@article{14826, abstract = {The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.}, author = {Kuhn, Andre and Roosjen, Mark and Mutte, Sumanth and Dubey, Shiv Mani and Carrillo Carrasco, Vanessa Polet and Boeren, Sjef and Monzer, Aline and Koehorst, Jasper and Kohchi, Takayuki and Nishihama, Ryuichi and Fendrych, Matyas and Sprakel, Joris and Friml, Jiří and Weijers, Dolf}, issn = {1097-4172}, journal = {Cell}, keywords = {General Biochemistry, Genetics and Molecular Biology}, number = {1}, pages = {130--148.e17}, publisher = {Elsevier}, title = {{RAF-like protein kinases mediate a deeply conserved, rapid auxin response}}, doi = {10.1016/j.cell.2023.11.021}, volume = {187}, year = {2024}, } @article{15033, abstract = {The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.}, author = {Adamowski, Maciek and Matijevic, Ivana and Friml, Jiří}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery}}, doi = {10.7554/elife.68993}, volume = {13}, year = {2024}, } @article{12158, abstract = {Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages.}, author = {Zeller, Peter and Yeung, Jake and Viñas Gaza, Helena and de Barbanson, Buys Anton and Bhardwaj, Vivek and Florescu, Maria and van der Linden, Reinier and van Oudenaarden, Alexander}, issn = {1546-1718}, journal = {Nature Genetics}, keywords = {Genetics}, pages = {333--345}, publisher = {Springer Nature}, title = {{Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis}}, doi = {10.1038/s41588-022-01260-3}, volume = {55}, year = {2023}, } @article{12159, abstract = {The term “haplotype block” is commonly used in the developing field of haplotype-based inference methods. We argue that the term should be defined based on the structure of the Ancestral Recombination Graph (ARG), which contains complete information on the ancestry of a sample. We use simulated examples to demonstrate key features of the relationship between haplotype blocks and ancestral structure, emphasizing the stochasticity of the processes that generate them. Even the simplest cases of neutrality or of a “hard” selective sweep produce a rich structure, often missed by commonly used statistics. We highlight a number of novel methods for inferring haplotype structure, based on the full ARG, or on a sequence of trees, and illustrate how they can be used to define haplotype blocks using an empirical data set. While the advent of new, computationally efficient methods makes it possible to apply these concepts broadly, they (and additional new methods) could benefit from adding features to explore haplotype blocks, as we define them. Understanding and applying the concept of the haplotype block will be essential to fully exploit long and linked-read sequencing technologies.}, author = {Shipilina, Daria and Pal, Arka and Stankowski, Sean and Chan, Yingguang Frank and Barton, Nicholas H}, issn = {1365-294X}, journal = {Molecular Ecology}, keywords = {Genetics, Ecology, Evolution, Behavior and Systematics}, number = {6}, pages = {1441--1457}, publisher = {Wiley}, title = {{On the origin and structure of haplotype blocks}}, doi = {10.1111/mec.16793}, volume = {32}, year = {2023}, } @article{12163, abstract = {Small GTPases play essential roles in the organization of eukaryotic cells. In recent years, it has become clear that their intracellular functions result from intricate biochemical networks of the GTPase and their regulators that dynamically bind to a membrane surface. Due to the inherent complexities of their interactions, however, revealing the underlying mechanisms of action is often difficult to achieve from in vivo studies. This review summarizes in vitro reconstitution approaches developed to obtain a better mechanistic understanding of how small GTPase activities are regulated in space and time.}, author = {Loose, Martin and Auer, Albert and Brognara, Gabriel and Budiman, Hanifatul R and Kowalski, Lukasz M and Matijevic, Ivana}, issn = {1873-3468}, journal = {FEBS Letters}, keywords = {Cell Biology, Genetics, Molecular Biology, Biochemistry, Structural Biology, Biophysics}, number = {6}, pages = {762--777}, publisher = {Wiley}, title = {{In vitro reconstitution of small GTPase regulation}}, doi = {10.1002/1873-3468.14540}, volume = {597}, year = {2023}, } @article{12521, abstract = {Differentiated X chromosomes are expected to have higher rates of adaptive divergence than autosomes, if new beneficial mutations are recessive (the “faster-X effect”), largely because these mutations are immediately exposed to selection in males. The evolution of X chromosomes after they stop recombining in males, but before they become hemizygous, has not been well explored theoretically. We use the diffusion approximation to infer substitution rates of beneficial and deleterious mutations under such a scenario. Our results show that selection is less efficient on diploid X loci than on autosomal and hemizygous X loci under a wide range of parameters. This “slower-X” effect is stronger for genes affecting primarily (or only) male fitness, and for sexually antagonistic genes. These unusual dynamics suggest that some of the peculiar features of X chromosomes, such as the differential accumulation of genes with sex-specific functions, may start arising earlier than previously appreciated.}, author = {Mrnjavac, Andrea and Khudiakova, Kseniia and Barton, Nicholas H and Vicoso, Beatriz}, issn = {2056-3744}, journal = {Evolution Letters}, keywords = {Genetics, Ecology, Evolution, Behavior and Systematics}, number = {1}, publisher = {Oxford University Press}, title = {{Slower-X: Reduced efficiency of selection in the early stages of X chromosome evolution}}, doi = {10.1093/evlett/qrac004}, volume = {7}, year = {2023}, } @article{13989, abstract = {Characterizing and controlling entanglement in quantum materials is crucial for the development of next-generation quantum technologies. However, defining a quantifiable figure of merit for entanglement in macroscopic solids is theoretically and experimentally challenging. At equilibrium the presence of entanglement can be diagnosed by extracting entanglement witnesses from spectroscopic observables and a nonequilibrium extension of this method could lead to the discovery of novel dynamical phenomena. Here, we propose a systematic approach to quantify the time-dependent quantum Fisher information and entanglement depth of transient states of quantum materials with time-resolved resonant inelastic x-ray scattering. Using a quarter-filled extended Hubbard model as an example, we benchmark the efficiency of this approach and predict a light-enhanced many-body entanglement due to the proximity to a phase boundary. Our work sets the stage for experimentally witnessing and controlling entanglement in light-driven quantum materials via ultrafast spectroscopic measurements.}, author = {Hales, Jordyn and Bajpai, Utkarsh and Liu, Tongtong and Baykusheva, Denitsa Rangelova and Li, Mingda and Mitrano, Matteo and Wang, Yao}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary}, publisher = {Springer Nature}, title = {{Witnessing light-driven entanglement using time-resolved resonant inelastic X-ray scattering}}, doi = {10.1038/s41467-023-38540-3}, volume = {14}, year = {2023}, } @article{14368, abstract = {Purpose: Biallelic variants in TARS2, encoding the mitochondrial threonyl-tRNA-synthetase, have been reported in a small group of individuals displaying a neurodevelopmental phenotype but with limited neuroradiological data and insufficient evidence for causality of the variants. Methods: Exome or genome sequencing was carried out in 15 families. Clinical and neuroradiological evaluation was performed for all affected individuals, including review of 10 previously reported individuals. The pathogenicity of TARS2 variants was evaluated using in vitro assays and a zebrafish model. Results: We report 18 new individuals harboring biallelic TARS2 variants. Phenotypically, these individuals show developmental delay/intellectual disability, regression, cerebellar and cerebral atrophy, basal ganglia signal alterations, hypotonia, cerebellar signs, and increased blood lactate. In vitro studies showed that variants within the TARS2301-381 region had decreased binding to Rag GTPases, likely impairing mTORC1 activity. The zebrafish model recapitulated key features of the human phenotype and unraveled dysregulation of downstream targets of mTORC1 signaling. Functional testing of the variants confirmed the pathogenicity in a zebrafish model. Conclusion: We define the clinico-radiological spectrum of TARS2-related mitochondrial disease, unveil the likely involvement of the mTORC1 signaling pathway as a distinct molecular mechanism, and establish a TARS2 zebrafish model as an important tool to study variant pathogenicity.}, author = {Accogli, Andrea and Lin, Sheng-Jia and Severino, Mariasavina and Kim, Sung-Hoon and Huang, Kevin and Rocca, Clarissa and Landsverk, Megan and Zaki, Maha S. and Al-Maawali, Almundher and Srinivasan, Varunvenkat M. and Al-Thihli, Khalid and Schaefer, G. Bradly and Davis, Monica and Tonduti, Davide and Doneda, Chiara and Marten, Lara M. and Mühlhausen, Chris and Gomez, Maria and Lamantea, Eleonora and Mena, Rafael and Nizon, Mathilde and Procaccio, Vincent and Begtrup, Amber and Telegrafi, Aida and Cui, Hong and Schulz, Heidi L. and Mohr, Julia and Biskup, Saskia and Loos, Mariana Amina and Aráoz, Hilda Verónica and Salpietro, Vincenzo and Keppen, Laura Davis and Chitre, Manali and Petree, Cassidy and Raymond, Lucy and Vogt, Julie and Sawyer, Lindsey B. and Basinger, Alice A. and Pedersen, Signe Vandal and Pearson, Toni S. and Grange, Dorothy K. and Lingappa, Lokesh and McDunnah, Paige and Horvath, Rita and Cognè, Benjamin and Isidor, Bertrand and Hahn, Andreas and Gripp, Karen W. and Jafarnejad, Seyed Mehdi and Østergaard, Elsebet and Prada, Carlos E. and Ghezzi, Daniele and Gowda, Vykuntaraju K. and Taylor, Robert W. and Sonenberg, Nahum and Houlden, Henry and Sissler, Marie and Varshney, Gaurav K. and Maroofian, Reza}, issn = {1098-3600}, journal = {Genetics in Medicine}, keywords = {Genetics (clinical)}, number = {11}, publisher = {Elsevier}, title = {{Clinical, neuroradiological, and molecular characterization of mitochondrial threonyl-tRNA-synthetase (TARS2)-related disorder}}, doi = {10.1016/j.gim.2023.100938}, volume = {25}, year = {2023}, } @misc{12949, abstract = {The classical infinitesimal model is a simple and robust model for the inheritance of quantitative traits. In this model, a quantitative trait is expressed as the sum of a genetic and a non-genetic (environmental) component and the genetic component of offspring traits within a family follows a normal distribution around the average of the parents’ trait values, and has a variance that is independent of the trait values of the parents. Although the trait distribution across the whole population can be far from normal, the trait distributions within families are normally distributed with a variance-covariance matrix that is determined entirely by that in the ancestral population and the probabilities of identity determined by the pedigree. Moreover, conditioning on some of the trait values within the pedigree has predictable effects on the mean and variance within and between families. In previous work, Barton et al. (2017), we showed that when trait values are determined by the sum of a large number of Mendelian factors, each of small effect, one can justify the infinitesimal model as limit of Mendelian inheritance. It was also shown that under some forms of epistasis, trait values within a family are still normally distributed.}, author = {Barton, Nicholas H}, keywords = {Quantitative genetics, infinitesimal model}, publisher = {Institute of Science and Technology Austria}, title = {{The infinitesimal model with dominance}}, doi = {10.15479/AT:ISTA:12949}, year = {2023}, } @article{14639, abstract = {Background: Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. Methods: Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. Results: A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. Conclusions: Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as “OGDHL-related disorders”.}, author = {Lin, Sheng-Jia and Vona, Barbara and Lau, Tracy and Huang, Kevin and Zaki, Maha S. and Aldeen, Huda Shujaa and Karimiani, Ehsan Ghayoor and Rocca, Clarissa and Noureldeen, Mahmoud M. and Saad, Ahmed K. and Petree, Cassidy and Bartolomaeus, Tobias and Abou Jamra, Rami and Zifarelli, Giovanni and Gotkhindikar, Aditi and Wentzensen, Ingrid M. and Liao, Mingjuan and Cork, Emalyn Elise and Varshney, Pratishtha and Hashemi, Narges and Mohammadi, Mohammad Hasan and Rad, Aboulfazl and Neira, Juanita and Toosi, Mehran Beiraghi and Knopp, Cordula and Kurth, Ingo and Challman, Thomas D. and Smith, Rebecca and Abdalla, Asmahan and Haaf, Thomas and Suri, Mohnish and Joshi, Manali and Chung, Wendy K. and Moreno-De-Luca, Andres and Houlden, Henry and Maroofian, Reza and Varshney, Gaurav K.}, issn = {1756-994X}, journal = {Genome Medicine}, keywords = {Genetics (clinical), Genetics, Molecular Biology, Molecular Medicine}, publisher = {Springer Nature}, title = {{Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity}}, doi = {10.1186/s13073-023-01258-4}, volume = {15}, year = {2023}, } @article{14077, abstract = {The regulatory architecture of gene expression is known to differ substantially between sexes in Drosophila, but most studies performed so far used whole-body data and only single crosses, which may have limited their scope to detect patterns that are robust across tissues and biological replicates. Here, we use allele-specific gene expression of parental and reciprocal hybrid crosses between 6 Drosophila melanogaster inbred lines to quantify cis- and trans-regulatory variation in heads and gonads of both sexes separately across 3 replicate crosses. Our results suggest that female and male heads, as well as ovaries, have a similar regulatory architecture. On the other hand, testes display more and substantially different cis-regulatory effects, suggesting that sex differences in the regulatory architecture that have been previously observed may largely derive from testis-specific effects. We also examine the difference in cis-regulatory variation of genes across different levels of sex bias in gonads and heads. Consistent with the idea that intersex correlations constrain expression and can lead to sexual antagonism, we find more cis variation in unbiased and moderately biased genes in heads. In ovaries, reduced cis variation is observed for male-biased genes, suggesting that cis variants acting on these genes in males do not lead to changes in ovary expression. Finally, we examine the dominance patterns of gene expression and find that sex- and tissue-specific patterns of inheritance as well as trans-regulatory variation are highly variable across biological crosses, although these were performed in highly controlled experimental conditions. This highlights the importance of using various genetic backgrounds to infer generalizable patterns.}, author = {Puixeu Sala, Gemma and Macon, Ariana and Vicoso, Beatriz}, issn = {2160-1836}, journal = {G3: Genes, Genomes, Genetics}, keywords = {Genetics (clinical), Genetics, Molecular Biology}, number = {8}, publisher = {Oxford University Press}, title = {{Sex-specific estimation of cis and trans regulation of gene expression in heads and gonads of Drosophila melanogaster}}, doi = {10.1093/g3journal/jkad121}, volume = {13}, year = {2023}, } @article{14683, abstract = {Mosaic analysis with double markers (MADM) technology enables the generation of genetic mosaic tissue in mice and high-resolution phenotyping at the individual cell level. Here, we present a protocol for isolating MADM-labeled cells with high yield for downstream molecular analyses using fluorescence-activated cell sorting (FACS). We describe steps for generating MADM-labeled mice, perfusion, single-cell suspension, and debris removal. We then detail procedures for cell sorting by FACS and downstream analysis. This protocol is suitable for embryonic to adult mice. For complete details on the use and execution of this protocol, please refer to Contreras et al. (2021).1}, author = {Amberg, Nicole and Cheung, Giselle T and Hippenmeyer, Simon}, issn = {2666-1667}, journal = {STAR Protocols}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Neuroscience}, number = {1}, publisher = {Elsevier}, title = {{Protocol for sorting cells from mouse brains labeled with mosaic analysis with double markers by flow cytometry}}, doi = {10.1016/j.xpro.2023.102771}, volume = {5}, year = {2023}, } @article{14742, abstract = {Chromosomal rearrangements (CRs) have been known since almost the beginning of genetics. While an important role for CRs in speciation has been suggested, evidence primarily stems from theoretical and empirical studies focusing on the microevolutionary level (i.e., on taxon pairs where speciation is often incomplete). Although the role of CRs in eukaryotic speciation at a macroevolutionary level has been supported by associations between species diversity and rates of evolution of CRs across phylogenies, these findings are limited to a restricted range of CRs and taxa. Now that more broadly applicable and precise CR detection approaches have become available, we address the challenges in filling some of the conceptual and empirical gaps between micro- and macroevolutionary studies on the role of CRs in speciation. We synthesize what is known about the macroevolutionary impact of CRs and suggest new research avenues to overcome the pitfalls of previous studies to gain a more comprehensive understanding of the evolutionary significance of CRs in speciation across the tree of life.}, author = {Lucek, Kay and Giménez, Mabel D. and Joron, Mathieu and Rafajlović, Marina and Searle, Jeremy B. and Walden, Nora and Westram, Anja M and Faria, Rui}, issn = {1943-0264}, journal = {Cold Spring Harbor Perspectives in Biology}, keywords = {General Biochemistry, Genetics and Molecular Biology}, number = {11}, publisher = {Cold Spring Harbor Laboratory}, title = {{The impact of chromosomal rearrangements in speciation: From micro- to macroevolution}}, doi = {10.1101/cshperspect.a041447}, volume = {15}, year = {2023}, } @article{14781, abstract = {Germ granules, condensates of phase-separated RNA and protein, are organelles that are essential for germline development in different organisms. The patterning of the granules and their relevance for germ cell fate are not fully understood. Combining three-dimensional in vivo structural and functional analyses, we study the dynamic spatial organization of molecules within zebrafish germ granules. We find that the localization of RNA molecules to the periphery of the granules, where ribosomes are localized, depends on translational activity at this location. In addition, we find that the vertebrate-specific Dead end (Dnd1) protein is essential for nanos3 RNA localization at the condensates’ periphery. Accordingly, in the absence of Dnd1, or when translation is inhibited, nanos3 RNA translocates into the granule interior, away from the ribosomes, a process that is correlated with the loss of germ cell fate. These findings highlight the relevance of sub-granule compartmentalization for post-transcriptional control and its importance for preserving germ cell totipotency.