@article{12156, abstract = {Models of transcriptional regulation that assume equilibrium binding of transcription factors have been less successful at predicting gene expression from sequence in eukaryotes than in bacteria. This could be due to the non-equilibrium nature of eukaryotic regulation. Unfortunately, the space of possible non-equilibrium mechanisms is vast and predominantly uninteresting. The key question is therefore how this space can be navigated efficiently, to focus on mechanisms and models that are biologically relevant. In this review, we advocate for the normative role of theory—theory that prescribes rather than just describes—in providing such a focus. Theory should expand its remit beyond inferring mechanistic models from data, towards identifying non-equilibrium gene regulatory schemes that may have been evolutionarily selected, despite their energy consumption, because they are precise, reliable, fast, or otherwise outperform regulation at equilibrium. We illustrate our reasoning by toy examples for which we provide simulation code.}, author = {Zoller, Benjamin and Gregor, Thomas and Tkačik, Gašper}, issn = {2452-3100}, journal = {Current Opinion in Systems Biology}, keywords = {Applied Mathematics, Computer Science Applications, Drug Discovery, General Biochemistry, Genetics and Molecular Biology, Modeling and Simulation}, number = {9}, publisher = {Elsevier}, title = {{Eukaryotic gene regulation at equilibrium, or non?}}, doi = {10.1016/j.coisb.2022.100435}, volume = {31}, year = {2022}, } @article{9018, abstract = {Anti-silencing function 1 (ASF1) is a conserved H3-H4 histone chaperone involved in histone dynamics during replication, transcription, and DNA repair. Overexpressed in proliferating tissues including many tumors, ASF1 has emerged as a promising therapeutic target. Here, we combine structural, computational, and biochemical approaches to design peptides that inhibit the ASF1-histone interaction. Starting from the structure of the human ASF1-histone complex, we developed a rational design strategy combining epitope tethering and optimization of interface contacts to identify a potent peptide inhibitor with a dissociation constant of 3 nM. When introduced into cultured cells, the inhibitors impair cell proliferation, perturb cell-cycle progression, and reduce cell migration and invasion in a manner commensurate with their affinity for ASF1. Finally, we find that direct injection of the most potent ASF1 peptide inhibitor in mouse allografts reduces tumor growth. Our results open new avenues to use ASF1 inhibitors as promising leads for cancer therapy.}, author = {Bakail, May M and Gaubert, Albane and Andreani, Jessica and Moal, Gwenaëlle and Pinna, Guillaume and Boyarchuk, Ekaterina and Gaillard, Marie-Cécile and Courbeyrette, Regis and Mann, Carl and Thuret, Jean-Yves and Guichard, Bérengère and Murciano, Brice and Richet, Nicolas and Poitou, Adeline and Frederic, Claire and Le Du, Marie-Hélène and Agez, Morgane and Roelants, Caroline and Gurard-Levin, Zachary A. and Almouzni, Geneviève and Cherradi, Nadia and Guerois, Raphael and Ochsenbein, Françoise}, issn = {2451-9456}, journal = {Cell Chemical Biology}, keywords = {Clinical Biochemistry, Molecular Medicine, Biochemistry, Molecular Biology, Pharmacology, Drug Discovery}, number = {11}, pages = {1573--1585.e10}, publisher = {Elsevier}, title = {{Design on a rational basis of high-affinity peptides inhibiting the histone chaperone ASF1}}, doi = {10.1016/j.chembiol.2019.09.002}, volume = {26}, year = {2019}, } @article{13436, abstract = {Cross-metathesis reactions of α,β-unsaturated sulfones and sulfoxides in the presence of molybdenum and ruthenium pre-catalysts were tested. A selective metahesis reaction was achieved between functionalized terminal olefins and vinyl sulfones by using the ‘second generation’ ruthenium catalysts 1c–h while the highly active Schrock catalyst 1b was found to be functional group incompatible with vinyl sulfones. The cross-metathesis products were isolated in good yields with an excellent (E)-selectivity. Both the molybdenum and ruthenium-based complexes were, however, incompatible with α,β- and β,γ-unsaturated sulfoxides.}, author = {Michrowska, Anna and Bieniek, Michał and Kim, Mikhail and Klajn, Rafal and Grela, Karol}, issn = {1464-5416}, journal = {Tetrahedron}, keywords = {Organic Chemistry, Drug Discovery, Biochemistry}, number = {25}, pages = {4525--4531}, publisher = {Elsevier}, title = {{Cross-metathesis reaction of vinyl sulfones and sulfoxides}}, doi = {10.1016/s0040-4020(03)00682-3}, volume = {59}, year = {2003}, }