--- _id: '10588' abstract: - lang: eng text: We prove the Sobolev-to-Lipschitz property for metric measure spaces satisfying the quasi curvature-dimension condition recently introduced in Milman (Commun Pure Appl Math, to appear). We provide several applications to properties of the corresponding heat semigroup. In particular, under the additional assumption of infinitesimal Hilbertianity, we show the Varadhan short-time asymptotics for the heat semigroup with respect to the distance, and prove the irreducibility of the heat semigroup. These results apply in particular to large classes of (ideal) sub-Riemannian manifolds. acknowledgement: "The authors are grateful to Dr. Bang-Xian Han for helpful discussions on the Sobolev-to-Lipschitz property on metric measure spaces, and to Professor Kazuhiro Kuwae, Professor Emanuel Milman, Dr. Giorgio Stefani, and Dr. Gioacchino Antonelli for reading a preliminary version of this work and for their valuable comments and suggestions. Finally, they wish to express their gratitude to two anonymous Reviewers whose suggestions improved the presentation of this work.\r\n\r\nL.D.S. gratefully acknowledges funding of his position by the Austrian Science Fund (FWF) grant F65, and by the European Research Council (ERC, grant No. 716117, awarded to Prof. Dr. Jan Maas).\r\n\r\nK.S. gratefully acknowledges funding by: the JSPS Overseas Research Fellowships, Grant Nr. 290142; World Premier International Research Center Initiative (WPI), MEXT, Japan; JSPS Grant-in-Aid for Scientific Research on Innovative Areas “Discrete Geometric Analysis for Materials Design”, Grant Number 17H06465; and the Alexander von Humboldt Stiftung, Humboldt-Forschungsstipendium." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Lorenzo full_name: Dello Schiavo, Lorenzo id: ECEBF480-9E4F-11EA-B557-B0823DDC885E last_name: Dello Schiavo orcid: 0000-0002-9881-6870 - first_name: Kohei full_name: Suzuki, Kohei last_name: Suzuki citation: ama: Dello Schiavo L, Suzuki K. Sobolev-to-Lipschitz property on QCD- spaces and applications. Mathematische Annalen. 2022;384:1815-1832. doi:10.1007/s00208-021-02331-2 apa: Dello Schiavo, L., & Suzuki, K. (2022). Sobolev-to-Lipschitz property on QCD- spaces and applications. Mathematische Annalen. Springer Nature. https://doi.org/10.1007/s00208-021-02331-2 chicago: Dello Schiavo, Lorenzo, and Kohei Suzuki. “Sobolev-to-Lipschitz Property on QCD- Spaces and Applications.” Mathematische Annalen. Springer Nature, 2022. https://doi.org/10.1007/s00208-021-02331-2. ieee: L. Dello Schiavo and K. Suzuki, “Sobolev-to-Lipschitz property on QCD- spaces and applications,” Mathematische Annalen, vol. 384. Springer Nature, pp. 1815–1832, 2022. ista: Dello Schiavo L, Suzuki K. 2022. Sobolev-to-Lipschitz property on QCD- spaces and applications. Mathematische Annalen. 384, 1815–1832. mla: Dello Schiavo, Lorenzo, and Kohei Suzuki. “Sobolev-to-Lipschitz Property on QCD- Spaces and Applications.” Mathematische Annalen, vol. 384, Springer Nature, 2022, pp. 1815–32, doi:10.1007/s00208-021-02331-2. short: L. Dello Schiavo, K. Suzuki, Mathematische Annalen 384 (2022) 1815–1832. date_created: 2022-01-02T23:01:35Z date_published: 2022-12-01T00:00:00Z date_updated: 2023-08-02T13:39:05Z day: '01' ddc: - '510' department: - _id: JaMa doi: 10.1007/s00208-021-02331-2 ec_funded: 1 external_id: arxiv: - '2110.05137' isi: - '000734150200001' file: - access_level: open_access checksum: 2593abbf195e38efa93b6006b1e90eb1 content_type: application/pdf creator: alisjak date_created: 2022-01-03T11:08:31Z date_updated: 2022-01-03T11:08:31Z file_id: '10596' file_name: 2021_MathAnn_DelloSchiavo.pdf file_size: 410090 relation: main_file success: 1 file_date_updated: 2022-01-03T11:08:31Z has_accepted_license: '1' intvolume: ' 384' isi: 1 keyword: - quasi curvature-dimension condition - sub-riemannian geometry - Sobolev-to-Lipschitz property - Varadhan short-time asymptotics language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '12' oa: 1 oa_version: Published Version page: 1815-1832 project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics - _id: fc31cba2-9c52-11eb-aca3-ff467d239cd2 grant_number: F6504 name: Taming Complexity in Partial Differential Systems - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Mathematische Annalen publication_identifier: eissn: - 1432-1807 issn: - 0025-5831 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Sobolev-to-Lipschitz property on QCD- spaces and applications tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 384 year: '2022' ... --- _id: '10547' abstract: - lang: eng text: "We establish global-in-time existence results for thermodynamically consistent