}, author = {Westerich, Kim Joana and Tarbashevich, Katsiaryna and Schick, Jan and Gupta, Antra and Zhu, Mingzhao and Hull, Kenneth and Romo, Daniel and Zeuschner, Dagmar and Goudarzi, Mohammad and Gross-Thebing, Theresa and Raz, Erez}, issn = {1534-5807}, journal = {Developmental Cell}, keywords = {Developmental Biology, Cell Biology, General Biochemistry, Genetics and Molecular Biology, Molecular Biology}, number = {17}, pages = {1578--1592.e5}, publisher = {Elsevier}, title = {{Spatial organization and function of RNA molecules within phase-separated condensates in zebrafish are controlled by Dnd1}}, doi = {10.1016/j.devcel.2023.06.009}, volume = {58}, year = {2023}, } @article{14787, abstract = {Understanding the phenotypic and genetic architecture of reproductive isolation is a long‐standing goal of speciation research. In several systems, large‐effect loci contributing to barrier phenotypes have been characterized, but such causal connections are rarely known for more complex genetic architectures. In this study, we combine “top‐down” and “bottom‐up” approaches with demographic modelling toward an integrated understanding of speciation across a monkeyflower hybrid zone. Previous work suggests that pollinator visitation acts as a primary barrier to gene flow between two divergent red‐ and yellow‐flowered ecotypes ofMimulus aurantiacus. Several candidate isolating traits and anonymous single nucleotide polymorphism loci under divergent selection have been identified, but their genomic positions remain unknown. Here, we report findings from demographic analyses that indicate this hybrid zone formed by secondary contact, but that subsequent gene flow was restricted by widespread barrier loci across the genome. Using a novel, geographic cline‐based genome scan, we demonstrate that candidate barrier loci are broadly distributed across the genome, rather than mapping to one or a few “islands of speciation.” Quantitative trait locus (QTL) mapping reveals that most floral traits are highly polygenic, with little evidence that QTL colocalize, indicating that most traits are genetically independent. Finally, we find little evidence that QTL and candidate barrier loci overlap, suggesting that some loci contribute to other forms of reproductive isolation. Our findings highlight the challenges of understanding the genetic architecture of reproductive isolation and reveal that barriers to gene flow other than pollinator isolation may play an important role in this system.}, author = {Stankowski, Sean and Chase, Madeline A. and McIntosh, Hanna and Streisfeld, Matthew A.}, issn = {1365-294X}, journal = {Molecular Ecology}, keywords = {Genetics, Ecology, Evolution, Behavior and Systematics}, number = {8}, pages = {2041--2054}, publisher = {Wiley}, title = {{Integrating top‐down and bottom‐up approaches to understand the genetic architecture of speciation across a monkeyflower hybrid zone}}, doi = {10.1111/mec.16849}, volume = {32}, year = {2023}, } @article{12802, abstract = {Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Inspired by the discovery that mutations in SLC7A5, a transporter of metabolically essential large neutral amino acids (LNAAs), lead to autism, we employed metabolomic profiling to study the metabolic states of the cerebral cortex across different developmental stages. We found that the forebrain undergoes significant metabolic remodeling throughout development, with certain groups of metabolites showing stage-specific changes, but what are the consequences of perturbing this metabolic program? By manipulating Slc7a5 expression in neural cells, we found that the metabolism of LNAAs and lipids are interconnected in the cortex. Deletion of Slc7a5 in neurons affects the postnatal metabolic state, leading to a shift in lipid metabolism. Additionally, it causes stage- and cell-type-specific alterations in neuronal activity patterns, resulting in a long-term circuit dysfunction.}, author = {Knaus, Lisa and Basilico, Bernadette and Malzl, Daniel and Gerykova Bujalkova, Maria and Smogavec, Mateja and Schwarz, Lena A. and Gorkiewicz, Sarah and Amberg, Nicole and Pauler, Florian and Knittl-Frank, Christian and Tassinari, Marianna and Maulide, Nuno and Rülicke, Thomas and Menche, Jörg and Hippenmeyer, Simon and Novarino, Gaia}, issn = {0092-8674}, journal = {Cell}, keywords = {General Biochemistry, Genetics and Molecular Biology}, number = {9}, pages = {1950--1967.e25}, publisher = {Elsevier}, title = {{Large neutral amino acid levels tune perinatal neuronal excitability and survival}}, doi = {10.1016/j.cell.2023.02.037}, volume = {186}, year = {2023}, } @article{14613, abstract = {Many insects carry an ancient X chromosome - the Drosophila Muller element F - that likely predates their origin. Interestingly, the X has undergone turnover in multiple fly species (Diptera) after being conserved for more than 450 MY. The long evolutionary distance between Diptera and other sequenced insect clades makes it difficult to infer what could have contributed to this sudden increase in rate of turnover. Here, we produce the first genome and transcriptome of a long overlooked sister-order to Diptera: Mecoptera. We compare the scorpionfly Panorpa cognata X-chromosome gene content, expression, and structure, to that of several dipteran species as well as more distantly-related insect orders (Orthoptera and Blattodea). We find high conservation of gene content between the mecopteran X and the dipteran Muller F element, as well as several shared biological features, such as the presence of dosage compensation and a low amount of genetic diversity, consistent with a low recombination rate. However, the two homologous X chromosomes differ strikingly in their size and number of genes they carry. Our results therefore support a common ancestry of the mecopteran and ancestral dipteran X chromosomes, and suggest that Muller element F shrank in size and gene content after the split of Diptera and Mecoptera, which may have contributed to its turnover in dipteran insects.}, author = {Lasne, Clementine and Elkrewi, Marwan N and Toups, Melissa A and Layana Franco, Lorena Alexandra and Macon, Ariana and Vicoso, Beatriz}, issn = {1537-1719}, journal = {Molecular Biology and Evolution}, keywords = {Genetics, Molecular Biology, Ecology, Evolution, Behavior and Systematics}, number = {12}, publisher = {Oxford University Press}, title = {{The scorpionfly (Panorpa cognata) genome highlights conserved and derived features of the peculiar dipteran X chromosome}}, doi = {10.1093/molbev/msad245}, volume = {40}, year = {2023}, } @article{11713, abstract = {Objective: MazF is a sequence-specific endoribonuclease-toxin of the MazEF toxin–antitoxin system. MazF cleaves single-stranded ribonucleic acid (RNA) regions at adenine–cytosine–adenine (ACA) sequences in the bacterium Escherichia coli. The MazEF system has been used in various biotechnology and synthetic biology applications. In this study, we infer how ectopic mazF overexpression affects production of heterologous proteins. To this end, we quantified the levels of fluorescent proteins expressed in E. coli from reporters translated from the ACA-containing or ACA-less messenger RNAs (mRNAs). Additionally, we addressed the impact of the 5′-untranslated region of these reporter mRNAs under the same conditions by comparing expression from mRNAs that comprise (canonical mRNA) or lack this region (leaderless mRNA). Results: Flow cytometry analysis indicates that during mazF overexpression, fluorescent proteins are translated from the canonical as well as leaderless mRNAs. Our analysis further indicates that longer mazF overexpression generally increases the concentration of fluorescent proteins translated from ACA-less mRNAs, however it also substantially increases bacterial population heterogeneity. Finally, our results suggest that the strength and duration of mazF overexpression should be optimized for each experimental setup, to maximize the heterologous protein production and minimize the amount of phenotypic heterogeneity in bacterial populations, which is unfavorable in biotechnological processes.}, author = {Nikolic, Nela and Sauert, Martina and Albanese, Tanino G. and Moll, Isabella}, issn = {1756-0500}, journal = {BMC Research Notes}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Medicine}, publisher = {Springer Nature}, title = {{Quantifying heterologous gene expression during ectopic MazF production in Escherichia coli}}, doi = {10.1186/s13104-022-06061-9}, volume = {15}, year = {2022}, } @article{12156, abstract = {Models of transcriptional regulation that assume equilibrium binding of transcription factors have been less successful at predicting gene expression from sequence in eukaryotes than in bacteria. This could be due to the non-equilibrium nature of eukaryotic regulation. Unfortunately, the space of possible non-equilibrium mechanisms is vast and predominantly uninteresting. The key question is therefore how this space can be navigated efficiently, to focus on mechanisms and models that are biologically relevant. In this review, we advocate for the normative role of theory—theory that prescribes rather than just describes—in providing such a focus. Theory should expand its remit beyond inferring mechanistic models from data, towards identifying non-equilibrium gene regulatory schemes that may have been evolutionarily selected, despite their energy consumption, because they are precise, reliable, fast, or otherwise outperform regulation at equilibrium. We illustrate our reasoning by toy examples for which we provide simulation code.}, author = {Zoller, Benjamin and Gregor, Thomas and Tkačik, Gašper}, issn = {2452-3100}, journal = {Current Opinion in Systems Biology}, keywords = {Applied Mathematics, Computer Science Applications, Drug Discovery, General Biochemistry, Genetics and Molecular Biology, Modeling and Simulation}, number = {9}, publisher = {Elsevier}, title = {{Eukaryotic gene regulation at equilibrium, or non?}}, doi = {10.1016/j.coisb.2022.100435}, volume = {31}, year = {2022}, } @article{12670, abstract = {DNA methylation plays essential homeostatic functions in eukaryotic genomes. In animals, DNA methylation is also developmentally regulated and, in turn, regulates development. In the past two decades, huge research effort has endorsed the understanding that DNA methylation plays a similar role in plant development, especially during sexual reproduction. The power of whole-genome sequencing and cell isolation techniques, as well as bioinformatics tools, have enabled recent studies to reveal dynamic changes in DNA methylation during germline development. Furthermore, the combination of these technological advances with genetics, developmental biology and cell biology tools has revealed functional methylation reprogramming events that control gene and transposon activities in flowering plant germlines. In this review, we discuss the major advances in our knowledge of DNA methylation dynamics during male and female germline development in flowering plants.}, author = {He, Shengbo and Feng, Xiaoqi}, issn = {1744-7909}, journal = {Journal of Integrative Plant Biology}, keywords = {Plant Science, General Biochemistry, Genetics and Molecular Biology, Biochemistry}, number = {12}, pages = {2240--2251}, publisher = {Wiley}, title = {{DNA methylation dynamics during germline development}}, doi = {10.1111/jipb.13422}, volume = {64}, year = {2022}, } @article{10604, abstract = {Maternally inherited Wolbachia transinfections are being introduced into natural mosquito populations to reduce the transmission of dengue, Zika, and other arboviruses. Wolbachia-induced cytoplasmic incompatibility provides a frequency-dependent reproductive advantage to infected females that can spread transinfections within and among populations. However, because transinfections generally reduce host fitness, they tend to spread within populations only after their frequency exceeds a critical threshold. This produces bistability with stable equilibrium frequencies at both 0 and 1, analogous to the bistability produced by underdominance between alleles or karyotypes and by population dynamics under Allee effects. Here, we analyze how stochastic frequency variation produced by finite population size can facilitate the local spread of variants with bistable dynamics into areas where invasion is unexpected from deterministic models. Our exemplar is the establishment of wMel Wolbachia in the Aedes aegypti population of Pyramid Estates (PE), a small community in far north Queensland, Australia. In 2011, wMel was stably introduced into Gordonvale, separated from PE by barriers to A. aegypti dispersal. After nearly 6 years during which wMel was observed only at low frequencies in PE, corresponding to an apparent equilibrium between immigration and selection, wMel rose to fixation by 2018. Using analytic approximations and statistical analyses, we demonstrate that the observed fixation of wMel at PE is consistent with both stochastic transition past an unstable threshold frequency and deterministic transformation produced by steady immigration at a rate just above the threshold required for deterministic invasion. The indeterminacy results from a delicate balance of parameters needed to produce the delayed transition observed. Our analyses suggest that once Wolbachia transinfections are established locally through systematic introductions, stochastic “threshold crossing” is likely to only minimally enhance spatial spread, providing a local ratchet that slightly—but systematically—aids area-wide transformation of disease-vector populations in heterogeneous landscapes.}, author = {Turelli, Michael and Barton, Nicholas H}, issn = {2056-3744}, journal = {Evolution Letters}, keywords = {genetics, ecology, evolution, behavior and systematics}, number = {1}, pages = {92--105}, publisher = {Wiley}, title = {{Why did the Wolbachia transinfection cross the road? Drift, deterministic dynamics, and disease control}}, doi = {10.1002/evl3.270}, volume = {6}, year = {2022}, } @article{11351, abstract = {One hallmark of plant cells is their cell wall. They protect cells against the environment and high turgor and mediate morphogenesis through the dynamics of their mechanical and chemical properties. The walls are a complex polysaccharidic structure. Although their biochemical composition is well known, how the different components organize in the volume of the cell wall and interact with each other is not well understood and yet is key to the wall’s mechanical properties. To investigate the ultrastructure of the plant cell wall, we imaged the walls of onion (Allium cepa) bulbs in a near-native state via cryo-focused ion beam milling (cryo-FIB milling) and cryo-electron tomography (cryo-ET). This allowed the high-resolution visualization of cellulose fibers in situ. We reveal the coexistence of dense fiber fields bathed in a reticulated matrix we termed “meshing,” which is more abundant at the inner surface of the cell wall. The fibers adopted a regular bimodal angular distribution at all depths in the cell wall and bundled according to their orientation, creating layers within the cell wall. Concomitantly, employing homogalacturonan (HG)-specific enzymatic digestion, we observed changes in the meshing, suggesting that it is—at least in part—composed of HG pectins. We propose the following model for the construction of the abaxial epidermal primary cell wall: the cell deposits successive layers of cellulose fibers at −45° and +45° relative to the cell’s long axis and secretes the surrounding HG-rich meshing proximal to the plasma membrane, which then migrates to more distal regions of the cell wall.}, author = {Nicolas, William J. and Fäßler, Florian and Dutka, Przemysław and Schur, Florian KM and Jensen, Grant and Meyerowitz, Elliot}, issn = {0960-9822}, journal = {Current Biology}, keywords = {General Agricultural and Biological Sciences, General Biochemistry, Genetics and Molecular Biology}, number = {11}, pages = {P2375--2389}, publisher = {Elsevier}, title = {{Cryo-electron tomography of the onion cell wall shows bimodally oriented cellulose fibers and reticulated homogalacturonan networks}}, doi = {10.1016/j.cub.2022.04.024}, volume = {32}, year = {2022}, } @article{11448, abstract = {Studies of protein fitness landscapes reveal biophysical constraints guiding protein evolution and empower prediction of functional proteins. However, generalisation of these findings is limited due to scarceness of systematic data on fitness landscapes of proteins with a defined evolutionary relationship. We characterized the fitness peaks of four orthologous fluorescent proteins with a broad range of sequence divergence. While two of the four studied fitness peaks were sharp, the other two were considerably flatter, being almost entirely free of epistatic interactions. Mutationally robust proteins, characterized by a flat fitness peak, were not optimal templates for machine-learning-driven protein design – instead, predictions were more accurate for fragile proteins with epistatic landscapes. Our work paves insights for practical application of fitness landscape heterogeneity in protein engineering.}, author = {Gonzalez Somermeyer, Louisa and Fleiss, Aubin and Mishin, Alexander S and Bozhanova, Nina G and Igolkina, Anna A and Meiler, Jens and Alaball Pujol, Maria-Elisenda and Putintseva, Ekaterina V and Sarkisyan, Karen S and Kondrashov, Fyodor}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Heterogeneity of the GFP fitness landscape and data-driven protein design}}, doi = {10.7554/elife.75842}, volume = {11}, year = {2022}, } @article{11447, abstract = {Empirical essays of fitness landscapes suggest that they may be rugged, that is having multiple fitness peaks. Such fitness landscapes, those that have multiple peaks, necessarily have special local structures, called reciprocal sign epistasis (Poelwijk et al. in J Theor Biol 272:141–144, 2011). Here, we investigate the quantitative relationship between the number of fitness peaks and the number of reciprocal sign epistatic interactions. Previously, it has been shown (Poelwijk et al. in J Theor Biol 272:141–144, 2011) that pairwise reciprocal sign epistasis is a necessary but not sufficient condition for the existence of multiple peaks. Applying discrete Morse theory, which to our knowledge has never been used in this context, we extend this result by giving the minimal number of reciprocal sign epistatic interactions required to create a given number of peaks.}, author = {Saona Urmeneta, Raimundo J and Kondrashov, Fyodor and Khudiakova, Kseniia}, issn = {1522-9602}, journal = {Bulletin of Mathematical Biology}, keywords = {Computational Theory and Mathematics, General Agricultural and Biological Sciences, Pharmacology, General Environmental Science, General Biochemistry, Genetics and Molecular Biology, General Mathematics, Immunology, General Neuroscience}, number = {8}, publisher = {Springer Nature}, title = {{Relation between the number of peaks and the number of reciprocal sign epistatic interactions}}, doi = {10.1007/s11538-022-01029-z}, volume = {84}, year = {2022}, } @article{11546, abstract = {Local adaptation leads to differences between populations within a species. In many systems, similar environmental contrasts occur repeatedly, sometimes driving parallel phenotypic evolution. Understanding the genomic basis of local adaptation and parallel evolution is a major goal of evolutionary genomics. It is now known that by preventing the break-up of favourable combinations of alleles across multiple loci, genetic architectures that reduce recombination, like chromosomal inversions, can make an important contribution to local adaptation. However, little is known about whether inversions also contribute disproportionately to parallel evolution. Our aim here is to highlight this knowledge gap, to showcase existing studies, and to illustrate the differences between genomic architectures with and without inversions using simple models. We predict that by generating stronger effective selection, inversions can sometimes speed up the parallel adaptive process or enable parallel adaptation where it would be impossible otherwise, but this is highly dependent on the spatial setting. We highlight that further empirical work is needed, in particular to cover a broader taxonomic range and to understand the relative importance of inversions compared to genomic regions without inversions.