a general construction from lossy/injective functions.},
author = {Okamoto, Tatsuaki and Pietrzak, Krzysztof Z and Waters, Brent and Wichs, Daniel},
location = {Auckland, New Zealand},
pages = {121 -- 145},
publisher = {Springer},
title = {{New realizations of somewhere statistically binding hashing and positional accumulators}},
doi = {10.1007/978-3-662-48797-6_6},
volume = {9452},
year = {2016},
}
@article{1662,
abstract = {We introduce a modification of the classic notion of intrinsic volume using persistence moments of height functions. Evaluating the modified first intrinsic volume on digital approximations of a compact body with smoothly embedded boundary in Rn, we prove convergence to the first intrinsic volume of the body as the resolution of the approximation improves. We have weaker results for the other modified intrinsic volumes, proving they converge to the corresponding intrinsic volumes of the n-dimensional unit ball.},
author = {Edelsbrunner, Herbert and Pausinger, Florian},
journal = {Advances in Mathematics},
pages = {674 -- 703},
publisher = {Academic Press},
title = {{Approximation and convergence of the intrinsic volume}},
doi = {10.1016/j.aim.2015.10.004},
volume = {287},
year = {2016},
}
@inproceedings{1068,
abstract = {Games on graphs provide the appropriate framework to study several central problems in computer science, such as verification and synthesis of reactive systems. One of the most basic objectives for games on graphs is the liveness (or Büchi) objective that given a target set of vertices requires that some vertex in the target set is visited infinitely often. We study generalized Büchi objectives (i.e., conjunction of liveness objectives), and implications between two generalized Büchi objectives (known as GR(1) objectives), that arise in numerous applications in computer-aided verification. We present improved algorithms and conditional super-linear lower bounds based on widely believed assumptions about the complexity of (A1) combinatorial Boolean matrix multiplication and (A2) CNF-SAT. We consider graph games with n vertices, m edges, and generalized Büchi objectives with k conjunctions. First, we present an algorithm with running time O(k*n^2), improving the previously known O(k*n*m) and O(k^2*n^2) worst-case bounds. Our algorithm is optimal for dense graphs under (A1). Second, we show that the basic algorithm for the problem is optimal for sparse graphs when the target sets have constant size under (A2). Finally, we consider GR(1) objectives, with k_1 conjunctions in the antecedent and k_2 conjunctions in the consequent, and present an O(k_1 k_2 n^{2.5})-time algorithm, improving the previously known O(k_1*k_2*n*m)-time algorithm for m > n^{1.5}. },
author = {Chatterjee, Krishnendu and Dvorák, Wolfgang and Henzinger, Monika and Loitzenbauer, Veronika},
location = {Krakow, Poland},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Conditionally optimal algorithms for generalized Büchi Games}},
doi = {10.4230/LIPIcs.MFCS.2016.25},
volume = {58},
year = {2016},
}
@inproceedings{1069,
abstract = {The Continuous Skolem Problem asks whether a real-valued function satisfying a linear differen-
tial equation has a zero in a given interval of real numbers. This is a fundamental reachability
problem for continuous linear dynamical systems, such as linear hybrid automata and continuous-
time Markov chains. Decidability of the problem is currently open – indeed decidability is open
even for the sub-problem in which a zero is sought in a bounded interval. In this paper we show
decidability of the bounded problem subject to Schanuel’s Conjecture, a unifying conjecture in
transcendental number theory. We furthermore analyse the unbounded problem in terms of the
frequencies of the differential equation, that is, the imaginary parts of the characteristic roots.