reaction-(cross-)diffusion systems coupled to an equation describing heat transfer. Our main interest is to model species-dependent diffusivities,\r\nwhile at the same time ensuring thermodynamic consistency. A key difficulty of the non-isothermal case lies in the intrinsic presence of cross-diffusion type phenomena like the Soret and the Dufour effect: due to the temperature/energy dependence of the thermodynamic equilibria, a nonvanishing temperature gradient may drive a concentration flux even in a situation with constant concentrations; likewise, a nonvanishing concentration gradient may drive a heat flux even in a case of spatially constant temperature. We use time discretisation and regularisation techniques and derive a priori estimates based on a suitable entropy and the associated entropy production. Renormalised solutions are used in cases where non-integrable diffusion fluxes or reaction terms appear." acknowledgement: M.K. gratefully acknowledges the hospitality of WIAS Berlin, where a major part of the project was carried out. The research stay of M.K. at WIAS Berlin was funded by the Austrian Federal Ministry of Education, Science and Research through a research fellowship for graduates of a promotio sub auspiciis. The research of A.M. has been partially supported by Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1114 “Scaling Cascades in Complex Systems” (Project no. 235221301), Subproject C05 “Effective models for materials and interfaces with multiple scales”. J.F. and A.M. are grateful for the hospitality of the Erwin Schrödinger Institute in Vienna, where some ideas for this work have been developed. The authors are grateful to two anonymous referees for several helpful comments, in particular for the short proof of estimate (2.7). article_processing_charge: No article_type: original author: - first_name: Julian L full_name: Fischer, Julian L id: 2C12A0B0-F248-11E8-B48F-1D18A9856A87 last_name: Fischer orcid: 0000-0002-0479-558X - first_name: Katharina full_name: Hopf, Katharina last_name: Hopf - first_name: Michael full_name: Kniely, Michael id: 2CA2C08C-F248-11E8-B48F-1D18A9856A87 last_name: Kniely orcid: 0000-0001-5645-4333 - first_name: Alexander full_name: Mielke, Alexander last_name: Mielke citation: ama: Fischer JL, Hopf K, Kniely M, Mielke A. Global existence analysis of energy-reaction-diffusion systems. SIAM Journal on Mathematical Analysis. 2022;54(1):220-267. doi:10.1137/20M1387237 apa: Fischer, J. L., Hopf, K., Kniely, M., & Mielke, A. (2022). Global existence analysis of energy-reaction-diffusion systems. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/20M1387237 chicago: Fischer, Julian L, Katharina Hopf, Michael Kniely, and Alexander Mielke. “Global Existence Analysis of Energy-Reaction-Diffusion Systems.” SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics, 2022. https://doi.org/10.1137/20M1387237. ieee: J. L. Fischer, K. Hopf, M. Kniely, and A. Mielke, “Global existence analysis of energy-reaction-diffusion systems,” SIAM Journal on Mathematical Analysis, vol. 54, no. 1. Society for Industrial and Applied Mathematics, pp. 220–267, 2022. ista: Fischer JL, Hopf K, Kniely M, Mielke A. 2022. Global existence analysis of energy-reaction-diffusion systems. SIAM Journal on Mathematical Analysis. 54(1), 220–267. mla: Fischer, Julian L., et al. “Global Existence Analysis of Energy-Reaction-Diffusion Systems.” SIAM Journal on Mathematical Analysis, vol. 54, no. 1, Society for Industrial and Applied Mathematics, 2022, pp. 220–67, doi:10.1137/20M1387237. short: J.L. Fischer, K. Hopf, M. Kniely, A. Mielke, SIAM Journal on Mathematical Analysis 54 (2022) 220–267. date_created: 2021-12-16T12:08:56Z date_published: 2022-01-04T00:00:00Z date_updated: 2023-08-02T13:37:03Z day: '04' department: - _id: JuFi doi: 10.1137/20M1387237 external_id: arxiv: - '2012.03792 ' isi: - '000762768000006' intvolume: ' 54' isi: 1 issue: '1' keyword: - Energy-Reaction-Diffusion Systems - Cross Diffusion - Global-In-Time Existence of Weak/Renormalised Solutions - Entropy Method - Onsager System - Soret/Dufour Effect language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2012.03792 month: '01' oa: 1 oa_version: Preprint page: 220-267 publication: SIAM Journal on Mathematical Analysis publication_identifier: issn: - 0036-1410 publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' scopus_import: '1' status: public title: Global existence analysis of energy-reaction-diffusion systems type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 54 year: '2022' ... --- _id: '10023' abstract: - lang: eng text: We study the temporal dissipation of variance and relative entropy for