}, author = {Westram, Anja M and Faria, Rui and Johannesson, Kerstin and Butlin, Roger and Barton, Nicholas H}, issn = {1471-2970}, journal = {Philosophical Transactions of the Royal Society B: Biological Sciences}, keywords = {General Agricultural and Biological Sciences, General Biochemistry, Genetics and Molecular Biology}, number = {1856}, publisher = {Royal Society of London}, title = {{Inversions and parallel evolution}}, doi = {10.1098/rstb.2021.0203}, volume = {377}, year = {2022}, } @article{11951, abstract = {The mammalian hippocampal formation (HF) plays a key role in several higher brain functions, such as spatial coding, learning and memory. Its simple circuit architecture is often viewed as a trisynaptic loop, processing input originating from the superficial layers of the entorhinal cortex (EC) and sending it back to its deeper layers. Here, we show that excitatory neurons in layer 6b of the mouse EC project to all sub-regions comprising the HF and receive input from the CA1, thalamus and claustrum. Furthermore, their output is characterized by unique slow-decaying excitatory postsynaptic currents capable of driving plateau-like potentials in their postsynaptic targets. Optogenetic inhibition of the EC-6b pathway affects spatial coding in CA1 pyramidal neurons, while cell ablation impairs not only acquisition of new spatial memories, but also degradation of previously acquired ones. Our results provide evidence of a functional role for cortical layer 6b neurons in the adult brain.}, author = {Ben Simon, Yoav and Käfer, Karola and Velicky, Philipp and Csicsvari, Jozsef L and Danzl, Johann G and Jonas, Peter M}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary}, publisher = {Springer Nature}, title = {{A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory}}, doi = {10.1038/s41467-022-32559-8}, volume = {13}, year = {2022}, } @article{12051, abstract = {Transcription of the ribosomal RNA precursor by RNA polymerase (Pol) I is a major determinant of cellular growth, and dysregulation is observed in many cancer types. Here, we present the purification of human Pol I from cells carrying a genomic GFP fusion on the largest subunit allowing the structural and functional analysis of the enzyme across species. In contrast to yeast, human Pol I carries a single-subunit stalk, and in vitro transcription indicates a reduced proofreading activity. Determination of the human Pol I cryo-EM reconstruction in a close-to-native state rationalizes the effects of disease-associated mutations and uncovers an additional domain that is built into the sequence of Pol I subunit RPA1. This “dock II” domain resembles a truncated HMG box incapable of DNA binding which may serve as a downstream transcription factor–binding platform in metazoans. Biochemical analysis, in situ modelling, and ChIP data indicate that Topoisomerase 2a can be recruited to Pol I via the domain and cooperates with the HMG box domain–containing factor UBF. These adaptations of the metazoan Pol I transcription system may allow efficient release of positive DNA supercoils accumulating downstream of the transcription bubble.}, author = {Daiß, Julia L and Pilsl, Michael and Straub, Kristina and Bleckmann, Andrea and Höcherl, Mona and Heiss, Florian B and Abascal-Palacios, Guillermo and Ramsay, Ewan P and Tluckova, Katarina and Mars, Jean-Clement and Fürtges, Torben and Bruckmann, Astrid and Rudack, Till and Bernecky, Carrie A and Lamour, Valérie and Panov, Konstantin and Vannini, Alessandro and Moss, Tom and Engel, Christoph}, issn = {2575-1077}, journal = {Life Science Alliance}, keywords = {Health, Toxicology and Mutagenesis, Plant Science, Biochemistry, Genetics and Molecular Biology (miscellaneous), Ecology}, number = {11}, publisher = {Life Science Alliance}, title = {{The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans}}, doi = {10.26508/lsa.202201568}, volume = {5}, year = {2022}, } @article{12130, abstract = {Germline determination is essential for species survival and evolution in multicellular organisms. In most flowering plants, formation of the female germline is initiated with specification of one megaspore mother cell (MMC) in each ovule; however, the molecular mechanism underlying this key event remains unclear. Here we report that spatially restricted auxin signaling promotes MMC fate in Arabidopsis. Our results show that the microRNA160 (miR160) targeted gene ARF17 (AUXIN RESPONSE FACTOR17) is required for promoting MMC specification by genetically interacting with the SPL/NZZ (SPOROCYTELESS/NOZZLE) gene. Alterations of auxin signaling cause formation of supernumerary MMCs in an ARF17- and SPL/NZZ-dependent manner. Furthermore, miR160 and ARF17 are indispensable for attaining a normal auxin maximum at the ovule apex via modulating the expression domain of PIN1 (PIN-FORMED1) auxin transporter. Our findings elucidate the mechanism by which auxin signaling promotes the acquisition of female germline cell fate in plants.}, author = {Huang, Jian and Zhao, Lei and Malik, Shikha and Gentile, Benjamin R. and Xiong, Va and Arazi, Tzahi and Owen, Heather A. and Friml, Jiří and Zhao, Dazhong}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary}, publisher = {Springer Nature}, title = {{Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis}}, doi = {10.1038/s41467-022-34723-6}, volume = {13}, year = {2022}, } @article{12142, abstract = {Theory for liability-scale models of the underlying genetic basis of complex disease provides an important way to interpret, compare, and understand results generated from biological studies. In particular, through estimation of the liability-scale heritability (LSH), liability models facilitate an understanding and comparison of the relative importance of genetic and environmental risk factors that shape different clinically important disease outcomes. Increasingly, large-scale biobank studies that link genetic information to electronic health records, containing hundreds of disease diagnosis indicators that mostly occur infrequently within the sample, are becoming available. Here, we propose an extension of the existing liability-scale model theory suitable for estimating LSH in biobank studies of low-prevalence disease. In a simulation study, we find that our derived expression yields lower mean square error (MSE) and is less sensitive to prevalence misspecification as compared to previous transformations for diseases with =< 2% population prevalence and LSH of =< 0.45, especially if the biobank sample prevalence is less than that of the wider population. Applying our expression to 13 diagnostic outcomes of =< 3% prevalence in the UK Biobank study revealed important differences in LSH obtained from the different theoretical expressions that impact the conclusions made when comparing LSH across disease outcomes. This demonstrates the importance of careful consideration for estimation and prediction of low-prevalence disease outcomes and facilitates improved inference of the underlying genetic basis of =< 2% population prevalence diseases, especially where biobank sample ascertainment results in a healthier sample population.}, author = {Ojavee, Sven E. and Kutalik, Zoltan and Robinson, Matthew Richard}, issn = {0002-9297}, journal = {The American Journal of Human Genetics}, keywords = {Genetics (clinical), Genetics}, number = {11}, pages = {2009--2017}, publisher = {Elsevier}, title = {{Liability-scale heritability estimation for biobank studies of low-prevalence disease}}, doi = {10.1016/j.ajhg.2022.09.011}, volume = {109}, year = {2022}, } @article{12152, abstract = {ESCRT-III filaments are composite cytoskeletal polymers that can constrict and cut cell membranes from the inside of the membrane neck. Membrane-bound ESCRT-III filaments undergo a series of dramatic composition and geometry changes in the presence of an ATP-consuming Vps4 enzyme, which causes stepwise changes in the membrane morphology. We set out to understand the physical mechanisms involved in translating the changes in ESCRT-III polymer composition into membrane deformation. We have built a coarse-grained model in which ESCRT-III polymers of different geometries and mechanical properties are allowed to copolymerise and bind to a deformable membrane. By modelling ATP-driven stepwise depolymerisation of specific polymers, we identify mechanical regimes in which changes in filament composition trigger the associated membrane transition from a flat to a buckled state, and then to a tubule state that eventually undergoes scission to release a small cargo-loaded vesicle. We then characterise how the location and kinetics of polymer loss affects the extent of membrane deformation and the efficiency of membrane neck scission. Our results identify the near-minimal mechanical conditions for the operation of shape-shifting composite polymers that sever membrane necks.}, author = {Jiang, Xiuyun and Harker-Kirschneck, Lena and Vanhille-Campos, Christian Eduardo and Pfitzner, Anna-Katharina and Lominadze, Elene and Roux, Aurélien and Baum, Buzz and Šarić, Anđela}, issn = {1553-7358}, journal = {PLOS Computational Biology}, keywords = {Computational Theory and Mathematics, Cellular and Molecular Neuroscience, Genetics, Molecular Biology, Ecology, Modeling and Simulation, Ecology, Evolution, Behavior and Systematics}, number = {10}, publisher = {Public Library of Science}, title = {{Modelling membrane reshaping by staged polymerization of ESCRT-III filaments}}, doi = {10.1371/journal.pcbi.1010586}, volume = {18}, year = {2022}, } @article{12157, abstract = {Polygenic adaptation is thought to be ubiquitous, yet remains poorly understood. Here, we model this process analytically, in the plausible setting of a highly polygenic, quantitative trait that experiences a sudden shift in the fitness optimum. We show how the mean phenotype changes over time, depending on the effect sizes of loci that contribute to variance in the trait, and characterize the allele dynamics at these loci. Notably, we describe the two phases of the allele dynamics: The first is a rapid phase, in which directional selection introduces small frequency differences between alleles whose effects are aligned with or opposed to the shift, ultimately leading to small differences in their probability of fixation during a second, longer phase, governed by stabilizing selection. As we discuss, key results should hold in more general settings and have important implications for efforts to identify the genetic basis of adaptation in humans and other species.}, author = {Hayward, Laura and Sella, Guy}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Polygenic adaptation after a sudden change in environment}}, doi = {10.7554/elife.66697}, volume = {11}, year = {2022}, } @article{12166, abstract = {Kerstin Johannesson is a marine ecologist and evolutionary biologist based at the Tjärnö Marine Laboratory of the University of Gothenburg, which is situated in the beautiful Kosterhavet National Park on the Swedish west coast. Her work, using marine periwinkles (especially Littorina saxatilis and L. fabalis) as main model systems, has made a remarkable contribution to marine evolutionary biology and our understanding of local adaptation and its genetic underpinnings.}, author = {Westram, Anja M and Butlin, Roger}, issn = {1365-294X}, journal = {Molecular Ecology}, keywords = {Genetics, Ecology, Evolution, Behavior and Systematics}, number = {1}, pages = {26--29}, publisher = {Wiley}, title = {{Professor Kerstin Johannesson–winner of the 2022 Molecular Ecology Prize}}, doi = {10.1111/mec.16779}, volume = {32}, year = {2022}, } @article{12208, abstract = {The inadequate understanding of the mechanisms that reversibly convert molecular sulfur (S) into lithium sulfide (Li2S) via soluble polysulfides (PSs) formation impedes the development of high-performance lithium-sulfur (Li-S) batteries with non-aqueous electrolyte solutions. Here, we use operando small and wide angle X-ray scattering and operando small angle neutron scattering (SANS) measurements to track the nucleation, growth and dissolution of solid deposits from atomic to sub-micron scales during real-time Li-S cell operation. In particular, stochastic modelling based on the SANS data allows quantifying the nanoscale phase evolution during battery cycling. We show that next to nano-crystalline Li2S the deposit comprises solid short-chain PSs particles. The analysis of the experimental data suggests that initially, Li2S2 precipitates from the solution and then is partially converted via solid-state electroreduction to Li2S. We further demonstrate that mass transport, rather than electron transport through a thin passivating film, limits the discharge capacity and rate performance in Li-S cells.}, author = {Prehal, Christian and von Mentlen, Jean-Marc and Drvarič Talian, Sara and Vizintin, Alen and Dominko, Robert and Amenitsch, Heinz and Porcar, Lionel and Freunberger, Stefan Alexander and Wood, Vanessa}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary}, publisher = {Springer Nature}, title = {{On the nanoscale structural evolution of solid discharge products in lithium-sulfur batteries using operando scattering}}, doi = {10.1038/s41467-022-33931-4}, volume = {13}, year = {2022}, } @article{12217, abstract = {The development dynamics and self-organization of glandular branched epithelia is of utmost importance for our understanding of diverse processes ranging from normal tissue growth to the growth of cancerous tissues. Using single primary murine pancreatic ductal adenocarcinoma (PDAC) cells embedded in a collagen matrix and adapted media supplementation, we generate organoids that self-organize into highly branched structures displaying a seamless lumen connecting terminal end buds, replicating in vivo PDAC architecture. We identify distinct morphogenesis phases, each characterized by a unique pattern of cell invasion, matrix deformation, protein expression, and respective molecular dependencies. We propose a minimal theoretical model of a branching and proliferating tissue, capturing the dynamics of the first phases. Observing the interaction of morphogenesis, mechanical environment and gene expression in vitro sets a benchmark for the understanding of self-organization processes governing complex organoid structure formation processes and branching morphogenesis.}, author = {Randriamanantsoa, S. and Papargyriou, A. and Maurer, H. C. and Peschke, K. and Schuster, M. and Zecchin, G. and Steiger, K. and Öllinger, R. and Saur, D. and Scheel, C. and Rad, R. and Hannezo, Edouard B and Reichert, M. and Bausch, A. R.}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary}, publisher = {Springer Nature}, title = {{Spatiotemporal dynamics of self-organized branching in pancreas-derived organoids}}, doi = {10.1038/s41467-022-32806-y}, volume = {13}, year = {2022}, } @article{12224, abstract = {Muskelin (Mkln1) is implicated in neuronal function, regulating plasma membrane receptor trafficking. However, its influence on intrinsic brain activity and corresponding behavioral processes remains unclear. Here we show that murine Mkln1 knockout causes non-habituating locomotor activity, increased exploratory drive, and decreased locomotor response to amphetamine. Muskelin deficiency impairs social novelty detection while promoting the retention of spatial reference memory and fear extinction recall. This is strongly mirrored in either weaker or stronger resting-state functional connectivity between critical circuits mediating locomotor exploration and cognition. We show that Mkln1 deletion alters dendrite branching and spine structure, coinciding with enhanced AMPAR-mediated synaptic transmission but selective impairment in synaptic potentiation maintenance. We identify muskelin at excitatory synapses and highlight its role in regulating dendritic spine actin stability. Our findings point to aberrant spine actin modulation and changes in glutamatergic synaptic function as critical mechanisms that contribute to the neurobehavioral phenotype arising from Mkln1 ablation.}, author = {Muhia, Mary W and YuanXiang, PingAn and Sedlacik, Jan and Schwarz, Jürgen R. and Heisler, Frank F. and Gromova, Kira V. and Thies, Edda and Breiden, Petra and Pechmann, Yvonne and Kreutz, Michael R. and Kneussel, Matthias}, issn = {2399-3642}, journal = {Communications Biology}, keywords = {General Agricultural and Biological Sciences, General Biochemistry, Genetics and Molecular Biology, Medicine (miscellaneous)}, publisher = {Springer Nature}, title = {{Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes}}, doi = {10.1038/s42003-022-03446-1}, volume = {5}, year = {2022}, } @article{12234, abstract = {Hybrid speciation—the origin of new species resulting from the hybridization of genetically divergent lineages—was once considered rare, but genomic data suggest that it may occur more often than once thought. In this study, Noguerales and Ortego found genomic evidence supporting the hybrid origin of a grasshopper that is able to exploit a broader range of host plants than either of its putative parents.}, author = {Stankowski, Sean}, issn = {1558-5646}, journal = {Evolution}, keywords = {General Agricultural and Biological Sciences, Genetics, Ecology, Evolution, Behavior and Systematics}, number = {11}, pages = {2784--2785}, publisher = {Wiley}, title = {{Digest: On the origin of a possible hybrid species}}, doi = {10.1111/evo.14632}, volume = {76}, year = {2022}, } @article{12247, abstract = {Chromosomal inversions have been shown to play a major role in a local adaptation by suppressing recombination between alternative arrangements and maintaining beneficial allele combinations. However, so far, their importance relative to the remaining genome remains largely unknown. Understanding the genetic architecture of adaptation requires better estimates of how loci of different effect sizes contribute to phenotypic variation. Here, we used three Swedish islands where the marine snail Littorina saxatilis has repeatedly evolved into two distinct ecotypes along a habitat transition. We estimated the contribution of inversion polymorphisms to phenotypic divergence while controlling for polygenic effects in the remaining genome using a quantitative genetics framework. We confirmed the importance of inversions but showed that contributions of loci outside inversions are of similar magnitude, with variable proportions dependent on the trait and the population. Some inversions showed consistent effects across all sites, whereas others exhibited site-specific effects, indicating that the genomic basis for replicated phenotypic divergence is only partly shared. The contributions of sexual dimorphism as well as environmental factors to phenotypic variation were significant but minor compared to inversions and polygenic background. Overall, this integrated approach provides insight into the multiple mechanisms contributing to parallel phenotypic divergence.