We show that the unbounded problem can be reduced to the bounded problem if there is at most
one rationally linearly independent frequency, or if there are two rationally linearly independent
frequencies and all characteristic roots are simple. We complete the picture by showing that de-
cidability of the unbounded problem in the case of two (or more) rationally linearly independent
frequencies would entail a major new effectiveness result in Diophantine approximation, namely
computability of the Diophantine-approximation types of all real algebraic numbers.},
author = {Chonev, Ventsislav K and Ouaknine, Joël and Worrell, James},
location = {Rome, Italy},
publisher = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik},
title = {{On the skolem problem for continuous linear dynamical systems}},
doi = {10.4230/LIPIcs.ICALP.2016.100},
volume = {55},
year = {2016},
}
@inproceedings{1070,
abstract = {We present a logic that extends CTL (Computation Tree Logic) with operators that express synchronization properties. A property is synchronized in a system if it holds in all paths of a certain length. The new logic is obtained by using the same path quantifiers and temporal operators as in CTL, but allowing a different order of the quantifiers. This small syntactic variation induces a logic that can express non-regular properties for which known extensions of MSO with equality of path length are undecidable. We show that our variant of CTL is decidable and that the model-checking problem is in Delta_3^P = P^{NP^NP}, and is DP-hard. We analogously consider quantifier exchange in extensions of CTL, and we present operators defined using basic operators of CTL* that express the occurrence of infinitely many synchronization points. We show that the model-checking problem remains in Delta_3^P. The distinguishing power of CTL and of our new logic coincide if the Next operator is allowed in the logics, thus the classical bisimulation quotient can be used for state-space reduction before model checking. },
author = {Chatterjee, Krishnendu and Doyen, Laurent},
location = {Rome, Italy},
publisher = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik},
title = {{Computation tree logic for synchronization properties}},
doi = {10.4230/LIPIcs.ICALP.2016.98},
volume = {55},
year = {2016},
}
@inproceedings{1071,
abstract = {We consider data-structures for answering reachability and distance queries on constant-treewidth graphs with n nodes, on the standard RAM computational model with wordsize W=Theta(log n). Our first contribution is a data-structure that after O(n) preprocessing time, allows (1) pair reachability queries in O(1) time; and (2) single-source reachability queries in O(n/log n) time. This is (asymptotically) optimal and is faster than DFS/BFS when answering more than a constant number of single-source queries. The data-structure uses at all times O(n) space. Our second contribution is a space-time tradeoff data-structure for distance queries. For any epsilon in [1/2,1], we provide a data-structure with polynomial preprocessing time that allows pair queries in O(n^{1-\epsilon} alpha(n)) time, where alpha is the inverse of the Ackermann function, and at all times uses O(n^epsilon) space. The input graph G is not considered in the space complexity. },
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
location = {Aarhus, Denmark},
publisher = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik},
title = {{Optimal reachability and a space time tradeoff for distance queries in constant treewidth graphs}},
doi = {10.4230/LIPIcs.ESA.2016.28},
volume = {57},
year = {2016},
}
@article{1081,
abstract = {The asymmetric localization of proteins in the plasma membrane domains of eukaryotic cells is a fundamental manifestation of cell polarity that is central to multicellular organization and developmental patterning. In plants, the mechanisms underlying the polar localization of cargo proteins are still largely unknown and appear to be fundamentally distinct from those operating in mammals. Here, we present a systematic, quantitative comparative analysis of the polar delivery and subcellular localization of proteins that characterize distinct polar plasma membrane domains in plant cells. The combination of microscopic analyses and computational modeling revealed a mechanistic framework common to diverse polar cargos and underlying the establishment and maintenance of apical, basal, and lateral polar domains in plant cells. This mechanism depends on the polar secretion, constitutive endocytic recycling, and restricted lateral diffusion of cargos within the plasma membrane. Moreover, our observations suggest that polar cargo distribution involves the individual protein potential to form clusters within the plasma membrane and interact with the extracellular matrix. Our observations provide insights into the shared cellular mechanisms of polar cargo delivery and polarity maintenance in plant cells.},
author = {Łangowski, Łukasz and Wabnik, Krzysztof T and Li, Hongjiang and Vanneste, Steffen and Naramoto, Satoshi and Tanaka, Hirokazu and Friml, Jirí},
journal = {Cell Discovery},
publisher = {Nature Publishing Group},
title = {{Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells}},
doi = {10.1038/celldisc.2016.18},
volume = {2},
year = {2016},
}