ergodic Markov Chains in continuous time, and compute explicitly the corresponding dissipation rates. These are identified, as is well known, in the case of the variance in terms of an appropriate Hilbertian norm; and in the case of the relative entropy, in terms of a Dirichlet form which morphs into a version of the familiar Fisher information under conditions of detailed balance. Here we obtain trajectorial versions of these results, valid along almost every path of the random motion and most transparent in the backwards direction of time. Martingale arguments and time reversal play crucial roles, as in the recent work of Karatzas, Schachermayer and Tschiderer for conservative diffusions. Extensions are developed to general “convex divergences” and to countable state-spaces. The steepest descent and gradient flow properties for the variance, the relative entropy, and appropriate generalizations, are studied along with their respective geometries under conditions of detailed balance, leading to a very direct proof for the HWI inequality of Otto and Villani in the present context. acknowledgement: I.K. acknowledges support from the U.S. National Science Foundation under Grant NSF-DMS-20-04997. J.M. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 716117) and from the Austrian Science Fund (FWF) through project F65. W.S. acknowledges support from the Austrian Science Fund (FWF) under grant P28861 and by the Vienna Science and Technology Fund (WWTF) through projects MA14-008 and MA16-021. article_processing_charge: No article_type: original author: - first_name: Ioannis full_name: Karatzas, Ioannis last_name: Karatzas - first_name: Jan full_name: Maas, Jan id: 4C5696CE-F248-11E8-B48F-1D18A9856A87 last_name: Maas orcid: 0000-0002-0845-1338 - first_name: Walter full_name: Schachermayer, Walter last_name: Schachermayer citation: ama: Karatzas I, Maas J, Schachermayer W. Trajectorial dissipation and gradient flow for the relative entropy in Markov chains. Communications in Information and Systems. 2021;21(4):481-536. doi:10.4310/CIS.2021.v21.n4.a1 apa: Karatzas, I., Maas, J., & Schachermayer, W. (2021). Trajectorial dissipation and gradient flow for the relative entropy in Markov chains. Communications in Information and Systems. International Press. https://doi.org/10.4310/CIS.2021.v21.n4.a1 chicago: Karatzas, Ioannis, Jan Maas, and Walter Schachermayer. “Trajectorial Dissipation and Gradient Flow for the Relative Entropy in Markov Chains.” Communications in Information and Systems. International Press, 2021. https://doi.org/10.4310/CIS.2021.v21.n4.a1. ieee: I. Karatzas, J. Maas, and W. Schachermayer, “Trajectorial dissipation and gradient flow for the relative entropy in Markov chains,” Communications in Information and Systems, vol. 21, no. 4. International Press, pp. 481–536, 2021. ista: Karatzas I, Maas J, Schachermayer W. 2021. Trajectorial dissipation and gradient flow for the relative entropy in Markov chains. Communications in Information and Systems. 21(4), 481–536. mla: Karatzas, Ioannis, et al. “Trajectorial Dissipation and Gradient Flow for the Relative Entropy in Markov Chains.” Communications in Information and Systems, vol. 21, no. 4, International Press, 2021, pp. 481–536, doi:10.4310/CIS.2021.v21.n4.a1. short: I. Karatzas, J. Maas, W. Schachermayer, Communications in Information and Systems 21 (2021) 481–536. date_created: 2021-09-19T08:53:19Z date_published: 2021-06-04T00:00:00Z date_updated: 2021-09-20T12:51:18Z day: '04' department: - _id: JaMa doi: 10.4310/CIS.2021.v21.n4.a1 ec_funded: 1 external_id: arxiv: - '2005.14177' intvolume: ' 21' issue: '4' keyword: - Markov Chain - relative entropy - time reversal - steepest descent - gradient flow language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2005.14177 month: '06' oa: 1 oa_version: Preprint page: 481-536 project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics - _id: fc31cba2-9c52-11eb-aca3-ff467d239cd2 grant_number: F6504 name: Taming Complexity in Partial Differential Systems publication: Communications in Information and Systems publication_identifier: issn: - 1526-7555 publication_status: published publisher: International Press quality_controlled: '1' status: public title: Trajectorial dissipation and gradient flow for the relative entropy in Markov chains type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 21 year: '2021' ... --- _id: '10108' abstract: - lang: eng text: We argue that the time is ripe to investigate differential monitoring, in which the specification of a program's behavior is implicitly given by a second program implementing the same informal specification. Similar ideas have been