}, author = {Koch, Eva L. and Ravinet, Mark and Westram, Anja M and Johannesson, Kerstin and Butlin, Roger K.}, issn = {1558-5646}, journal = {Evolution}, keywords = {General Agricultural and Biological Sciences, Genetics, Ecology, Evolution, Behavior and Systematics}, number = {10}, pages = {2332--2346}, publisher = {Wiley}, title = {{Genetic architecture of repeated phenotypic divergence in Littorina saxatilis evolution}}, doi = {10.1111/evo.14602}, volume = {76}, year = {2022}, } @article{12238, abstract = {Upon the initiation of collective cell migration, the cells at the free edge are specified as leader cells; however, the mechanism underlying the leader cell specification remains elusive. Here, we show that lamellipodial extension after the release from mechanical confinement causes sustained extracellular signal-regulated kinase (ERK) activation and underlies the leader cell specification. Live-imaging of Madin-Darby canine kidney (MDCK) cells and mouse epidermis through the use of Förster resonance energy transfer (FRET)-based biosensors showed that leader cells exhibit sustained ERK activation in a hepatocyte growth factor (HGF)-dependent manner. Meanwhile, follower cells exhibit oscillatory ERK activation waves in an epidermal growth factor (EGF) signaling-dependent manner. Lamellipodial extension at the free edge increases the cellular sensitivity to HGF. The HGF-dependent ERK activation, in turn, promotes lamellipodial extension, thereby forming a positive feedback loop between cell extension and ERK activation and specifying the cells at the free edge as the leader cells. Our findings show that the integration of physical and biochemical cues underlies the leader cell specification during collective cell migration.}, author = {Hino, Naoya and Matsuda, Kimiya and Jikko, Yuya and Maryu, Gembu and Sakai, Katsuya and Imamura, Ryu and Tsukiji, Shinya and Aoki, Kazuhiro and Terai, Kenta and Hirashima, Tsuyoshi and Trepat, Xavier and Matsuda, Michiyuki}, issn = {1534-5807}, journal = {Developmental Cell}, keywords = {Developmental Biology, Cell Biology, General Biochemistry, Genetics and Molecular Biology, Molecular Biology}, number = {19}, pages = {2290--2304.e7}, publisher = {Elsevier}, title = {{A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration}}, doi = {10.1016/j.devcel.2022.09.003}, volume = {57}, year = {2022}, } @article{12261, abstract = {Dose–response relationships are a general concept for quantitatively describing biological systems across multiple scales, from the molecular to the whole-cell level. A clinically relevant example is the bacterial growth response to antibiotics, which is routinely characterized by dose–response curves. The shape of the dose–response curve varies drastically between antibiotics and plays a key role in treatment, drug interactions, and resistance evolution. However, the mechanisms shaping the dose–response curve remain largely unclear. Here, we show in Escherichia coli that the distinctively shallow dose–response curve of the antibiotic trimethoprim is caused by a negative growth-mediated feedback loop: Trimethoprim slows growth, which in turn weakens the effect of this antibiotic. At the molecular level, this feedback is caused by the upregulation of the drug target dihydrofolate reductase (FolA/DHFR). We show that this upregulation is not a specific response to trimethoprim but follows a universal trend line that depends primarily on the growth rate, irrespective of its cause. Rewiring the feedback loop alters the dose–response curve in a predictable manner, which we corroborate using a mathematical model of cellular resource allocation and growth. Our results indicate that growth-mediated feedback loops may shape drug responses more generally and could be exploited to design evolutionary traps that enable selection against drug resistance.}, author = {Angermayr, Andreas and Pang, Tin Yau and Chevereau, Guillaume and Mitosch, Karin and Lercher, Martin J and Bollenbach, Mark Tobias}, issn = {1744-4292}, journal = {Molecular Systems Biology}, keywords = {Applied Mathematics, Computational Theory and Mathematics, General Agricultural and Biological Sciences, General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, Information Systems}, number = {9}, publisher = {Embo Press}, title = {{Growth‐mediated negative feedback shapes quantitative antibiotic response}}, doi = {10.15252/msb.202110490}, volume = {18}, year = {2022}, } @article{12288, abstract = {To understand the function of neuronal circuits, it is crucial to disentangle the connectivity patterns within the network. However, most tools currently used to explore connectivity have low throughput, low selectivity, or limited accessibility. Here, we report the development of an improved packaging system for the production of the highly neurotropic RVdGenvA-CVS-N2c rabies viral vectors, yielding titers orders of magnitude higher with no background contamination, at a fraction of the production time, while preserving the efficiency of transsynaptic labeling. Along with the production pipeline, we developed suites of ‘starter’ AAV and bicistronic RVdG-CVS-N2c vectors, enabling retrograde labeling from a wide range of neuronal populations, tailored for diverse experimental requirements. We demonstrate the power and flexibility of the new system by uncovering hidden local and distal inhibitory connections in the mouse hippocampal formation and by imaging the functional properties of a cortical microcircuit across weeks. Our novel production pipeline provides a convenient approach to generate new rabies vectors, while our toolkit flexibly and efficiently expands the current capacity to label, manipulate and image the neuronal activity of interconnected neuronal circuits in vitro and in vivo.}, author = {Sumser, Anton L and Jösch, Maximilian A and Jonas, Peter M and Ben Simon, Yoav}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Fast, high-throughput production of improved rabies viral vectors for specific, efficient and versatile transsynaptic retrograde labeling}}, doi = {10.7554/elife.79848}, volume = {11}, year = {2022}, } @article{12280, abstract = {In repeated interactions, players can use strategies that respond to the outcome of previous rounds. Much of the existing literature on direct reciprocity assumes that all competing individuals use the same strategy space. Here, we study both learning and evolutionary dynamics of players that differ in the strategy space they explore. We focus on the infinitely repeated donation game and compare three natural strategy spaces: memory-1 strategies, which consider the last moves of both players, reactive strategies, which respond to the last move of the co-player, and unconditional strategies. These three strategy spaces differ in the memory capacity that is needed. We compute the long term average payoff that is achieved in a pairwise learning process. We find that smaller strategy spaces can dominate larger ones. For weak selection, unconditional players dominate both reactive and memory-1 players. For intermediate selection, reactive players dominate memory-1 players. Only for strong selection and low cost-to-benefit ratio, memory-1 players dominate the others. We observe that the supergame between strategy spaces can be a social dilemma: maximum payoff is achieved if both players explore a larger strategy space, but smaller strategy spaces dominate.}, author = {Schmid, Laura and Hilbe, Christian and Chatterjee, Krishnendu and Nowak, Martin}, issn = {1553-7358}, journal = {PLOS Computational Biology}, keywords = {Computational Theory and Mathematics, Cellular and Molecular Neuroscience, Genetics, Molecular Biology, Ecology, Modeling and Simulation, Ecology, Evolution, Behavior and Systematics}, number = {6}, publisher = {Public Library of Science}, title = {{Direct reciprocity between individuals that use different strategy spaces}}, doi = {10.1371/journal.pcbi.1010149}, volume = {18}, year = {2022}, } @article{12275, abstract = {N-glycans are molecularly diverse sugars borne by over 70% of proteins transiting the secretory pathway and have been implicated in protein folding, stability, and localization. Mutations in genes important for N-glycosylation result in congenital disorders of glycosylation that are often associated with intellectual disability. Here, we show that structurally distinct N-glycans regulate an extracellular protein complex involved in the patterning of somatosensory dendrites in Caenorhabditis elegans. Specifically, aman-2/Golgi alpha-mannosidase II, a conserved key enzyme in the biosynthesis of specific N-glycans, regulates the activity of the Menorin adhesion complex without obviously affecting the protein stability and localization of its components. AMAN-2 functions cell-autonomously to allow for decoration of the neuronal transmembrane receptor DMA-1/LRR-TM with the correct set of high-mannose/hybrid/paucimannose N-glycans. Moreover, distinct types of N-glycans on specific N-glycosylation sites regulate DMA-1/LRR-TM receptor function, which, together with three other extracellular proteins, forms the Menorin adhesion complex. In summary, specific N-glycan structures regulate dendrite patterning by coordinating the activity of an extracellular adhesion complex, suggesting that the molecular diversity of N-glycans can contribute to developmental specificity in the nervous system.}, author = {Rahman, Maisha and Ramirez, Nelson and Diaz‐Balzac, Carlos A and Bülow, Hannes E}, issn = {1469-3178}, journal = {EMBO Reports}, keywords = {Genetics, Molecular Biology, Biochemistry}, number = {7}, publisher = {Embo Press}, title = {{Specific N-glycans regulate an extracellular adhesion complex during somatosensory dendrite patterning}}, doi = {10.15252/embr.202154163}, volume = {23}, year = {2022}, } @article{12120, abstract = {Plant root architecture flexibly adapts to changing nitrate (NO3−) availability in the soil; however, the underlying molecular mechanism of this adaptive development remains under-studied. To explore the regulation of NO3−-mediated root growth, we screened for low-nitrate-resistant mutant (lonr) and identified mutants that were defective in the NAC transcription factor NAC075 (lonr1) as being less sensitive to low NO3− in terms of primary root growth. We show that NAC075 is a mobile transcription factor relocating from the root stele tissues to the endodermis based on NO3− availability. Under low-NO3− availability, the kinase CBL-interacting protein kinase 1 (CIPK1) is activated, and it phosphorylates NAC075, restricting its movement from the stele, which leads to the transcriptional regulation of downstream target WRKY53, consequently leading to adapted root architecture. Our work thus identifies an adaptive mechanism involving translocation of transcription factor based on nutrient availability and leading to cell-specific reprogramming of plant root growth.}, author = {Xiao, Huixin and Hu, Yumei and Wang, Yaping and Cheng, Jinkui and Wang, Jinyi and Chen, Guojingwei and Li, Qian and Wang, Shuwei and Wang, Yalu and Wang, Shao-Shuai and Wang, Yi and Xuan, Wei and Li, Zhen and Guo, Yan and Gong, Zhizhong and Friml, Jiří and Zhang, Jing}, issn = {1534-5807}, journal = {Developmental Cell}, keywords = {Developmental Biology, Cell Biology, General Biochemistry, Genetics and Molecular Biology, Molecular Biology}, number = {23}, pages = {2638--2651.e6}, publisher = {Elsevier}, title = {{Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth}}, doi = {10.1016/j.devcel.2022.11.006}, volume = {57}, year = {2022}, } @article{12117, abstract = {To understand how potential gene manipulations affect in vitro microglia, we provide a set of short protocols to evaluate microglia identity and function. We detail steps for immunostaining to determine microglia identity. We describe three functional assays for microglia: phagocytosis, calcium response following ATP stimulation, and cytokine expression upon inflammatory stimuli. We apply these protocols to human induced-pluripotent-stem-cell (hiPSC)-derived microglia, but they can be also applied to other in vitro microglial models including primary mouse microglia. For complete details on the use and execution of this protocol, please refer to Bartalska et al. (2022).1}, author = {Hübschmann, Verena and Korkut, Medina and Siegert, Sandra}, issn = {2666-1667}, journal = {STAR Protocols}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Neuroscience}, number = {4}, publisher = {Elsevier}, title = {{Assessing human iPSC-derived microglia identity and function by immunostaining, phagocytosis, calcium activity, and inflammation assay}}, doi = {10.1016/j.xpro.2022.101866}, volume = {3}, year = {2022}, } @article{10787, abstract = {A species distributed across diverse environments may adapt to local conditions. We ask how quickly such a species changes its range in response to changed conditions. Szép et al. (Szép E, Sachdeva H, Barton NH. 2021 Polygenic local adaptation in metapopulations: a stochastic eco-evolutionary model. Evolution75, 1030–1045 (doi:10.1111/evo.14210)) used the infinite island model to find the stationary distribution of allele frequencies and deme sizes. We extend this to find how a metapopulation responds to changes in carrying capacity, selection strength, or migration rate when deme sizes are fixed. We further develop a ‘fixed-state’ approximation. Under this approximation, polymorphism is only possible for a narrow range of habitat proportions when selection is weak compared to drift, but for a much wider range otherwise. When rates of selection or migration relative to drift change in a single deme of the metapopulation, the population takes a time of order m−1 to reach the new equilibrium. However, even with many loci, there can be substantial fluctuations in net adaptation, because at each locus, alleles randomly get lost or fixed. Thus, in a finite metapopulation, variation may gradually be lost by chance, even if it would persist in an infinite metapopulation. When conditions change across the whole metapopulation, there can be rapid change, which is predicted well by the fixed-state approximation. This work helps towards an understanding of how metapopulations extend their range across diverse environments. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (Part II)’.}, author = {Barton, Nicholas H and Olusanya, Oluwafunmilola O}, issn = {1471-2970}, journal = {Philosophical Transactions of the Royal Society B: Biological Sciences}, keywords = {General Agricultural and Biological Sciences, General Biochemistry, Genetics and Molecular Biology}, number = {1848}, publisher = {The Royal Society}, title = {{The response of a metapopulation to a changing environment}}, doi = {10.1098/rstb.2021.0009}, volume = {377}, year = {2022}, } @article{11373, abstract = {The actin-homologue FtsA is essential for E. coli cell division, as it links FtsZ filaments in the Z-ring to transmembrane proteins. FtsA is thought to initiate cell constriction by switching from an inactive polymeric to an active monomeric conformation, which recruits downstream proteins and stabilizes the Z-ring. However, direct biochemical evidence for this mechanism is missing. Here, we use reconstitution experiments and quantitative fluorescence microscopy to study divisome activation in vitro. By comparing wild-type FtsA with FtsA R286W, we find that this hyperactive mutant outperforms FtsA WT in replicating FtsZ treadmilling dynamics, FtsZ filament stabilization and recruitment of FtsN. We could attribute these differences to a faster exchange and denser packing of FtsA R286W below FtsZ filaments. Using FRET microscopy, we also find that FtsN binding promotes FtsA self-interaction. We propose that in the active divisome FtsA and FtsN exist as a dynamic copolymer that follows treadmilling filaments of FtsZ.}, author = {Radler, Philipp and Baranova, Natalia S. and Dos Santos Caldas, Paulo R and Sommer, Christoph M and Lopez Pelegrin, Maria D and Michalik, David and Loose, Martin}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry}, publisher = {Springer Nature}, title = {{In vitro reconstitution of Escherichia coli divisome activation}}, doi = {10.1038/s41467-022-30301-y}, volume = {13}, year = {2022}, } @article{11160, abstract = {Mutations in the chromodomain helicase DNA-binding 8 (CHD8) gene are a frequent cause of autism spectrum disorder (ASD). While its phenotypic spectrum often encompasses macrocephaly, implicating cortical abnormalities, how CHD8 haploinsufficiency affects neurodevelopmental is unclear. Here, employing human cerebral organoids, we find that CHD8 haploinsufficiency disrupted neurodevelopmental trajectories with an accelerated and delayed generation of, respectively, inhibitory and excitatory neurons that yields, at days 60 and 120, symmetrically opposite expansions in their proportions. This imbalance is consistent with an enlargement of cerebral organoids as an in vitro correlate of patients’ macrocephaly. Through an isogenic design of patient-specific mutations and mosaic organoids, we define genotype-phenotype relationships and uncover their cell-autonomous nature. Our results define cell-type-specific CHD8-dependent molecular defects related to an abnormal program of proliferation and alternative splicing. By identifying cell-type-specific effects of CHD8 mutations, our study uncovers reproducible developmental alterations that may be employed for neurodevelopmental disease modeling.}, author = {Villa, Carlo Emanuele and Cheroni, Cristina and Dotter, Christoph and López-Tóbon, Alejandro and Oliveira, Bárbara and Sacco, Roberto and Yahya, Aysan Çerağ and Morandell, Jasmin and Gabriele, Michele and Tavakoli, Mojtaba and Lyudchik, Julia and Sommer, Christoph M and Gabitto, Mariano and Danzl, Johann G and Testa, Giuseppe and Novarino, Gaia}, issn = {2211-1247}, journal = {Cell Reports}, keywords = {General Biochemistry, Genetics and Molecular Biology}, number = {1}, publisher = {Elsevier}, title = {{CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories}}, doi = {10.1016/j.celrep.2022.110615}, volume = {39}, year = {2022}, } @article{12248, abstract = {Eurasian brine shrimp (genus Artemia) have closely related sexual and asexual lineages of parthenogenetic females, which produce rare males at low frequencies. Although they are known to have ZW chromosomes, these are not well characterized, and it is unclear whether they are shared across the clade. Furthermore, the underlying genetic architecture of the transmission of asexuality, which can occur when rare males mate with closely related sexual females, is not well understood. We produced a chromosome-level assembly for the sexual Eurasian species Artemia sinica and characterized in detail the pair of sex chromosomes of this species. We combined this new assembly with short-read genomic data for the sexual species Artemia sp. Kazakhstan and several asexual lineages of Artemia parthenogenetica, allowing us to perform an in-depth characterization of sex-chromosome evolution across the genus. We identified a small differentiated region of the ZW pair that is shared by all sexual and asexual lineages, supporting the shared ancestry of the sex chromosomes. We also inferred that recombination suppression has spread to larger sections of the chromosome independently in the American and Eurasian lineages. Finally, we took advantage of a rare male, which we backcrossed to sexual females, to explore the genetic basis of asexuality. Our results suggest that parthenogenesis is likely partly controlled by a locus on the Z chromosome, highlighting the interplay between sex determination and asexuality.