--- _id: '12972' abstract: - lang: eng text: Embroidery is a long-standing and high-quality approach to making logos and images on textiles. Nowadays, it can also be performed via automated machines that weave threads with high spatial accuracy. A characteristic feature of the appearance of the threads is a high degree of anisotropy. The anisotropic behavior is caused by depositing thin but long strings of thread. As a result, the stitched patterns convey both color and direction. Artists leverage this anisotropic behavior to enhance pure color images with textures, illusions of motion, or depth cues. However, designing colorful embroidery patterns with prescribed directionality is a challenging task, one usually requiring an expert designer. In this work, we propose an interactive algorithm that generates machine-fabricable embroidery patterns from multi-chromatic images equipped with user-specified directionality fields.We cast the problem of finding a stitching pattern into vector theory. To find a suitable stitching pattern, we extract sources and sinks from the divergence field of the vector field extracted from the input and use them to trace streamlines. We further optimize the streamlines to guarantee a smooth and connected stitching pattern. The generated patterns approximate the color distribution constrained by the directionality field. To allow for further artistic control, the trade-off between color match and directionality match can be interactively explored via an intuitive slider. We showcase our approach by fabricating several embroidery paths. acknowledgement: This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 715767 – MATERIALIZABLE), and FWF Lise Meitner (Grant M 3319). We thank the anonymous reviewers for their insightful feedback; Solal Pirelli, Shardul Chiplunkar, and Paola Mejia for proofreading; everyone in the visual computing group at ISTA for inspiring lunch and coffee breaks; Thibault Tricard for help producing the results of Phasor Noise. article_processing_charge: No article_type: original author: - first_name: Zhenyuan full_name: Liu, Zhenyuan id: 70f0d7cf-ae65-11ec-a14f-89dfc5505b19 last_name: Liu orcid: 0000-0001-9200-5690 - first_name: Michael full_name: Piovarci, Michael id: 62E473F4-5C99-11EA-A40E-AF823DDC885E last_name: Piovarci - first_name: Christian full_name: Hafner, Christian id: 400429CC-F248-11E8-B48F-1D18A9856A87 last_name: Hafner - first_name: Raphael full_name: Charrondiere, Raphael id: a3a24133-2cc7-11ec-be88-8ddaf6f464b1 last_name: Charrondiere - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Liu Z, Piovarci M, Hafner C, Charrondiere R, Bickel B. Directionality-aware design of embroidery patterns. Computer Graphics Forum. 2023;42(2):397-409. doi:10.1111/cgf.14770 apa: 'Liu, Z., Piovarci, M., Hafner, C., Charrondiere, R., & Bickel, B. (2023). Directionality-aware design of embroidery patterns. Computer Graphics Forum. Saarbrucken, Germany: Wiley. https://doi.org/10.1111/cgf.14770 ' chicago: Liu, Zhenyuan, Michael Piovarci, Christian Hafner, Raphael Charrondiere, and Bernd Bickel. “Directionality-Aware Design of Embroidery Patterns.” Computer Graphics Forum. Wiley, 2023. https://doi.org/10.1111/cgf.14770 . ieee: Z. Liu, M. Piovarci, C. Hafner, R. Charrondiere, and B. Bickel, “Directionality-aware design of embroidery patterns,” Computer Graphics Forum, vol. 42, no. 2. Wiley, pp. 397–409, 2023. ista: Liu Z, Piovarci M, Hafner C, Charrondiere R, Bickel B. 2023. Directionality-aware design of embroidery patterns. Computer Graphics Forum. 