proposed before, and are currently implemented in restricted form for testing and specialized run-time analyses, aspects of which we combine. We discuss the challenges of implementing differential monitoring as a general-purpose, black-box run-time monitoring framework, and present promising results of a preliminary implementation, showing low monitoring overheads for diverse programs. acknowledgement: The authors would like to thank Borzoo Bonakdarpour, Derek Dreyer, Adrian Francalanza, Owolabi Legunsen, Mae Milano, Manuel Rigger, Cesar Sanchez, and the members of the IST Verification Seminar for their helpful comments and insights on various stages of this work, as well as the reviewers of RV’21 for their helpful suggestions on the actual paper. alternative_title: - LNCS article_processing_charge: No author: - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Mühlböck F, Henzinger TA. Differential monitoring. In: International Conference on Runtime Verification. Vol 12974. Cham: Springer Nature; 2021:231-243. doi:10.1007/978-3-030-88494-9_12' apa: 'Mühlböck, F., & Henzinger, T. A. (2021). Differential monitoring. In International Conference on Runtime Verification (Vol. 12974, pp. 231–243). Cham: Springer Nature. https://doi.org/10.1007/978-3-030-88494-9_12' chicago: 'Mühlböck, Fabian, and Thomas A Henzinger. “Differential Monitoring.” In International Conference on Runtime Verification, 12974:231–43. Cham: Springer Nature, 2021. https://doi.org/10.1007/978-3-030-88494-9_12.' ieee: F. Mühlböck and T. A. Henzinger, “Differential monitoring,” in International Conference on Runtime Verification, Virtual, 2021, vol. 12974, pp. 231–243. ista: 'Mühlböck F, Henzinger TA. 2021. Differential monitoring. International Conference on Runtime Verification. RV: Runtime Verification, LNCS, vol. 12974, 231–243.' mla: Mühlböck, Fabian, and Thomas A. Henzinger. “Differential Monitoring.” International Conference on Runtime Verification, vol. 12974, Springer Nature, 2021, pp. 231–43, doi:10.1007/978-3-030-88494-9_12. short: F. Mühlböck, T.A. Henzinger, in:, International Conference on Runtime Verification, Springer Nature, Cham, 2021, pp. 231–243. conference: end_date: 2021-10-14 location: Virtual name: 'RV: Runtime Verification' start_date: 2021-10-11 date_created: 2021-10-07T23:30:10Z date_published: 2021-10-06T00:00:00Z date_updated: 2023-08-14T07:20:30Z day: '06' ddc: - '005' department: - _id: ToHe doi: 10.1007/978-3-030-88494-9_12 external_id: isi: - '000719383800012' file: - access_level: open_access checksum: 554c7fdb259eda703a8b6328a6dad55a content_type: application/pdf creator: fmuehlbo date_created: 2021-10-07T23:32:18Z date_updated: 2021-10-07T23:32:18Z file_id: '10109' file_name: differentialmonitoring-cameraready-openaccess.pdf file_size: 350632 relation: main_file success: 1 file_date_updated: 2021-10-07T23:32:18Z has_accepted_license: '1' intvolume: ' 12974' isi: 1 keyword: - run-time verification - software engineering - implicit specification language: - iso: eng month: '10' oa: 1 oa_version: Preprint page: 231-243 place: Cham project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: International Conference on Runtime Verification publication_identifier: eisbn: - 978-3-030-88494-9 eissn: - 1611-3349 isbn: - 978-3-030-88493-2 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '9946' relation: extended_version status: public scopus_import: '1' status: public title: Differential monitoring type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12974 year: '2021' ... --- _id: '9946' abstract: - lang: eng text: We argue that the time is ripe to investigate differential monitoring, in which the specification of a program's behavior is implicitly given by a second program implementing the same informal specification. Similar ideas have been proposed before, and are currently implemented in restricted form for testing and specialized run-time analyses, aspects of which we combine. We discuss the challenges of implementing differential monitoring as a general-purpose, black-box run-time monitoring framework, and present promising results of a preliminary implementation, showing low monitoring overheads for diverse programs. acknowledgement: The authors would like to thank Borzoo Bonakdarpour, Derek Dreyer, Adrian Francalanza, Owolabi Legunsen, Matthew Milano, Manuel Rigger, Cesar Sanchez, and the members of the IST Verification Seminar for their helpful comments and insights on various stages of this work, as well as the reviewers of RV’21 for their helpful suggestions on the actual paper. alternative_title: - IST Austria Technical Report article_processing_charge: No author: - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Mühlböck F, Henzinger TA. Differential Monitoring. IST Austria; 2021. doi:10.15479/AT:ISTA:9946 apa: Mühlböck, F., & Henzinger, T. A. (2021). Differential monitoring. IST Austria. https://doi.org/10.15479/AT:ISTA:9946 chicago: Mühlböck, Fabian, and Thomas A Henzinger. Differential Monitoring. IST Austria, 2021. https://doi.org/10.15479/AT:ISTA:9946. ieee: F. Mühlböck and T. A. Henzinger, Differential monitoring. IST Austria, 2021. ista: Mühlböck F, Henzinger TA. 2021. Differential monitoring, IST Austria, 17p. mla: Mühlböck, Fabian, and Thomas A. Henzinger. Differential Monitoring. IST Austria, 2021, doi:10.15479/AT:ISTA:9946. short: F. Mühlböck, T.A. Henzinger, Differential Monitoring, IST Austria, 2021. date_created: 2021-08-20T20:00:37Z date_published: 2021-09-01T00:00:00Z date_updated: 2023-08-14T07:20:29Z day: '01' ddc: - '005' department: - _id: ToHe doi: 10.15479/AT:ISTA:9946 file: - access_level: open_access checksum: 0f9aafd59444cb6bdca6925d163ab946 content_type: application/pdf creator: fmuehlbo date_created: 2021-08-20T19:59:44Z date_updated: 2021-09-03T12:34:28Z file_id: '9948' file_name: differentialmonitoring-techreport.pdf file_size: '320453' relation: main_file file_date_updated: 2021-09-03T12:34:28Z has_accepted_license: '1' keyword: - run-time verification - software engineering - implicit specification language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '17' project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria related_material: record: - id: '9281' relation: other status: public - id: '10108' relation: shorter_version status: public status: public title: Differential monitoring type: technical_report user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '7369' abstract: - lang: eng text: Neuronal responses to complex stimuli and tasks can encompass a wide range of time scales. Understanding these responses requires measures that characterize how the information on these response patterns are represented across multiple temporal resolutions. In this paper we propose a metric – which we call multiscale relevance (MSR) – to capture the dynamical variability of the activity of single neurons across different time scales. The MSR is a non-parametric, fully featureless indicator in that it uses only the time stamps of the firing activity without resorting to any a priori covariate or invoking any specific structure in the tuning curve for neural activity. When applied to neural data from the mEC and from the ADn and PoS regions of freely-behaving rodents, we found that neurons having low MSR tend to have low mutual information and low firing sparsity across the correlates that are believed to be encoded by the region of the brain where the recordings were made. In addition, neurons with high MSR contain significant information on spatial navigation and allow to decode spatial position or head direction as efficiently as those neurons whose firing activity has high mutual information with the covariate to be decoded and significantly better than the set of neurons with high local variations in their interspike intervals. Given these results, we propose that the MSR can be used as a measure to rank and select neurons for their information content without the need to appeal to any a priori covariate. acknowledgement: This research was supported by the Kavli Foundation and the Centre of Excellence scheme of the Research Council of Norway (Centre for Neural Computation). RJC is currently receiving funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Ryan J full_name: Cubero, Ryan J id: 850B2E12-9CD4-11E9-837F-E719E6697425 last_name: Cubero orcid: 0000-0003-0002-1867 - first_name: Matteo full_name: Marsili, Matteo last_name: Marsili - first_name: Yasser full_name: Roudi, Yasser last_name: Roudi citation: ama: Cubero RJ, Marsili M, Roudi Y. Multiscale relevance and informative encoding in neuronal spike trains. Journal of Computational Neuroscience. 2020;48:85-102. doi:10.1007/s10827-020-00740-x apa: Cubero, R. J., Marsili, M., & Roudi, Y. (2020). Multiscale relevance and informative encoding in neuronal spike trains. Journal of Computational Neuroscience. Springer Nature. https://doi.org/10.1007/s10827-020-00740-x chicago: Cubero, Ryan J, Matteo Marsili, and Yasser Roudi. “Multiscale Relevance and Informative Encoding in Neuronal Spike Trains.” Journal of Computational Neuroscience. Springer Nature, 2020. https://doi.org/10.1007/s10827-020-00740-x. ieee: R. J. Cubero, M. Marsili, and Y. Roudi, “Multiscale relevance and informative encoding in neuronal spike trains,” Journal of Computational Neuroscience, vol. 48. Springer Nature, pp. 85–102, 2020. ista: Cubero RJ, Marsili M, Roudi Y. 2020. Multiscale relevance and informative encoding in neuronal spike trains. Journal of Computational Neuroscience. 