}, author = {Elkrewi, Marwan N and Khauratovich, Uladzislava and Toups, Melissa A and Bett, Vincent K and Mrnjavac, Andrea and Macon, Ariana and Fraisse, Christelle and Sax, Luca and Huylmans, Ann K and Hontoria, Francisco and Vicoso, Beatriz}, issn = {1943-2631}, journal = {Genetics}, keywords = {Genetics}, number = {2}, publisher = {Oxford University Press}, title = {{ZW sex-chromosome evolution and contagious parthenogenesis in Artemia brine shrimp}}, doi = {10.1093/genetics/iyac123}, volume = {222}, year = {2022}, } @article{11052, abstract = {In order to combat molecular damage, most cellular proteins undergo rapid turnover. We have previously identified large nuclear protein assemblies that can persist for years in post-mitotic tissues and are subject to age-related decline. Here, we report that mitochondria can be long lived in the mouse brain and reveal that specific mitochondrial proteins have half-lives longer than the average proteome. These mitochondrial long-lived proteins (mitoLLPs) are core components of the electron transport chain (ETC) and display increased longevity in respiratory supercomplexes. We find that COX7C, a mitoLLP that forms a stable contact site between complexes I and IV, is required for complex IV and supercomplex assembly. Remarkably, even upon depletion of COX7C transcripts, ETC function is maintained for days, effectively uncoupling mitochondrial function from ongoing transcription of its mitoLLPs. Our results suggest that modulating protein longevity within the ETC is critical for mitochondrial proteome maintenance and the robustness of mitochondrial function.}, author = {Krishna, Shefali and Arrojo e Drigo, Rafael and Capitanio, Juliana S. and Ramachandra, Ranjan and Ellisman, Mark and HETZER, Martin W}, issn = {1534-5807}, journal = {Developmental Cell}, keywords = {Developmental Biology, Cell Biology, General Biochemistry, Genetics and Molecular Biology, Molecular Biology}, number = {21}, pages = {P2952--2965.e9}, publisher = {Elsevier}, title = {{Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain}}, doi = {10.1016/j.devcel.2021.10.008}, volume = {56}, year = {2021}, } @article{12585, abstract = {Glaciers in High Mountain Asia generate meltwater that supports the water needs of 250 million people, but current knowledge of annual accumulation and ablation is limited to sparse field measurements biased in location and glacier size. Here, we present altitudinally-resolved specific mass balances (surface, internal, and basal combined) for 5527 glaciers in High Mountain Asia for 2000–2016, derived by correcting observed glacier thinning patterns for mass redistribution due to ice flow. We find that 41% of glaciers accumulated mass over less than 20% of their area, and only 60% ± 10% of regional annual ablation was compensated by accumulation. Even without 21st century warming, 21% ± 1% of ice volume will be lost by 2100 due to current climatic-geometric imbalance, representing a reduction in glacier ablation into rivers of 28% ± 1%. The ablation of glaciers in the Himalayas and Tien Shan was mostly unsustainable and ice volume in these regions will reduce by at least 30% by 2100. The most important and vulnerable glacier-fed river basins (Amu Darya, Indus, Syr Darya, Tarim Interior) were supplied with >50% sustainable glacier ablation but will see long-term reductions in ice mass and glacier meltwater supply regardless of the Karakoram Anomaly.}, author = {Miles, Evan and McCarthy, Michael and Dehecq, Amaury and Kneib, Marin and Fugger, Stefan and Pellicciotti, Francesca}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary}, publisher = {Springer Nature}, title = {{Health and sustainability of glaciers in High Mountain Asia}}, doi = {10.1038/s41467-021-23073-4}, volume = {12}, year = {2021}, } @article{13356, abstract = {Self-assembly of nanoparticles can be mediated by polymers, but has so far led almost exclusively to nanoparticle aggregates that are amorphous. Here, we employed Coulombic interactions to generate a range of composite materials from mixtures of charged nanoparticles and oppositely charged polymers. The assembly behavior of these nanoparticle/polymer composites depends on their order of addition: polymers added to nanoparticles give rise to stable aggregates, but nanoparticles added to polymers disassemble the initially formed aggregates. The amorphous aggregates were transformed into crystalline ones by transiently increasing the ionic strength of the solution. The morphology of the resulting crystals depended on the length of the polymer: short polymer chains mediated the self-assembly of nanoparticles into strongly faceted crystals, whereas long chains led to pseudospherical nanoparticle/polymer assemblies, within which the crystalline order of nanoparticles was retained.}, author = {Bian, Tong and Klajn, Rafal}, issn = {1749-6632}, journal = {Annals of the New York Academy of Sciences}, keywords = {History and Philosophy of Science, General Biochemistry, Genetics and Molecular Biology, General Neuroscience}, number = {1}, pages = {191--201}, publisher = {Wiley}, title = {{Morphology control in crystalline nanoparticle–polymer aggregates}}, doi = {10.1111/nyas.14674}, volume = {1505}, year = {2021}, } @article{9387, abstract = {We report the complete analysis of a deterministic model of deleterious mutations and negative selection against them at two haploid loci without recombination. As long as mutation is a weaker force than selection, mutant alleles remain rare at the only stable equilibrium, and otherwise, a variety of dynamics are possible. If the mutation-free genotype is absent, generally the only stable equilibrium is the one that corresponds to fixation of the mutant allele at the locus where it is less deleterious. This result suggests that fixation of a deleterious allele that follows a click of the Muller’s ratchet is governed by natural selection, instead of random drift.}, author = {Khudiakova, Kseniia and Neretina, Tatiana Yu. and Kondrashov, Alexey S.}, issn = {0022-5193}, journal = {Journal of Theoretical Biology}, keywords = {General Biochemistry, Genetics and Molecular Biology, Modelling and Simulation, Statistics and Probability, General Immunology and Microbiology, Applied Mathematics, General Agricultural and Biological Sciences, General Medicine}, publisher = {Elsevier }, title = {{Two linked loci under mutation-selection balance and Muller’s ratchet}}, doi = {10.1016/j.jtbi.2021.110729}, volume = {524}, year = {2021}, } @article{9431, abstract = {Inositol hexakisphosphate (IP6) is an assembly cofactor for HIV-1. We report here that IP6 is also used for assembly of Rous sarcoma virus (RSV), a retrovirus from a different genus. IP6 is ~100-fold more potent at promoting RSV mature capsid protein (CA) assembly than observed for HIV-1 and removal of IP6 in cells reduces infectivity by 100-fold. Here, visualized by cryo-electron tomography and subtomogram averaging, mature capsid-like particles show an IP6-like density in the CA hexamer, coordinated by rings of six lysines and six arginines. Phosphate and IP6 have opposing effects on CA in vitro assembly, inducing formation of T = 1 icosahedrons and tubes, respectively, implying that phosphate promotes pentamer and IP6 hexamer formation. Subtomogram averaging and classification optimized for analysis of pleomorphic retrovirus particles reveal that the heterogeneity of mature RSV CA polyhedrons results from an unexpected, intrinsic CA hexamer flexibility. In contrast, the CA pentamer forms rigid units organizing the local architecture. These different features of hexamers and pentamers determine the structural mechanism to form CA polyhedrons of variable shape in mature RSV particles.}, author = {Obr, Martin and Ricana, Clifton L. and Nikulin, Nadia and Feathers, Jon-Philip R. and Klanschnig, Marco and Thader, Andreas and Johnson, Marc C. and Vogt, Volker M. and Schur, Florian KM and Dick, Robert A.}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, number = {1}, publisher = {Nature Research}, title = {{Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer}}, doi = {10.1038/s41467-021-23506-0}, volume = {12}, year = {2021}, } @article{9540, abstract = {The hexameric AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis and initiates cytoplasmic maturation of the large ribosomal subunit by releasing the shuttling maturation factor Rlp24. Drg1 monomers contain two AAA-domains (D1 and D2) that act in a concerted manner. Rlp24 release is inhibited by the drug diazaborine which blocks ATP hydrolysis in D2. The mode of inhibition was unknown. Here we show the first cryo-EM structure of Drg1 revealing the inhibitory mechanism. Diazaborine forms a covalent bond to the 2′-OH of the nucleotide in D2, explaining its specificity for this site. As a consequence, the D2 domain is locked in a rigid, inactive state, stalling the whole Drg1 hexamer. Resistance mechanisms identified include abolished drug binding and altered positioning of the nucleotide. Our results suggest nucleotide-modifying compounds as potential novel inhibitors for AAA-ATPases.}, author = {Prattes, Michael and Grishkovskaya, Irina and Hodirnau, Victor-Valentin and Rössler, Ingrid and Klein, Isabella and Hetzmannseder, Christina and Zisser, Gertrude and Gruber, Christian C. and Gruber, Karl and Haselbach, David and Bergler, Helmut}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, number = {1}, publisher = {Springer Nature}, title = {{Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine}}, doi = {10.1038/s41467-021-23854-x}, volume = {12}, year = {2021}, } @article{9778, abstract = {The hippocampal mossy fiber synapse is a key synapse of the trisynaptic circuit. Post-tetanic potentiation (PTP) is the most powerful form of plasticity at this synaptic connection. It is widely believed that mossy fiber PTP is an entirely presynaptic phenomenon, implying that PTP induction is input-specific, and requires neither activity of multiple inputs nor stimulation of postsynaptic neurons. To directly test cooperativity and associativity, we made paired recordings between single mossy fiber terminals and postsynaptic CA3 pyramidal neurons in rat brain slices. By stimulating non-overlapping mossy fiber inputs converging onto single CA3 neurons, we confirm that PTP is input-specific and non-cooperative. Unexpectedly, mossy fiber PTP exhibits anti-associative induction properties. EPSCs show only minimal PTP after combined pre- and postsynaptic high-frequency stimulation with intact postsynaptic Ca2+ signaling, but marked PTP in the absence of postsynaptic spiking and after suppression of postsynaptic Ca2+ signaling (10 mM EGTA). PTP is largely recovered by inhibitors of voltage-gated R- and L-type Ca2+ channels, group II mGluRs, and vacuolar-type H+-ATPase, suggesting the involvement of retrograde vesicular glutamate signaling. Transsynaptic regulation of PTP extends the repertoire of synaptic computations, implementing a brake on mossy fiber detonation and a “smart teacher” function of hippocampal mossy fiber synapses.}, author = {Vandael, David H and Okamoto, Yuji and Jonas, Peter M}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {general physics and astronomy, general biochemistry, genetics and molecular biology, general chemistry}, number = {1}, publisher = {Springer}, title = {{Transsynaptic modulation of presynaptic short-term plasticity in hippocampal mossy fiber synapses}}, doi = {10.1038/s41467-021-23153-5}, volume = {12}, year = {2021}, } @article{10163, abstract = {The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay.}, author = {Appel, Lisa-Marie and Franke, Vedran and Bruno, Melania and Grishkovskaya, Irina and Kasiliauskaite, Aiste and Kaufmann, Tanja and Schoeberl, Ursula E. and Puchinger, Martin G. and Kostrhon, Sebastian and Ebenwaldner, Carmen and Sebesta, Marek and Beltzung, Etienne and Mechtler, Karl and Lin, Gen and Vlasova, Anna and Leeb, Martin and Pavri, Rushad and Stark, Alexander and Akalin, Altuna and Stefl, Richard and Bernecky, Carrie A and Djinovic-Carugo, Kristina and Slade, Dea}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {general physics and astronomy, general biochemistry, genetics and molecular biology, general chemistry}, number = {1}, publisher = {Springer Nature}, title = {{PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC}}, doi = {10.1038/s41467-021-26360-2}, volume = {12}, year = {2021}, } @article{10301, abstract = {De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement.}, author = {Conde-Dusman, María J and Dey, Partha N and Elía-Zudaire, Óscar and Garcia Rabaneda, Luis E and García-Lira, Carmen and Grand, Teddy and Briz, Victor and Velasco, Eric R and Andero Galí, Raül and Niñerola, Sergio and Barco, Angel and Paoletti, Pierre and Wesseling, John F and Gardoni, Fabrizio and Tavalin, Steven J and Perez-Otaño, Isabel}, issn = {2050-084X}, journal = {eLife}, keywords = {general immunology and microbiology, general biochemistry, genetics and molecular biology, general medicine, general neuroscience}, publisher = {eLife Sciences Publications}, title = {{Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly}}, doi = {10.7554/elife.71575}, volume = {10}, year = {2021}, } @article{10310, abstract = {A high-resolution structure of trimeric cyanobacterial Photosystem I (PSI) from Thermosynechococcus elongatus was reported as the first atomic model of PSI almost 20 years ago. However, the monomeric PSI structure has not yet been reported despite long-standing interest in its structure and extensive spectroscopic characterization of the loss of red chlorophylls upon monomerization. Here, we describe the structure of monomeric PSI from Thermosynechococcus elongatus BP-1. Comparison with the trimer structure gave detailed insights into monomerization-induced changes in both the central trimerization domain and the peripheral regions of the complex. Monomerization-induced loss of red chlorophylls is assigned to a cluster of chlorophylls adjacent to PsaX. Based on our findings, we propose a role of PsaX in the stabilization of red chlorophylls and that lipids of the surrounding membrane present a major source of thermal energy for uphill excitation energy transfer from red chlorophylls to P700.}, author = {Çoruh, Mehmet Orkun and Frank, Anna and Tanaka, Hideaki and Kawamoto, Akihiro and El-Mohsnawy, Eithar and Kato, Takayuki and Namba, Keiichi and Gerle, Christoph and Nowaczyk, Marc M. and Kurisu, Genji}, issn = {2399-3642}, journal = {Communications Biology}, keywords = {general agricultural and biological Sciences, general biochemistry, genetics and molecular biology, medicine (miscellaneous)}, number = {1}, publisher = {Springer }, title = {{Cryo-EM structure of a functional monomeric Photosystem I from Thermosynechococcus elongatus reveals red chlorophyll cluster}}, doi = {10.1038/s42003-021-01808-9}, volume = {4}, year = {2021}, } @article{10406, abstract = {Multicellular organisms develop complex shapes from much simpler, single-celled zygotes through a process commonly called morphogenesis. Morphogenesis involves an interplay between several factors, ranging from the gene regulatory networks determining cell fate and differentiation to the mechanical processes underlying cell and tissue shape changes. Thus, the study of morphogenesis has historically been based on multidisciplinary approaches at the interface of biology with physics and mathematics. Recent technological advances have further improved our ability to study morphogenesis by bridging the gap between the genetic and biophysical factors through the development of new tools for visualizing, analyzing, and perturbing these factors and their biochemical intermediaries. Here, we review how a combination of genetic, microscopic, biophysical, and biochemical approaches has aided our attempts to understand morphogenesis and discuss potential approaches that may be beneficial to such an inquiry in the future.}, author = {Mishra, Nikhil and Heisenberg, Carl-Philipp J}, issn = {1545-2948}, journal = {Annual Review of Genetics}, keywords = {morphogenesis, forward genetics, high-resolution microscopy, biophysics, biochemistry, patterning}, pages = {209--233}, publisher = {Annual Reviews}, title = {{Dissecting organismal morphogenesis by bridging genetics and biophysics}}, doi = {10.1146/annurev-genet-071819-103748}, volume = {55}, year = {2021}, } @article{10533, abstract = {Flowering plants utilize small RNA molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically associated with small RNA biogenesis, and without H1 small RNA production quantitatively expands to non-CG methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the small RNA-generating branch of RdDM from non-CG methylated heterochromatin.}, author = {Choi, Jaemyung and Lyons, David B and Zilberman, Daniel}, issn = {2050-084X}, journal = {eLife}, keywords = {genetics and molecular biology}, publisher = {eLife Sciences Publications}, title = {{Histone H1 prevents non-CG methylation-mediated small RNA biogenesis in Arabidopsis heterochromatin}}, doi = {10.7554/elife.72676}, volume = {10}, year = {2021}, } @article{10834, abstract = {Hematopoietic-specific protein 1 (Hem1) is an essential subunit of the WAVE regulatory complex (WRC) in immune cells. WRC is crucial for Arp2/3 complex activation and the protrusion of branched actin filament networks. Moreover, Hem1 loss of function in immune cells causes autoimmune diseases in humans. Here, we show that genetic removal of Hem1 in macrophages diminishes frequency and efficacy of phagocytosis as well as phagocytic cup formation in addition to defects in lamellipodial protrusion and migration. Moreover, Hem1-null macrophages displayed strong defects in cell adhesion despite unaltered podosome formation and concomitant extracellular matrix degradation. Specifically, dynamics of both adhesion and de-adhesion as well as concomitant phosphorylation of paxillin and focal adhesion kinase (FAK) were significantly compromised. Accordingly, disruption of WRC function in non-hematopoietic cells coincided with both defects in adhesion turnover and altered FAK and paxillin phosphorylation. Consistently, platelets exhibited reduced adhesion and diminished integrin αIIbβ3 activation upon WRC removal. Interestingly, adhesion phenotypes, but not lamellipodia formation, were partially rescued by small molecule activation of FAK. A full rescue of the phenotype, including lamellipodia formation, required not only the presence of WRCs but also their binding to and activation by Rac. Collectively, our results uncover that WRC impacts on integrin-dependent processes in a FAK-dependent manner, controlling formation and dismantling of adhesions, relevant for properly grabbing onto extracellular surfaces and particles during cell edge expansion, like in migration or phagocytosis.}, author = {Stahnke, Stephanie and Döring, Hermann and Kusch, Charly and de Gorter, David J.J. and Dütting, Sebastian and Guledani, Aleks and Pleines, Irina and Schnoor, Michael and Sixt, Michael K and Geffers, Robert and Rohde, Manfred and Müsken, Mathias and Kage, Frieda and Steffen, Anika and Faix, Jan and Nieswandt, Bernhard and Rottner, Klemens and Stradal, Theresia E.B.