42(2), 397–409. mla: Liu, Zhenyuan, et al. “Directionality-Aware Design of Embroidery Patterns.” Computer Graphics Forum, vol. 42, no. 2, Wiley, 2023, pp. 397–409, doi:10.1111/cgf.14770 . short: Z. Liu, M. Piovarci, C. Hafner, R. Charrondiere, B. Bickel, Computer Graphics Forum 42 (2023) 397–409. conference: end_date: 2023-05-12 location: Saarbrucken, Germany name: 'EG: Eurographics' start_date: 2023-05-08 date_created: 2023-05-16T08:47:25Z date_published: 2023-05-08T00:00:00Z date_updated: 2023-08-01T14:47:05Z day: '08' ddc: - '004' department: - _id: BeBi doi: '10.1111/cgf.14770 ' ec_funded: 1 external_id: isi: - '001000062600033' file: - access_level: open_access checksum: 4c188c2be4745467a8790bbf5d6491aa content_type: application/pdf creator: mpiovarc date_created: 2023-05-16T08:28:37Z date_updated: 2023-05-16T08:28:37Z file_id: '12974' file_name: Zhenyuan2023.pdf file_size: 24003702 relation: main_file success: 1 file_date_updated: 2023-05-16T08:28:37Z has_accepted_license: '1' intvolume: ' 42' isi: 1 issue: '2' keyword: - embroidery - design - directionality - density - image language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '05' oa: 1 oa_version: Published Version page: 397-409 project: - _id: eb901961-77a9-11ec-83b8-f5c883a62027 grant_number: M03319 name: Perception-Aware Appearance Fabrication - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Computer Graphics Forum publication_identifier: issn: - 1467-8659 publication_status: published publisher: Wiley quality_controlled: '1' status: public title: Directionality-aware design of embroidery patterns tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 42 year: '2023' ... --- _id: '14628' abstract: - lang: eng text: We introduce a compact, intuitive procedural graph representation for cellular metamaterials, which are small-scale, tileable structures that can be architected to exhibit many useful material properties. Because the structures’ “architectures” vary widely—with elements such as beams, thin shells, and solid bulks—it is difficult to explore them using existing representations. Generic approaches like voxel grids are versatile, but it is cumbersome to represent and edit individual structures; architecture-specific approaches address these issues, but are incompatible with one another. By contrast, our procedural graph succinctly represents the construction process for any structure using a simple skeleton annotated with spatially varying thickness. To express the highly constrained triply periodic minimal surfaces (TPMS) in this manner, we present the first fully automated version of the conjugate surface construction method, which allows novices to create complex TPMS from intuitive input. We demonstrate our representation’s expressiveness, accuracy, and compactness by constructing a wide range of established structures and hundreds of novel structures with diverse architectures and material properties. We also conduct a user study to verify our representation’s ease-of-use and ability to expand engineers’ capacity for exploration. acknowledgement: "The authors thank Mina Konaković Luković and Michael Foshey for their early contributions to this project, David Palmer and Paul Zhang for their insightful discussions about minimal surfaces and the CSCM, Julian Panetta for providing the Elastic Textures code, and Hannes Hergeth for his feedback and support. We also thank our user study participants and anonymous reviewers.\r\nThis material is based upon work supported by the National Science Foundation\r\n(NSF) Graduate Research Fellowship under Grant No. 2141064; the MIT Morningside\r\nAcademy for Design Fellowship; the Defense Advanced Research Projects Agency\r\n(DARPA) Grant No. FA8750-20-C-0075; the ERC Consolidator Grant No. 101045083,\r\n“CoDiNA: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena”; and the NewSat project, which is co-funded by the Operational Program for Competitiveness and Internationalisation (COMPETE2020), Portugal 2020, the European Regional Development Fund (ERDF), and the Portuguese Foundation for Science and Technology (FTC) under the MIT Portugal program." article_number: '168' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Liane full_name: Makatura, Liane last_name: Makatura - first_name: Bohan full_name: Wang, Bohan last_name: Wang - first_name: Yi-Lu full_name: Chen, Yi-Lu id: 0b467602-dbcd-11ea-9d1d-ed480aa46b70 last_name: Chen - first_name: Bolei full_name: Deng, Bolei last_name: Deng - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Wojciech full_name: Matusik, Wojciech last_name: Matusik citation: ama: 'Makatura L, Wang B, Chen Y-L, et al. Procedural metamaterials: A unified procedural graph for metamaterial design. ACM Transactions on Graphics. 