48, 85–102. mla: Cubero, Ryan J., et al. “Multiscale Relevance and Informative Encoding in Neuronal Spike Trains.” Journal of Computational Neuroscience, vol. 48, Springer Nature, 2020, pp. 85–102, doi:10.1007/s10827-020-00740-x. short: R.J. Cubero, M. Marsili, Y. Roudi, Journal of Computational Neuroscience 48 (2020) 85–102. date_created: 2020-01-28T10:34:00Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:35:22Z day: '01' ddc: - '004' - '519' - '570' department: - _id: SaSi doi: 10.1007/s10827-020-00740-x ec_funded: 1 external_id: isi: - '000515321800006' file: - access_level: open_access checksum: 036e9451d6cd0c190ad25791bf82393b content_type: application/pdf creator: rcubero date_created: 2020-01-28T09:31:09Z date_updated: 2020-07-14T12:47:56Z file_id: '7380' file_name: 10827_2020_740_MOESM1_ESM.pdf file_size: 1941355 relation: supplementary_material - access_level: open_access checksum: 4dd8b1fd4b54486f79d82ac7b2a412b2 content_type: application/pdf creator: rcubero date_created: 2020-01-28T09:31:09Z date_updated: 2020-07-14T12:47:56Z file_id: '7381' file_name: Cubero2020_Article_MultiscaleRelevanceAndInformat.pdf file_size: 3257880 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 48' isi: 1 keyword: - Time series analysis - Multiple time scale analysis - Spike train data - Information theory - Bayesian decoding language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 85-102 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Journal of Computational Neuroscience publication_identifier: eissn: - 1573-6873 issn: - 0929-5313 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Multiscale relevance and informative encoding in neuronal spike trains tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 48 year: '2020' ... --- _id: '6473' abstract: - lang: eng text: "Single cells are constantly interacting with their environment and each other, more importantly, the accurate perception of environmental cues is crucial for growth, survival, and reproduction. This communication between cells and their environment can be formalized in mathematical terms and be quantified as the information flow between them, as prescribed by information theory. \r\nThe recent availability of real–time dynamical patterns of signaling molecules in single cells has allowed us to identify encoding about the identity of the environment in the time–series. However, efficient estimation of the information transmitted by these signals has been a data–analysis challenge due to the high dimensionality of the trajectories and the limited number of samples. In the first part of this thesis, we develop and evaluate decoding–based estimation methods to lower bound the mutual information and derive model–based precise information estimates for biological reaction networks governed by the chemical master equation. This is followed by applying the decoding-based methods to study the intracellular representation of extracellular changes in budding yeast, by observing the transient dynamics of nuclear translocation of 10 transcription factors in response to 3 stress conditions. Additionally, we apply these estimators to previously published data on ERK and Ca2+ signaling and yeast stress response. We argue that this single cell decoding-based measure of information provides an unbiased, quantitative and interpretable measure for the fidelity of biological signaling processes. \r\nFinally, in the last section, we deal with gene regulation which is primarily controlled by transcription factors (TFs) that bind to the DNA to activate gene expression. The possibility that non-cognate TFs activate transcription diminishes the accuracy of regulation with potentially disastrous effects for the cell. This ’crosstalk’ acts as a previously unexplored source of noise in biochemical networks and puts a strong constraint on their performance. To mitigate erroneous initiation we propose an out of equilibrium scheme that implements kinetic proofreading. We show that such architectures are favored over their equilibrium counterparts for complex organisms despite introducing noise in gene expression. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Sarah A full_name: Cepeda Humerez, Sarah A id: 3DEE19A4-F248-11E8-B48F-1D18A9856A87 last_name: Cepeda Humerez citation: ama: Cepeda Humerez SA. Estimating information flow in single cells. 2019. doi:10.15479/AT:ISTA:6473 apa: Cepeda Humerez, S. A. (2019). Estimating information flow in single cells. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6473 chicago: Cepeda Humerez, Sarah A. “Estimating Information Flow in Single Cells.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6473. ieee: S. A. Cepeda Humerez, “Estimating information flow in single cells,” Institute of Science and Technology Austria, 2019. ista: Cepeda Humerez SA. 2019. Estimating information flow in single cells. Institute of Science and Technology Austria. mla: Cepeda Humerez, Sarah A. Estimating Information Flow in Single Cells. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6473. short: S.A. Cepeda Humerez, Estimating Information Flow in Single Cells, Institute of Science and Technology Austria, 2019. date_created: 2019-05-21T00:11:23Z date_published: 2019-05-23T00:00:00Z date_updated: 2023-09-19T15:13:26Z day: '23' ddc: - '004' degree_awarded: PhD department: - _id: GaTk doi: 10.15479/AT:ISTA:6473 file: - access_level: closed checksum: 75f9184c1346e10a5de5f9cc7338309a content_type: application/zip creator: scepeda date_created: 2019-05-23T11:18:16Z date_updated: 2020-07-14T12:47:31Z file_id: '6480' file_name: Thesis_Cepeda.zip file_size: 23937464 relation: source_file - access_level: open_access checksum: afdc0633ddbd71d5b13550d7fb4f4454 content_type: application/pdf creator: scepeda date_created: 2019-05-23T11:18:13Z date_updated: 2020-07-14T12:47:31Z file_id: '6481' file_name: CepedaThesis.pdf file_size: 16646985 relation: main_file file_date_updated: 2020-07-14T12:47:31Z has_accepted_license: '1' keyword: - Information estimation - Time-series - data analysis language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '135' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1576' relation: dissertation_contains status: public - id: '6900' relation: dissertation_contains status: public - id: '281' relation: dissertation_contains status: public - id: '2016' relation: dissertation_contains status: public status: public supervisor: - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 title: Estimating information flow in single cells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '11691' abstract: - lang: eng text: In this paper we consider the online ftp problem. The goal is to service a sequence of file transfer requests given bandwidth constraints of the underlying communication network. The main result of the paper is a technique that leads to algorithms that optimize several natural metrics, such as max-stretch, total flow time, max flow time, and total completion time. In particular, we show how to achieve optimum total flow time and optimum max-stretch if we increase the capacity of the underlying network by a logarithmic factor. We show that the resource augmentation is necessary by proving polynomial lower bounds on the max-stretch and total flow time for the case where online and offline algorithms are using same-capacity edges. Moreover, we also give polylogarithmic lower bounds on the resource augmentation factor necessary in order to keep the total flow time and max-stretch within a constant factor of optimum. article_processing_charge: No author: - first_name: Ashish full_name: Goel, Ashish last_name: Goel - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Serge full_name: Plotkin, Serge last_name: Plotkin - first_name: Eva full_name: Tardos, Eva last_name: Tardos citation: ama: 'Goel A, Henzinger MH, Plotkin S, Tardos E. Scheduling data transfers in a network and the set scheduling problem. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing. Association for Computing Machinery; 1999:189-197. doi:10.1145/301250.301300' apa: 'Goel, A., Henzinger, M. H., Plotkin, S., & Tardos, E. (1999). Scheduling data transfers in a network and the set scheduling problem. In Proceedings of the 31st annual ACM symposium on Theory of computing (pp. 189–197). Atlanta, GA, United States: Association for Computing Machinery. https://doi.org/10.1145/301250.301300' chicago: Goel, Ashish, Monika H Henzinger, Serge Plotkin, and Eva Tardos. “Scheduling Data Transfers in a Network and the Set Scheduling Problem.” In Proceedings of the 31st Annual ACM Symposium on Theory of Computing, 189–97. Association for Computing Machinery, 1999. https://doi.org/10.1145/301250.301300. ieee: A. Goel, M. H. Henzinger, S. Plotkin, and E. Tardos, “Scheduling data transfers in a network and the set scheduling problem,” in Proceedings of the 31st annual ACM symposium on Theory of computing, Atlanta, GA, United States, 1999, pp. 189–197. ista: 'Goel A, Henzinger MH, Plotkin S, Tardos E. 1999. Scheduling data transfers in a network and the set scheduling problem. Proceedings of the 31st annual ACM symposium on Theory of computing. STOC: Symposium on