}, issn = {0960-9822}, journal = {Current Biology}, keywords = {General Agricultural and Biological Sciences, General Biochemistry, Genetics and Molecular Biology}, number = {10}, pages = {2051--2064.e8}, publisher = {Elsevier}, title = {{Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion}}, doi = {10.1016/j.cub.2021.02.043}, volume = {31}, year = {2021}, } @article{9252, abstract = {This paper analyses the conditions for local adaptation in a metapopulation with infinitely many islands under a model of hard selection, where population size depends on local fitness. Each island belongs to one of two distinct ecological niches or habitats. Fitness is influenced by an additive trait which is under habitat‐dependent directional selection. Our analysis is based on the diffusion approximation and accounts for both genetic drift and demographic stochasticity. By neglecting linkage disequilibria, it yields the joint distribution of allele frequencies and population size on each island. We find that under hard selection, the conditions for local adaptation in a rare habitat are more restrictive for more polygenic traits: even moderate migration load per locus at very many loci is sufficient for population sizes to decline. This further reduces the efficacy of selection at individual loci due to increased drift and because smaller populations are more prone to swamping due to migration, causing a positive feedback between increasing maladaptation and declining population sizes. Our analysis also highlights the importance of demographic stochasticity, which exacerbates the decline in numbers of maladapted populations, leading to population collapse in the rare habitat at significantly lower migration than predicted by deterministic arguments.}, author = {Szep, Eniko and Sachdeva, Himani and Barton, Nicholas H}, issn = {1558-5646}, journal = {Evolution}, keywords = {Genetics, Ecology, Evolution, Behavior and Systematics, General Agricultural and Biological Sciences}, number = {5}, pages = {1030--1045}, publisher = {Wiley}, title = {{Polygenic local adaptation in metapopulations: A stochastic eco‐evolutionary model}}, doi = {10.1111/evo.14210}, volume = {75}, year = {2021}, } @article{9374, abstract = {If there are no constraints on the process of speciation, then the number of species might be expected to match the number of available niches and this number might be indefinitely large. One possible constraint is the opportunity for allopatric divergence. In 1981, Felsenstein used a simple and elegant model to ask if there might also be genetic constraints. He showed that progress towards speciation could be described by the build‐up of linkage disequilibrium among divergently selected loci and between these loci and those contributing to other forms of reproductive isolation. Therefore, speciation is opposed by recombination, because it tends to break down linkage disequilibria. Felsenstein then introduced a crucial distinction between “two‐allele” models, which are subject to this effect, and “one‐allele” models, which are free from the recombination constraint. These fundamentally important insights have been the foundation for both empirical and theoretical studies of speciation ever since.}, author = {Butlin, Roger K. and Servedio, Maria R. and Smadja, Carole M. and Bank, Claudia and Barton, Nicholas H and Flaxman, Samuel M. and Giraud, Tatiana and Hopkins, Robin and Larson, Erica L. and Maan, Martine E. and Meier, Joana and Merrill, Richard and Noor, Mohamed A. F. and Ortiz‐Barrientos, Daniel and Qvarnström, Anna}, issn = {1558-5646}, journal = {Evolution}, keywords = {Genetics, Ecology, Evolution, Behavior and Systematics, General Agricultural and Biological Sciences}, number = {5}, pages = {978--988}, publisher = {Wiley}, title = {{Homage to Felsenstein 1981, or why are there so few/many species?}}, doi = {10.1111/evo.14235}, volume = {75}, year = {2021}, } @article{10838, abstract = {Combining hybrid zone analysis with genomic data is a promising approach to understanding the genomic basis of adaptive divergence. It allows for the identification of genomic regions underlying barriers to gene flow. It also provides insights into spatial patterns of allele frequency change, informing about the interplay between environmental factors, dispersal and selection. However, when only a single hybrid zone is analysed, it is difficult to separate patterns generated by selection from those resulting from chance. Therefore, it is beneficial to look for repeatable patterns across replicate hybrid zones in the same system. We applied this approach to the marine snail Littorina saxatilis, which contains two ecotypes, adapted to wave-exposed rocks vs. high-predation boulder fields. The existence of numerous hybrid zones between ecotypes offered the opportunity to test for the repeatability of genomic architectures and spatial patterns of divergence. We sampled and phenotyped snails from seven replicate hybrid zones on the Swedish west coast and genotyped them for thousands of single nucleotide polymorphisms. Shell shape and size showed parallel clines across all zones. Many genomic regions showing steep clines and/or high differentiation were shared among hybrid zones, consistent with a common evolutionary history and extensive gene flow between zones, and supporting the importance of these regions for divergence. In particular, we found that several large putative inversions contribute to divergence in all locations. Additionally, we found evidence for consistent displacement of clines from the boulder–rock transition. Our results demonstrate patterns of spatial variation that would not be accessible without continuous spatial sampling, a large genomic data set and replicate hybrid zones.}, author = {Westram, Anja M and Faria, Rui and Johannesson, Kerstin and Butlin, Roger}, issn = {1365-294X}, journal = {Molecular Ecology}, keywords = {Genetics, Ecology, Evolution, Behavior and Systematics}, number = {15}, pages = {3797--3814}, publisher = {Wiley}, title = {{Using replicate hybrid zones to understand the genomic basis of adaptive divergence}}, doi = {10.1111/mec.15861}, volume = {30}, year = {2021}, } @article{8997, abstract = {Phenomenological relations such as Ohm’s or Fourier’s law have a venerable history in physics but are still scarce in biology. This situation restrains predictive theory. Here, we build on bacterial “growth laws,” which capture physiological feedback between translation and cell growth, to construct a minimal biophysical model for the combined action of ribosome-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy solely from responses to individual drugs. We provide analytical results for limiting cases, which agree well with numerical results. We systematically refine the model by including direct physical interactions of different antibiotics on the ribosome. In a limiting case, our model provides a mechanistic underpinning for recent predictions of higher-order interactions that were derived using entropy maximization. We further refine the model to include the effects of antibiotics that mimic starvation and the presence of resistance genes. We describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and verify it experimentally. Our extended model suggests a change in the type of drug interaction that depends on the strength of resistance, which challenges established rescaling paradigms. We experimentally show that the presence of unregulated resistance genes can lead to altered drug interaction, which agrees with the prediction of the model. While minimal, the model is readily adaptable and opens the door to predicting interactions of second and higher-order in a broad range of biological systems.}, author = {Kavcic, Bor and Tkačik, Gašper and Bollenbach, Tobias}, issn = {1553-7358}, journal = {PLOS Computational Biology}, keywords = {Modelling and Simulation, Genetics, Molecular Biology, Antibiotics, Drug interactions}, publisher = {Public Library of Science}, title = {{Minimal biophysical model of combined antibiotic action}}, doi = {10.1371/journal.pcbi.1008529}, volume = {17}, year = {2021}, } @article{9283, abstract = {Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks (GRNs) remains a major challenge. Here, we use a well-defined synthetic GRN to study in Escherichia coli how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one GRN with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Transcriptional read-through is the main molecular mechanism that places one transcriptional unit (TU) within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual TUs, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of GRNs.}, author = {Nagy-Staron, Anna A and Tomasek, Kathrin and Caruso Carter, Caroline and Sonnleitner, Elisabeth and Kavcic, Bor and Paixão, Tiago and Guet, Calin C}, issn = {2050-084X}, journal = {eLife}, keywords = {Genetics and Molecular Biology}, publisher = {eLife Sciences Publications}, title = {{Local genetic context shapes the function of a gene regulatory network}}, doi = {10.7554/elife.65993}, volume = {10}, year = {2021}, } @article{15151, abstract = {Eukaryotic DNA-binding proteins operate in the context of chromatin, where nucleosomes are the elementary building blocks. Nucleosomal DNA is wrapped around a histone core, thereby rendering a large fraction of the DNA surface inaccessible to DNA-binding proteins. Nevertheless, first responders in DNA repair and sequence-specific transcription factors bind DNA target sites obstructed by chromatin. While early studies examined protein binding to histone-free DNA, it is only now beginning to emerge how DNA sequences are interrogated on nucleosomes. These readout strategies range from the release of nucleosomal DNA from histones, to rotational/translation register shifts of the DNA motif, and nucleosome-specific DNA binding modes that differ from those observed on naked DNA. Since DNA motif engagement on nucleosomes strongly depends on position and orientation, we argue that motif location and nucleosome positioning co-determine protein access to DNA in transcription and DNA repair.}, author = {Michael, Alicia and Thomä, Nicolas H.}, issn = {0092-8674}, journal = {Cell}, keywords = {General Biochemistry, Genetics and Molecular Biology}, number = {14}, pages = {3599--3611}, publisher = {Elsevier}, title = {{Reading the chromatinized genome}}, doi = {10.1016/j.cell.2021.05.029}, volume = {184}, year = {2021}, } @article{9429, abstract = {De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 lead to autism spectrum disorder (ASD). In mouse, constitutive haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs.}, author = {Morandell, Jasmin and Schwarz, Lena A and Basilico, Bernadette and Tasciyan, Saren and Dimchev, Georgi A and Nicolas, Armel and Sommer, Christoph M and Kreuzinger, Caroline and Dotter, Christoph and Knaus, Lisa and Dobler, Zoe and Cacci, Emanuele and Schur, Florian KM and Danzl, Johann G and Novarino, Gaia}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology}, number = {1}, publisher = {Springer Nature}, title = {{Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development}}, doi = {10.1038/s41467-021-23123-x}, volume = {12}, year = {2021}, } @article{8931, abstract = {Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear. Here we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation. The gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy.}, author = {Gelová, Zuzana and Gallei, Michelle C and Pernisová, Markéta and Brunoud, Géraldine and Zhang, Xixi and Glanc, Matous and Li, Lanxin and Michalko, Jaroslav and Pavlovicova, Zlata and Verstraeten, Inge and Han, Huibin and Hajny, Jakub and Hauschild, Robert and Čovanová, Milada and Zwiewka, Marta and Hörmayer, Lukas and Fendrych, Matyas and Xu, Tongda and Vernoux, Teva and Friml, Jiří}, issn = {0168-9452}, journal = {Plant Science}, keywords = {Agronomy and Crop Science, Plant Science, Genetics, General Medicine}, publisher = {Elsevier}, title = {{Developmental roles of auxin binding protein 1 in Arabidopsis thaliana}}, doi = {10.1016/j.plantsci.2020.110750}, volume = {303}, year = {2021}, } @article{10348, abstract = {The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity.}, author = {Pfitzner, Anna-Katharina and Mercier, Vincent and Jiang, Xiuyun and Moser von Filseck, Joachim and Baum, Buzz and Šarić, Anđela and Roux, Aurélien}, issn = {0092-8674}, journal = {Cell}, keywords = {general biochemistry, genetics and molecular biology}, number = {5}, pages = {1140--1155.e18}, publisher = {Elsevier}, title = {{An ESCRT-III polymerization sequence drives membrane deformation and fission}}, doi = {10.1016/j.cell.2020.07.021}, volume = {182}, year = {2020}, } @article{11056, abstract = {Aging of the circulatory system correlates with the pathogenesis of a large spectrum of diseases. However, it is largely unknown which factors drive the age-dependent or pathological decline of the vasculature and how vascular defects relate to tissue aging. The goal of the study is to design a multianalytical approach to identify how the cellular microenvironment (i.e., fibroblasts) and serum from healthy donors of different ages or Alzheimer disease (AD) patients can modulate the functionality of organ-specific vascular endothelial cells (VECs). Long-living human microvascular networks embedding VECs and fibroblasts from skin biopsies are generated. RNA-seq, secretome analyses, and microfluidic assays demonstrate that fibroblasts from young donors restore the functionality of aged endothelial cells, an effect also achieved by serum from young donors. New biomarkers of vascular aging are validated in human biopsies and it is shown that young serum induces angiopoietin-like-4, which can restore compromised vascular barriers. This strategy is then employed to characterize transcriptional/functional changes induced on the blood–brain barrier by AD serum, demonstrating the importance of PTP4A3 in the regulation of permeability. Features of vascular degeneration during aging and AD are recapitulated, and a tool to identify novel biomarkers that can be exploited to develop future therapeutics modulating vascular function is established.}, author = {Bersini, Simone and Arrojo e Drigo, Rafael and Huang, Ling and Shokhirev, Maxim N. and HETZER, Martin W}, issn = {2366-7478}, journal = {Advanced Biosystems}, keywords = {General Biochemistry, Genetics and Molecular Biology, Biomedical Engineering, Biomaterials}, number = {5}, publisher = {Wiley}, title = {{Transcriptional and functional changes of the human microvasculature during physiological aging and Alzheimer disease}}, doi = {10.1002/adbi.202000044}, volume = {4}, year = {2020}, } @article{11055, abstract = {Vascular dysfunctions are a common feature of multiple age-related diseases. However, modeling healthy and pathological aging of the human vasculature represents an unresolved experimental challenge. Here, we generated induced vascular endothelial cells (iVECs) and smooth muscle cells (iSMCs) by direct reprogramming of healthy human fibroblasts from donors of different ages and Hutchinson-Gilford Progeria Syndrome (HGPS) patients. iVECs induced from old donors revealed upregulation of GSTM1 and PALD1, genes linked to oxidative stress, inflammation and endothelial junction stability, as vascular aging markers. A functional assay performed on PALD1 KD VECs demonstrated a recovery in vascular permeability. We found that iSMCs from HGPS donors overexpressed bone morphogenetic protein (BMP)−4, which plays a key role in both vascular calcification and endothelial barrier damage observed in HGPS. Strikingly, BMP4 concentrations are higher in serum from HGPS vs. age-matched mice. Furthermore, targeting BMP4 with blocking antibody recovered the functionality of the vascular barrier in vitro, hence representing a potential future therapeutic strategy to limit cardiovascular dysfunction in HGPS. These results show that iVECs and iSMCs retain disease-related signatures, allowing modeling of vascular aging and HGPS in vitro.}, author = {Bersini, Simone and Schulte, Roberta and Huang, Ling and Tsai, Hannah and HETZER, Martin W}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Direct reprogramming of human smooth muscle and vascular endothelial cells reveals defects associated with aging and Hutchinson-Gilford progeria syndrome}}, doi = {10.7554/elife.54383}, volume = {9}, year = {2020}, } @article{11057, abstract = {During mitosis, transcription of genomic DNA is dramatically reduced, before it is reactivated during nuclear reformation in anaphase/telophase. Many aspects of the underlying principles that mediate transcriptional memory and reactivation in the daughter cells remain unclear. Here, we used ChIP-seq on synchronized cells at different stages after mitosis to generate genome-wide maps of histone modifications. Combined with EU-RNA-seq and Hi-C analyses, we found that during prometaphase, promoters, enhancers, and insulators retain H3K4me3 and H3K4me1, while losing H3K27ac. Enhancers globally retaining mitotic H3K4me1 or locally retaining mitotic H3K27ac are associated with cell type-specific genes and their transcription factors for rapid transcriptional activation. As cells exit mitosis, promoters regain H3K27ac, which correlates with transcriptional reactivation. Insulators also gain H3K27ac and CCCTC-binding factor (CTCF) in anaphase/telophase. This increase of H3K27ac in anaphase/telophase is required for posttranscriptional activation and may play a role in the establishment of topologically associating domains (TADs). Together, our results suggest that the genome is reorganized in a sequential order, in which histone methylations occur first in prometaphase, histone acetylation, and CTCF in anaphase/telophase, transcription in cytokinesis, and long-range chromatin interactions in early G1. We thus provide insights into the histone modification landscape that allows faithful reestablishment of the transcriptional program and TADs during cell division.}, author = {Kang, Hyeseon and Shokhirev, Maxim N. and Xu, Zhichao and Chandran, Sahaana and Dixon, Jesse R. and HETZER, Martin W}, issn = {0890-9369}, journal = {Genes & Development}, keywords = {Developmental Biology, Genetics}, number = {13-14}, pages = {913--930}, publisher = {Cold Spring Harbor Laboratory Press}, title = {{Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation}}, doi = {10.1101/gad.335794.119}, volume = {34}, year = {2020}, } @article{11058, abstract = {Nucleoporin 93 (Nup93) expression inversely correlates with the survival of triple-negative breast cancer patients. However, our knowledge of Nup93 function in breast cancer besides its role as structural component of the nuclear pore complex is not understood. Combination of functional assays and genetic analyses suggested that chromatin interaction of Nup93 partially modulates the expression of genes associated with actin cytoskeleton remodeling and epithelial to mesenchymal transition, resulting in impaired invasion of triple-negative, claudin-low breast cancer cells. Nup93 depletion induced stress fiber formation associated with reduced cell migration/proliferation and impaired expression of mesenchymal-like genes. Silencing LIMCH1, a gene responsible for actin cytoskeleton remodeling and up-regulated upon Nup93 depletion, partially restored the invasive phenotype of cancer cells. Loss of Nup93 led to significant defects in tumor establishment/propagation in vivo, whereas patient samples revealed that high Nup93 and low LIMCH1 expression correlate with late tumor stage. Our approach identified Nup93 as contributor of triple-negative, claudin-low breast cancer cell invasion and paves the way to study the role of nuclear envelope proteins during breast cancer tumorigenesis.}, author = {Bersini, Simone and Lytle, Nikki K and Schulte, Roberta and Huang, Ling and Wahl, Geoffrey M and HETZER, Martin W}, issn = {2575-1077}, journal = {Life Science Alliance}, keywords = {Health, Toxicology and Mutagenesis, Plant Science, Biochemistry, Genetics and Molecular Biology (miscellaneous), Ecology}, number = {1}, publisher = {Life Science Alliance}, title = {{Nup93 regulates breast tumor growth by modulating cell proliferation and actin cytoskeleton remodeling}}, doi = {10.26508/lsa.201900623}, volume = {3}, year = {2020}, } @article{8402, abstract = {Background: The mitochondrial pyruvate carrier (MPC) plays a central role in energy metabolism by transporting pyruvate across the inner mitochondrial membrane. Its heterodimeric composition and homology to SWEET and semiSWEET transporters set the MPC apart from the canonical mitochondrial carrier family (named MCF or SLC25). The import of the canonical carriers is mediated by the carrier translocase of the inner membrane (TIM22) pathway and is dependent on their structure, which features an even number of transmembrane segments and both termini in the intermembrane space. The import pathway of MPC proteins has not been elucidated. The odd number of transmembrane segments and positioning of the N-terminus in the matrix argues against an import via the TIM22 carrier pathway but favors an import via the flexible presequence pathway. Results: Here, we systematically analyzed the import pathways of Mpc2 and Mpc3 and report that, contrary to an expected import via the flexible presequence pathway, yeast MPC proteins with an odd number of transmembrane segments and matrix-exposed N-terminus are imported by the carrier pathway, using the receptor Tom70, small TIM chaperones, and the TIM22 complex. The TIM9·10 complex chaperones MPC proteins through the mitochondrial intermembrane space using conserved hydrophobic motifs that are also required for the interaction with canonical carrier proteins. Conclusions: The carrier pathway can import paired and non-paired transmembrane helices and translocate N-termini to either side of the mitochondrial inner membrane, revealing an unexpected versatility of the mitochondrial import pathway for non-cleavable inner membrane proteins.}, author = {Rampelt, Heike and Sucec, Iva and Bersch, Beate and Horten, Patrick and Perschil, Inge and Martinou, Jean-Claude and van der Laan, Martin and Wiedemann, Nils and Schanda, Paul and Pfanner, Nikolaus}, issn = {1741-7007}, journal = {BMC Biology}, keywords = {Biotechnology, Plant Science, General Biochemistry, Genetics and Molecular Biology, Developmental Biology, Cell Biology, Physiology, Ecology, Evolution, Behavior and Systematics, Structural Biology, General Agricultural and Biological Sciences}, publisher = {Springer Nature}, title = {{The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments}}, doi = {10.1186/s12915-019-0733-6}, volume = {18}, year = {2020}, } @article{12189, abstract = {Meiotic crossovers (COs) are important for reshuffling genetic information between homologous chromosomes and they are essential for their correct segregation. COs are unevenly distributed along chromosomes and the underlying mechanisms controlling CO localization are not well understood. We previously showed that meiotic COs are mis-localized in the absence of AXR1, an enzyme involved in the neddylation/rubylation protein modification pathway in Arabidopsis thaliana. Here, we report that in axr1-/-, male meiocytes show a strong defect in chromosome pairing whereas the formation of the telomere bouquet is not affected. COs are also redistributed towards subtelomeric chromosomal ends where they frequently form clusters, in contrast to large central regions depleted in recombination. The CO suppressed regions correlate with DNA hypermethylation of transposable elements (TEs) in the CHH context in axr1-/- meiocytes. Through examining somatic methylomes, we found axr1-/- affects DNA methylation in a plant, causing hypermethylation in all sequence contexts (CG, CHG and CHH) in TEs. Impairment of the main pathways involved in DNA methylation is epistatic over axr1-/- for DNA methylation in somatic cells but does not restore regular chromosome segregation during meiosis. Collectively, our findings reveal that the neddylation pathway not only regulates hormonal perception and CO distribution but is also, directly or indirectly, a major limiting pathway of TE DNA methylation in somatic cells.}, author = {Christophorou, Nicolas and She, Wenjing and Long, Jincheng and Hurel, Aurélie and Beaubiat, Sébastien and Idir, Yassir and Tagliaro-Jahns, Marina and Chambon, Aurélie and Solier, Victor and Vezon, Daniel and Grelon, Mathilde and Feng, Xiaoqi and Bouché, Nicolas and Mézard, Christine}, issn = {1553-7404}, journal = {PLOS Genetics}, keywords = {Cancer Research, Genetics (clinical), Genetics, Molecular Biology, Ecology, Evolution, Behavior and Systematics}, number = {6}, publisher = {Public Library of Science (PLoS)}, title = {{AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization}}, doi = {10.1371/journal.pgen.1008894}, volume = {16}, year = {2020}, } @article{8529, abstract = {Practical quantum networks require low-loss and noise-resilient optical interconnects as well as non-Gaussian resources for entanglement distillation and distributed quantum computation. The latter could be provided by superconducting circuits but existing solutions to interface the microwave and optical domains lack either scalability or efficiency, and in most cases the conversion noise is not known. In this work we utilize the unique opportunities of silicon photonics, cavity optomechanics and superconducting circuits to demonstrate a fully integrated, coherent transducer interfacing the microwave X and the telecom S bands with a total (internal) bidirectional transduction efficiency of 1.2% (135%) at millikelvin temperatures. The coupling relies solely on the radiation pressure interaction mediated by the femtometer-scale motion of two silicon nanobeams reaching a Vπ as low as 16 μV for sub-nanowatt pump powers. Without the associated optomechanical gain, we achieve a total (internal) pure conversion efficiency of up to 0.019% (1.6%), relevant for future noise-free operation on this qubit-compatible platform.}, author = {Arnold, Georg M and Wulf, Matthias and Barzanjeh, Shabir and Redchenko, Elena and Rueda Sanchez, Alfredo R and Hease, William J and Hassani, Farid and Fink, Johannes M}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, publisher = {Springer Nature}, title = {{Converting microwave and telecom photons with a silicon photonic nanomechanical interface}}, doi = {10.1038/s41467-020-18269-z}, volume = {11}, year = {2020}, } @article{8592, abstract = {Glioblastoma is the most malignant cancer in the brain and currently incurable. It is urgent to identify effective targets for this lethal disease. Inhibition of such targets should suppress the growth of cancer cells and, ideally also precancerous cells for early prevention, but minimally affect their normal counterparts. Using genetic mouse models with neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) as the cells‐of‐origin/mutation, it is shown that the susceptibility of cells within the development hierarchy of glioma to the knockout of insulin‐like growth factor I receptor (IGF1R) is determined not only by their oncogenic states, but also by their cell identities/states. Knockout of IGF1R selectively disrupts the growth of mutant and transformed, but not normal OPCs, or NSCs. The desirable outcome of IGF1R knockout on cell growth requires the mutant cells to commit to the OPC identity regardless of its development hierarchical status. At the molecular level, oncogenic mutations reprogram the cellular network of OPCs and force them to depend more on IGF1R for their growth. A new‐generation brain‐penetrable, orally available IGF1R inhibitor harnessing tumor OPCs in the brain is also developed. The findings reveal the cellular window of IGF1R targeting and establish IGF1R as an effective target for the prevention and treatment of glioblastoma.}, author = {Tian, Anhao and Kang, Bo and Li, Baizhou and Qiu, Biying and Jiang, Wenhong and Shao, Fangjie and Gao, Qingqing and Liu, Rui and Cai, Chengwei and Jing, Rui and Wang, Wei and Chen, Pengxiang and Liang, Qinghui and Bao, Lili and Man, Jianghong and Wang, Yan and Shi, Yu and Li, Jin and Yang, Minmin and Wang, Lisha and Zhang, Jianmin and Hippenmeyer, Simon and Zhu, Junming and Bian, Xiuwu and Wang, Ying‐Jie and Liu, Chong}, issn = {2198-3844}, journal = {Advanced Science}, keywords = {General Engineering, General Physics and Astronomy, General Materials Science, Medicine (miscellaneous), General Chemical Engineering, Biochemistry, Genetics and Molecular Biology (miscellaneous)}, number = {21}, publisher = {Wiley}, title = {{Oncogenic state and cell identity combinatorially dictate the susceptibility of cells within glioma development hierarchy to IGF1R targeting}}, doi = {10.1002/advs.202001724}, volume = {7}, year = {2020}, } @article{8568, abstract = {Aqueous iodine based electrochemical energy storage is considered a potential candidate to improve sustainability and performance of current battery and supercapacitor technology. It harnesses the redox activity of iodide, iodine, and polyiodide species in the confined geometry of nanoporous carbon electrodes. However, current descriptions of the electrochemical reaction mechanism to interconvert these species are elusive. Here we show that electrochemical oxidation of iodide in nanoporous carbons forms persistent solid iodine deposits. Confinement slows down dissolution into triiodide and pentaiodide, responsible for otherwise significant self-discharge via shuttling. The main tools for these insights are in situ Raman spectroscopy and in situ small and wide-angle X-ray scattering (in situ SAXS/WAXS). In situ Raman confirms the reversible formation of triiodide and pentaiodide. In situ SAXS/WAXS indicates remarkable amounts of solid iodine deposited in the carbon nanopores. Combined with stochastic modeling, in situ SAXS allows quantifying the solid iodine volume fraction and visualizing the iodine structure on 3D lattice models at the sub-nanometer scale. Based on the derived mechanism, we demonstrate strategies for improved iodine pore filling capacity and prevention of self-discharge, applicable to hybrid supercapacitors and batteries.}, author = {Prehal, Christian and Fitzek, Harald and Kothleitner, Gerald and Presser, Volker and Gollas, Bernhard and Freunberger, Stefan Alexander and Abbas, Qamar}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, publisher = {Springer Nature}, title = {{Persistent and reversible solid iodine electrodeposition in nanoporous carbons}}, doi = {10.1038/s41467-020-18610-6}, volume = {11}, year = {2020}, } @article{8744, abstract = {Understanding the conformational sampling of translation-arrested ribosome nascent chain complexes is key to understand co-translational folding. Up to now, coupling of cysteine oxidation, disulfide bond formation and structure formation in nascent chains has remained elusive. Here, we investigate the eye-lens protein γB-crystallin in the ribosomal exit tunnel. Using mass spectrometry, theoretical simulations, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance and cryo-electron microscopy, we show that thiol groups of cysteine residues undergo S-glutathionylation and S-nitrosylation and form non-native disulfide bonds. Thus, covalent modification chemistry occurs already prior to nascent chain release as the ribosome exit tunnel provides sufficient space even for disulfide bond formation which can guide protein folding.}, author = {Schulte, Linda and Mao, Jiafei and Reitz, Julian and Sreeramulu, Sridhar and Kudlinzki, Denis and Hodirnau, Victor-Valentin and Meier-Credo, Jakob and Saxena, Krishna and Buhr, Florian and Langer, Julian D. and Blackledge, Martin and Frangakis, Achilleas S. and Glaubitz, Clemens and Schwalbe, Harald}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, publisher = {Springer Nature}, title = {{Cysteine oxidation and disulfide formation in the ribosomal exit tunnel}}, doi = {10.1038/s41467-020-19372-x}, volume = {11}, year = {2020}, } @article{8767, abstract = {Resources are rarely distributed uniformly within a population. Heterogeneity in the concentration of a drug, the quality of breeding sites, or wealth can all affect evolutionary dynamics. In this study, we represent a collection of properties affecting the fitness at a given location using a color. A green node is rich in resources while a red node is poorer. More colors can represent a broader spectrum of resource qualities. For a population evolving according to the birth-death Moran model, the first question we address is which structures, identified by graph connectivity and graph coloring, are evolutionarily equivalent. We prove that all properly two-colored, undirected, regular graphs are evolutionarily equivalent (where “properly colored” means that no two neighbors have the same color). We then compare the effects of background heterogeneity on properly two-colored graphs to those with alternative schemes in which the colors are permuted. Finally, we discuss dynamic coloring as a model for spatiotemporal resource fluctuations, and we illustrate that random dynamic colorings often diminish the effects of background heterogeneity relative to a proper two-coloring.}, author = {Kaveh, Kamran and McAvoy, Alex and Chatterjee, Krishnendu and Nowak, Martin A.}, issn = {1553-7358}, journal = {PLOS Computational Biology}, keywords = {Ecology, Modelling and Simulation, Computational Theory and Mathematics, Genetics, Ecology, Evolution, Behavior and Systematics, Molecular Biology, Cellular and Molecular Neuroscience}, number = {11}, publisher = {Public Library of Science}, title = {{The Moran process on 2-chromatic graphs}}, doi = {10.1371/journal.pcbi.1008402}, volume = {16}, year = {2020}, } @article{8971, abstract = {The actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0 Å resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Notably, our model reveals a previously undescribed set of interactions of the Arp2/3 complex with the mother filament, significantly different to the previous branch junction model. Our structure also indicates a central role for the ArpC3 subunit in stabilizing the active conformation.}, author = {Fäßler, Florian and Dimchev, Georgi A and Hodirnau, Victor-Valentin and Wan, William and Schur, Florian KM}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, publisher = {Springer Nature}, title = {{Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction}}, doi = {10.1038/s41467-020-20286-x}, volume = {11}, year = {2020}, } @article{15153, abstract = {Mammalian circadian rhythms are generated by a transcription-based feedback loop in which CLOCK:BMAL1 drives transcription of its repressors (PER1/2, CRY1/2), which ultimately interact with CLOCK:BMAL1 to close the feedback loop with ~24 hr periodicity. Here we pinpoint a key difference between CRY1 and CRY2 that underlies their differential strengths as transcriptional repressors. Both cryptochromes bind the BMAL1 transactivation domain similarly to sequester it from coactivators and repress CLOCK:BMAL1 activity. However, we find that CRY1 is recruited with much higher affinity to the PAS domain core of CLOCK:BMAL1, allowing it to serve as a stronger repressor that lengthens circadian period. We discovered a dynamic serine-rich loop adjacent to the secondary pocket in the photolyase homology region (PHR) domain that regulates differential binding of cryptochromes to the PAS domain core of CLOCK:BMAL1. Notably, binding of the co-repressor PER2 remodels the serine loop of CRY2, making it more CRY1-like and enhancing its affinity for CLOCK:BMAL1.}, author = {Fribourgh, Jennifer L and Srivastava, Ashutosh and Sandate, Colby R and Michael, Alicia Kathleen and Hsu, Peter L and Rakers, Christin and Nguyen, Leslee T and Torgrimson, Megan R and Parico, Gian Carlo G and Tripathi, Sarvind and Zheng, Ning and Lander, Gabriel C and Hirota, Tsuyoshi and Tama, Florence and Partch, Carrie L}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing}}, doi = {10.7554/elife.55275}, volume = {9}, year = {2020}, } @article{11059, abstract = {The genome is packaged and organized nonrandomly within the 3D space of the nucleus to promote efficient gene expression and to faithfully maintain silencing of heterochromatin. The genome is enclosed within the nucleus by the nuclear envelope membrane, which contains a set of proteins that actively participate in chromatin organization and gene regulation. Technological advances are providing views of genome organization at unprecedented resolution and are beginning to reveal the ways that cells co-opt the structures of the nuclear periphery for nuclear organization and gene regulation. These genome regulatory roles of proteins of the nuclear periphery have important influences on development, disease and ageing.}, author = {Buchwalter, Abigail and Kaneshiro, Jeanae M. and HETZER, Martin W}, issn = {1471-0064}, journal = {Nature Reviews Genetics}, keywords = {Genetics (clinical), Genetics, Molecular Biology}, number = {1}, pages = {39--50}, publisher = {Springer Nature}, title = {{Coaching from the sidelines: The nuclear periphery in genome regulation}}, doi = {10.1038/s41576-018-0063-5}, volume = {20}, year = {2019}, } @article{8405, abstract = {Atomic-resolution structure determination is crucial for understanding protein function. Cryo-EM and NMR spectroscopy both provide structural information, but currently cryo-EM does not routinely give access to atomic-level structural data, and, generally, NMR structure determination is restricted to small (<30 kDa) proteins. We introduce an integrated structure determination approach that simultaneously uses NMR and EM data to overcome the limits of each of these methods. The approach enables structure determination of the 468 kDa large dodecameric aminopeptidase TET2 to a precision and accuracy below 1 Å by combining secondary-structure information obtained from near-complete magic-angle-spinning NMR assignments of the 39 kDa-large subunits, distance restraints from backbone amides and ILV methyl groups, and a 4.1 Å resolution EM map. The resulting structure exceeds current standards of NMR and EM structure determination in terms of molecular weight and precision. Importantly, the approach is successful even in cases where only medium-resolution cryo-EM data are available.}, author = {Gauto, Diego F. and Estrozi, Leandro F. and Schwieters, Charles D. and Effantin, Gregory and Macek, Pavel and Sounier, Remy and Sivertsen, Astrid C. and Schmidt, Elena and Kerfah, Rime and Mas, Guillaume and Colletier, Jacques-Philippe and Güntert, Peter and Favier, Adrien and Schoehn, Guy and Schanda, Paul and Boisbouvier, Jerome}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, publisher = {Springer Nature}, title = {{Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex}}, doi = {10.1038/s41467-019-10490-9}, volume = {10}, year = {2019}, } @article{9060, abstract = {Molecular motors are essential to the living, generating fluctuations that boost transport and assist assembly. Active colloids, that consume energy to move, hold similar potential for man-made materials controlled by forces generated from within. Yet, their use as a powerhouse in materials science lacks. Here we show a massive acceleration of the annealing of a monolayer of passive beads by moderate addition of self-propelled microparticles. We rationalize our observations with a model of collisions that drive active fluctuations and activate the annealing. The experiment is quantitatively compared with Brownian dynamic simulations that further unveil a dynamical transition in the mechanism of annealing. Active dopants travel uniformly in the system or co-localize at the grain boundaries as a result of the persistence of their motion. Our findings uncover the potential of internal activity to control materials and lay the groundwork for the rise of materials science beyond equilibrium.