Theory of Computing, 189–197.' mla: Goel, Ashish, et al. “Scheduling Data Transfers in a Network and the Set Scheduling Problem.” Proceedings of the 31st Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, 1999, pp. 189–97, doi:10.1145/301250.301300. short: A. Goel, M.H. Henzinger, S. Plotkin, E. Tardos, in:, Proceedings of the 31st Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, 1999, pp. 189–197. conference: end_date: 1999-05-04 location: ' Atlanta, GA, United States' name: 'STOC: Symposium on Theory of Computing' start_date: 1999-05-01 date_created: 2022-07-29T07:43:00Z date_published: 1999-05-01T00:00:00Z date_updated: 2023-02-09T11:47:09Z day: '01' doi: 10.1145/301250.301300 extern: '1' keyword: - Scheduling - Flow time language: - iso: eng month: '05' oa_version: None page: 189-197 publication: Proceedings of the 31st annual ACM symposium on Theory of computing publication_identifier: issn: - 0196-6774 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Scheduling data transfers in a network and the set scheduling problem type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '1999' ... --- _id: '4590' abstract: - lang: eng text: 'We introduce a temporal logic for the specification of real-time systems. Our logic, TPTL, employs a novel quantifier construct for referencing time: the "freeze" quantifier binds a variable to the time of the local temporal context. TPTL is both a natural language for specification and a suitable formalism for verification. We present a tableau-based decision procedure and a model-checking algorithm for TPTL. Several generalizations of TPTL are shown to be highly undecidable.' acknowledgement: The authors thank Rance Cleaveland, Limor Fix, David Karr, Peter Kopke, Fred Schneider, and Bernhard Steffen for helpful comments. alternative_title: - AMAST Series in Computing article_processing_charge: No author: - first_name: Rajeev full_name: Alur, Rajeev last_name: Alur - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: 'Alur R, Henzinger TA. Real-time system = discrete system + clock variables. In: Rus T, Rattray C, eds. Theories and Experiences for Real-Time System Development. Vol 2. AMAST Series in Computing. World Scientific Publishing; 1994:1-29. doi:10.1142/9789812831583_0001' apa: Alur, R., & Henzinger, T. A. (1994). Real-time system = discrete system + clock variables. In T. Rus & C. Rattray (Eds.), Theories and Experiences for Real-Time System Development (Vol. 2, pp. 1–29). World Scientific Publishing. https://doi.org/10.1142/9789812831583_0001 chicago: Alur, Rajeev, and Thomas A Henzinger. “Real-Time System = Discrete System + Clock Variables.” In Theories and Experiences for Real-Time System Development, edited by Teodor Rus and Charles Rattray, 2:1–29. AMAST Series in Computing. World Scientific Publishing, 1994. https://doi.org/10.1142/9789812831583_0001. ieee: R. Alur and T. A. Henzinger, “Real-time system = discrete system + clock variables,” in Theories and Experiences for Real-Time System Development, vol. 2, T. Rus and C. Rattray, Eds. World Scientific Publishing, 1994, pp. 1–29. ista: 'Alur R, Henzinger TA. 1994.Real-time system = discrete system + clock variables. In: Theories and Experiences for Real-Time System Development. AMAST Series in Computing, vol. 2, 1–29.' mla: Alur, Rajeev, and Thomas A. Henzinger. “Real-Time System = Discrete System + Clock Variables.” Theories and Experiences for Real-Time System Development, edited by Teodor Rus and Charles Rattray, vol. 2, World Scientific Publishing, 1994, pp. 1–29, doi:10.1142/9789812831583_0001. short: R. Alur, T.A. Henzinger, in:, T. Rus, C. Rattray (Eds.), Theories and Experiences for Real-Time System Development, World Scientific Publishing, 1994, pp. 1–29. date_created: 2018-12-11T12:09:38Z date_published: 1994-01-01T00:00:00Z date_updated: 2022-06-02T08:07:57Z day: '01' doi: 10.1142/9789812831583_0001 editor: - first_name: Teodor full_name: Rus, Teodor last_name: Rus - first_name: Charles full_name: Rattray, Charles last_name: Rattray extern: '1' intvolume: ' 2' keyword: - real-time systems - clock variables language: - iso: eng main_file_link: - url: https://link.springer.com/article/10.1007/s100090050007 month: '01' oa_version: None page: 1 - 29 publication: Theories and Experiences for Real-Time System Development publication_identifier: isbn: - ' 9789810219239' publication_status: published publisher: World Scientific Publishing publist_id: '117' quality_controlled: '1' series_title: AMAST Series in Computing status: public title: Real-time system = discrete system + clock variables type: book_chapter user_id: ea97e931-d5af-11eb-85d4-e6957dddbf17 volume: 2 year: '1994' ...