}, author = {Ramananarivo, Sophie and Ducrot, Etienne and Palacci, Jérémie A}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, number = {1}, publisher = {Springer Nature}, title = {{Activity-controlled annealing of colloidal monolayers}}, doi = {10.1038/s41467-019-11362-y}, volume = {10}, year = {2019}, } @article{12192, abstract = {Transposable elements (TEs), the movement of which can damage the genome, are epigenetically silenced in eukaryotes. Intriguingly, TEs are activated in the sperm companion cell – vegetative cell (VC) – of the flowering plant Arabidopsis thaliana. However, the extent and mechanism of this activation are unknown. Here we show that about 100 heterochromatic TEs are activated in VCs, mostly by DEMETER-catalyzed DNA demethylation. We further demonstrate that DEMETER access to some of these TEs is permitted by the natural depletion of linker histone H1 in VCs. Ectopically expressed H1 suppresses TEs in VCs by reducing DNA demethylation and via a methylation-independent mechanism. We demonstrate that H1 is required for heterochromatin condensation in plant cells and show that H1 overexpression creates heterochromatic foci in the VC progenitor cell. Taken together, our results demonstrate that the natural depletion of H1 during male gametogenesis facilitates DEMETER-directed DNA demethylation, heterochromatin relaxation, and TE activation.}, author = {He, Shengbo and Vickers, Martin and Zhang, Jingyi and Feng, Xiaoqi}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications, Ltd}, title = {{Natural depletion of histone H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation}}, doi = {10.7554/elife.42530}, volume = {8}, year = {2019}, } @article{12190, abstract = {Meiotic crossover frequency varies within genomes, which influences genetic diversity and adaptation. In turn, genetic variation within populations can act to modify crossover frequency in cis and trans. To identify genetic variation that controls meiotic crossover frequency, we screened Arabidopsis accessions using fluorescent recombination reporters. We mapped a genetic modifier of crossover frequency in Col × Bur populations of Arabidopsis to a premature stop codon within TBP-ASSOCIATED FACTOR 4b (TAF4b), which encodes a subunit of the RNA polymerase II general transcription factor TFIID. The Arabidopsis taf4b mutation is a rare variant found in the British Isles, originating in South-West Ireland. Using genetics, genomics, and immunocytology, we demonstrate a genome-wide decrease in taf4b crossovers, with strongest reduction in the sub-telomeric regions. Using RNA sequencing (RNA-seq) from purified meiocytes, we show that TAF4b expression is meiocyte enriched, whereas its paralog TAF4 is broadly expressed. Consistent with the role of TFIID in promoting gene expression, RNA-seq of wild-type and taf4b meiocytes identified widespread transcriptional changes, including in genes that regulate the meiotic cell cycle and recombination. Therefore, TAF4b duplication is associated with acquisition of meiocyte-specific expression and promotion of germline transcription, which act directly or indirectly to elevate crossovers. This identifies a novel mode of meiotic recombination control via a general transcription factor.}, author = {Lawrence, Emma J. and Gao, Hongbo and Tock, Andrew J. and Lambing, Christophe and Blackwell, Alexander R. and Feng, Xiaoqi and Henderson, Ian R.}, issn = {0960-9822}, journal = {Current Biology}, keywords = {General Agricultural and Biological Sciences, General Biochemistry, Genetics and Molecular Biology}, number = {16}, pages = {2676--2686.e3}, publisher = {Elsevier BV}, title = {{Natural variation in TBP-ASSOCIATED FACTOR 4b controls meiotic crossover and germline transcription in Arabidopsis}}, doi = {10.1016/j.cub.2019.06.084}, volume = {29}, year = {2019}, } @article{11060, abstract = {The inner nuclear membrane (INM) is a subdomain of the endoplasmic reticulum (ER) that is gated by the nuclear pore complex. It is unknown whether proteins of the INM and ER are degraded through shared or distinct pathways in mammalian cells. We applied dynamic proteomics to profile protein half-lives and report that INM and ER residents turn over at similar rates, indicating that the INM’s unique topology is not a barrier to turnover. Using a microscopy approach, we observed that the proteasome can degrade INM proteins in situ. However, we also uncovered evidence for selective, vesicular transport-mediated turnover of a single INM protein, emerin, that is potentiated by ER stress. Emerin is rapidly cleared from the INM by a mechanism that requires emerin’s LEM domain to mediate vesicular trafficking to lysosomes. This work demonstrates that the INM can be dynamically remodeled in response to environmental inputs.}, author = {Buchwalter, Abigail and Schulte, Roberta and Tsai, Hsiao and Capitanio, Juliana and HETZER, Martin W}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Selective clearance of the inner nuclear membrane protein emerin by vesicular transport during ER stress}}, doi = {10.7554/elife.49796}, volume = {8}, year = {2019}, } @article{11063, abstract = {The total number of nuclear pore complexes (NPCs) per nucleus varies greatly between different cell types and is known to change during cell differentiation and cell transformation. However, the underlying mechanisms that control how many nuclear transport channels are assembled into a given nuclear envelope remain unclear. Here, we report that depletion of the NPC basket protein Tpr, but not Nup153, dramatically increases the total NPC number in various cell types. This negative regulation of Tpr occurs via a phosphorylation cascade of extracellular signal-regulated kinase (ERK), the central kinase of the mitogen-activated protein kinase (MAPK) pathway. Tpr serves as a scaffold for ERK to phosphorylate the nucleoporin (Nup) Nup153, which is critical for early stages of NPC biogenesis. Our results reveal a critical role of the Nup Tpr in coordinating signal transduction pathways during cell proliferation and the dynamic organization of the nucleus.}, author = {McCloskey, Asako and Ibarra, Arkaitz and HETZER, Martin W}, issn = {0890-9369}, journal = {Genes & Development}, keywords = {Developmental Biology, Genetics}, number = {19-20}, pages = {1321--1331}, publisher = {Cold Spring Harbor Laboratory}, title = {{Tpr regulates the total number of nuclear pore complexes per cell nucleus}}, doi = {10.1101/gad.315523.118}, volume = {32}, year = {2018}, } @article{8436, abstract = {The exchange of metabolites between the mitochondrial matrix and the cytosol depends on β-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and β-barrel protein biogenesis. Our work reveals how a single mitochondrial “transfer-chaperone” system is able to guide α-helical and β-barrel membrane proteins in a “nascent chain-like” conformation through a ribosome-free compartment.}, author = {Weinhäupl, Katharina and Lindau, Caroline and Hessel, Audrey and Wang, Yong and Schütze, Conny and Jores, Tobias and Melchionda, Laura and Schönfisch, Birgit and Kalbacher, Hubert and Bersch, Beate and Rapaport, Doron and Brennich, Martha and Lindorff-Larsen, Kresten and Wiedemann, Nils and Schanda, Paul}, issn = {0092-8674}, journal = {Cell}, keywords = {General Biochemistry, Genetics and Molecular Biology}, number = {5}, pages = {1365--1379.e25}, publisher = {Elsevier}, title = {{Structural basis of membrane protein chaperoning through the mitochondrial intermembrane space}}, doi = {10.1016/j.cell.2018.10.039}, volume = {175}, year = {2018}, } @article{13374, abstract = {Confining molecules to volumes only slightly larger than the molecules themselves can profoundly alter their properties. Molecular switches—entities that can be toggled between two or more forms upon exposure to an external stimulus—often require conformational freedom to isomerize. Therefore, placing these switches in confined spaces can render them non-operational. To preserve the switchability of these species under confinement, we work with a water-soluble coordination cage that is flexible enough to adapt its shape to the conformation of the encapsulated guest. We show that owing to its flexibility, the cage is not only capable of accommodating—and solubilizing in water—several light-responsive spiropyran-based molecular switches, but, more importantly, it also provides an environment suitable for the efficient, reversible photoisomerization of the bound guests. Our findings pave the way towards studying various molecular switching processes in confined environments.}, author = {Samanta, Dipak and Galaktionova, Daria and Gemen, Julius and Shimon, Linda J. W. and Diskin-Posner, Yael and Avram, Liat and Král, Petr and Klajn, Rafal}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary}, publisher = {Springer Nature}, title = {{Reversible chromism of spiropyran in the cavity of a flexible coordination cage}}, doi = {10.1038/s41467-017-02715-6}, volume = {9}, year = {2018}, } @article{10880, abstract = {Acquisition of evolutionary novelties is a fundamental process for adapting to the external environment and invading new niches and results in the diversification of life, which we can see in the world today. How such novel phenotypic traits are acquired in the course of evolution and are built up in developing embryos has been a central question in biology. Whole-genome duplication (WGD) is a process of genome doubling that supplies raw genetic materials and increases genome complexity. Recently, it has been gradually revealed that WGD and subsequent fate changes of duplicated genes can facilitate phenotypic evolution. Here, we review the current understanding of the relationship between WGD and the acquisition of evolutionary novelties. We show some examples of this link and discuss how WGD and subsequent duplicated genes can facilitate phenotypic evolution as well as when such genomic doubling can be advantageous for adaptation.}, author = {Yuuta, Moriyama and Koshiba-Takeuchi, Kazuko}, issn = {2041-2657}, journal = {Briefings in Functional Genomics}, keywords = {Genetics, Molecular Biology, Biochemistry, General Medicine}, number = {5}, pages = {329--338}, publisher = {Oxford University Press}, title = {{Significance of whole-genome duplications on the emergence of evolutionary novelties}}, doi = {10.1093/bfgp/ely007}, volume = {17}, year = {2018}, } @article{14284, abstract = {Pore-forming toxins (PFT) are virulence factors that transform from soluble to membrane-bound states. The Yersinia YaxAB system represents a family of binary α-PFTs with orthologues in human, insect, and plant pathogens, with unknown structures. YaxAB was shown to be cytotoxic and likely involved in pathogenesis, though the molecular basis for its two-component lytic mechanism remains elusive. Here, we present crystal structures of YaxA and YaxB, together with a cryo-electron microscopy map of the YaxAB complex. Our structures reveal a pore predominantly composed of decamers of YaxA–YaxB heterodimers. Both subunits bear membrane-active moieties, but only YaxA is capable of binding to membranes by itself. YaxB can subsequently be recruited to membrane-associated YaxA and induced to present its lytic transmembrane helices. Pore formation can progress by further oligomerization of YaxA–YaxB dimers. Our results allow for a comparison between pore assemblies belonging to the wider ClyA-like family of α-PFTs, highlighting diverse pore architectures.}, author = {Bräuning, Bastian and Bertosin, Eva and Praetorius, Florian M and Ihling, Christian and Schatt, Alexandra and Adler, Agnes and Richter, Klaus and Sinz, Andrea and Dietz, Hendrik and Groll, Michael}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary}, publisher = {Springer Nature}, title = {{Structure and mechanism of the two-component α-helical pore-forming toxin YaxAB}}, doi = {10.1038/s41467-018-04139-2}, volume = {9}, year = {2018}, } @article{15143, abstract = {To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA–RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA–RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.}, author = {Bravo, Jack Peter Kelly and Borodavka, Alexander and Barth, Anders and Calabrese, Antonio N and Mojzes, Peter and Cockburn, Joseph J B and Lamb, Don C and Tuma, Roman}, issn = {1362-4962}, journal = {Nucleic Acids Research}, keywords = {Genetics}, number = {15}, pages = {7924--7937}, publisher = {Oxford University Press}, title = {{Stability of local secondary structure determines selectivity of viral RNA chaperones}}, doi = {10.1093/nar/gky394}, volume = {46}, year = {2018}, } @article{10370, abstract = {Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria – via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces – results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to biochemical responses in membrane dynamics may explain how organelles orderly cohabit in the crowded cytoplasm.}, author = {Helle, Sebastian Carsten Johannes and Feng, Qian and Aebersold, Mathias J and Hirt, Luca and Grüter, Raphael R and Vahid, Afshin and Sirianni, Andrea and Mostowy, Serge and Snedeker, Jess G and Šarić, Anđela and Idema, Timon and Zambelli, Tomaso and Kornmann, Benoît}, issn = {2050-084X}, journal = {eLife}, keywords = {general immunology and microbiology, general biochemistry, genetics and molecular biology, general medicine, general neuroscience}, publisher = {eLife Sciences Publications}, title = {{Mechanical force induces mitochondrial fission}}, doi = {10.7554/elife.30292}, volume = {6}, year = {2017}, } @article{11066, abstract = {Recent studies have shown that a subset of nucleoporins (Nups) can detach from the nuclear pore complex and move into the nuclear interior to regulate transcription. One such dynamic Nup, called Nup98, has been implicated in gene activation in healthy cells and has been shown to drive leukemogenesis when mutated in patients with acute myeloid leukemia (AML). Here we show that in hematopoietic cells, Nup98 binds predominantly to transcription start sites to recruit the Wdr82–Set1A/COMPASS (complex of proteins associated with Set1) complex, which is required for deposition of the histone 3 Lys4 trimethyl (H3K4me3)-activating mark. Depletion of Nup98 or Wdr82 abolishes Set1A recruitment to chromatin and subsequently ablates H3K4me3 at adjacent promoters. Furthermore, expression of a Nup98 fusion protein implicated in aggressive AML causes mislocalization of H3K4me3 at abnormal regions and up-regulation of associated genes. Our findings establish a function of Nup98 in hematopoietic gene activation and provide mechanistic insight into which Nup98 leukemic fusion proteins promote AML.}, author = {Franks, Tobias M. and McCloskey, Asako and Shokhirev, Maxim Nikolaievich and Benner, Chris and Rathore, Annie and HETZER, Martin W}, issn = {0890-9369}, journal = {Genes & Development}, keywords = {Developmental Biology, Genetics}, number = {22}, pages = {2222--2234}, publisher = {Cold Spring Harbor Laboratory}, title = {{Nup98 recruits the Wdr82–Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells}}, doi = {10.1101/gad.306753.117}, volume = {31}, year = {2017}, } @article{11067, abstract = {Neural progenitor cells (NeuPCs) possess a unique nuclear architecture that changes during differentiation. Nucleoporins are linked with cell-type-specific gene regulation, coupling physical changes in nuclear structure to transcriptional output; but, whether and how they coordinate with key fate-determining transcription factors is unclear. Here we show that the nucleoporin Nup153 interacts with Sox2 in adult NeuPCs, where it is indispensable for their maintenance and controls neuronal differentiation. Genome-wide analyses show that Nup153 and Sox2 bind and co-regulate hundreds of genes. Binding of Nup153 to gene promoters or transcriptional end sites correlates with increased or decreased gene expression, respectively, and inhibiting Nup153 expression alters open chromatin configurations at its target genes, disrupts genomic localization of Sox2, and promotes differentiation in vitro and a gliogenic fate switch in vivo. Together, these findings reveal that nuclear structural proteins may exert bimodal transcriptional effects to control cell fate.}, author = {Toda, Tomohisa and Hsu, Jonathan Y. and Linker, Sara B. and Hu, Lauren and Schafer, Simon T. and Mertens, Jerome and Jacinto, Filipe V. and HETZER, Martin W and Gage, Fred H.}, issn = {1934-5909}, journal = {Cell Stem Cell}, keywords = {Cell Biology, Genetics, Molecular Medicine}, number = {5}, pages = {618--634.e7}, publisher = {Elsevier}, title = {{Nup153 interacts with Sox2 to enable bimodal gene regulation and maintenance of neural progenitor cells}}, doi = {10.1016/j.stem.2017.08.012}, volume = {21}, year = {2017}, } @article{11065, abstract = {Premature aging disorders provide an opportunity to study the mechanisms that drive aging. In Hutchinson-Gilford progeria syndrome (HGPS), a mutant form of the nuclear scaffold protein lamin A distorts nuclei and sequesters nuclear proteins. We sought to investigate protein homeostasis in this disease. Here, we report a widespread increase in protein turnover in HGPS-derived cells compared to normal cells. We determine that global protein synthesis is elevated as a consequence of activated nucleoli and enhanced ribosome biogenesis in HGPS-derived fibroblasts. Depleting normal lamin A or inducing mutant lamin A expression are each sufficient to drive nucleolar expansion. We further show that nucleolar size correlates with donor age in primary fibroblasts derived from healthy individuals and that ribosomal RNA production increases with age, indicating that nucleolar size and activity can serve as aging biomarkers. While limiting ribosome biogenesis extends lifespan in several systems, we show that increased ribosome biogenesis and activity are a hallmark of premature aging.}, author = {Buchwalter, Abigail and HETZER, Martin W}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry}, publisher = {Springer Nature}, title = {{Nucleolar expansion and elevated protein translation in premature aging}}, doi = {10.1038/s41467-017-00322-z}, volume = {8}, year = {2017}, } @article{14005, abstract = {Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules using photoelectron holography. In the same experiment, we use LIED and photoelectron holography simultaneously, to observe coupled electronic-rotational dynamics taking place on similar timescales. These results offer perspectives for imaging ultrafast dynamics of molecules on femtosecond to attosecond timescales.}, author = {Walt, Samuel G. and Bhargava Ram, Niraghatam and Atala, Marcos and Shvetsov-Shilovski, Nikolay I and von Conta, Aaron and Baykusheva, Denitsa Rangelova and Lein, Manfred and Wörner, Hans Jakob}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary}, publisher = {Springer Nature}, title = {{Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering}}, doi = {10.1038/ncomms15651}, volume = {8}, year = {2017}, }