2023;42(5). doi:10.1145/3605389' apa: 'Makatura, L., Wang, B., Chen, Y.-L., Deng, B., Wojtan, C., Bickel, B., & Matusik, W. (2023). Procedural metamaterials: A unified procedural graph for metamaterial design. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3605389' chicago: 'Makatura, Liane, Bohan Wang, Yi-Lu Chen, Bolei Deng, Chris Wojtan, Bernd Bickel, and Wojciech Matusik. “Procedural Metamaterials: A Unified Procedural Graph for Metamaterial Design.” ACM Transactions on Graphics. Association for Computing Machinery, 2023. https://doi.org/10.1145/3605389.' ieee: 'L. Makatura et al., “Procedural metamaterials: A unified procedural graph for metamaterial design,” ACM Transactions on Graphics, vol. 42, no. 5. Association for Computing Machinery, 2023.' ista: 'Makatura L, Wang B, Chen Y-L, Deng B, Wojtan C, Bickel B, Matusik W. 2023. Procedural metamaterials: A unified procedural graph for metamaterial design. ACM Transactions on Graphics. 42(5), 168.' mla: 'Makatura, Liane, et al. “Procedural Metamaterials: A Unified Procedural Graph for Metamaterial Design.” ACM Transactions on Graphics, vol. 42, no. 5, 168, Association for Computing Machinery, 2023, doi:10.1145/3605389.' short: L. Makatura, B. Wang, Y.-L. Chen, B. Deng, C. Wojtan, B. Bickel, W. Matusik, ACM Transactions on Graphics 42 (2023). date_created: 2023-11-29T15:02:03Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-12-04T08:09:05Z day: '01' ddc: - '531' - '006' department: - _id: GradSch - _id: ChWo - _id: BeBi doi: 10.1145/3605389 file: - access_level: open_access checksum: 0192f597d7a2ceaf89baddfd6190d4c8 content_type: application/zip creator: yichen date_created: 2023-11-29T15:16:01Z date_updated: 2023-11-29T15:16:01Z file_id: '14630' file_name: tog-22-0089-File004.zip file_size: 95467870 relation: main_file success: 1 - access_level: open_access checksum: 7fb024963be81933494f38de191e4710 content_type: application/zip creator: yichen date_created: 2023-11-29T15:16:01Z date_updated: 2023-11-29T15:16:01Z file_id: '14631' file_name: tog-22-0089-File005.zip file_size: 103731880 relation: main_file success: 1 - access_level: open_access checksum: b7d6829ce396e21cac9fae0ec7130a6b content_type: application/pdf creator: dernst date_created: 2023-12-04T08:04:14Z date_updated: 2023-12-04T08:04:14Z file_id: '14638' file_name: 2023_ACMToG_Makatura.pdf file_size: 57067476 relation: main_file success: 1 file_date_updated: 2023-12-04T08:04:14Z has_accepted_license: '1' intvolume: ' 42' issue: '5' keyword: - Computer Graphics and Computer-Aided Design language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: ACM Transactions on Graphics publication_identifier: issn: - 0730-0301 - 1557-7368 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: 'Procedural metamaterials: A unified procedural graph for metamaterial design' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2023' ... --- _id: '13049' abstract: - lang: eng text: "We propose a computational design approach for covering a surface with individually addressable RGB LEDs, effectively forming a low-resolution surface screen. To achieve a low-cost and scalable approach, we propose creating designs from flat PCB panels bent in-place along the surface of a 3D printed core. Working with standard rigid PCBs enables the use of\r\nestablished PCB manufacturing services, allowing the fabrication of designs with several hundred LEDs. \r\nOur approach optimizes the PCB geometry for folding, and then jointly optimizes the LED packing, circuit and routing, solving a challenging layout problem under strict manufacturing requirements. Unlike paper, PCBs cannot bend beyond a certain point without breaking. Therefore, we introduce parametric cut patterns acting as hinges, designed to allow bending while remaining compact. To tackle the joint optimization of placement, circuit and routing, we propose a specialized algorithm that splits the global problem into one sub-problem per triangle, which is then individually solved.\r\nOur technique generates PCB blueprints in a completely automated way. After being fabricated by a PCB manufacturing service, the boards are bent and glued by the user onto the 3D printed support. We demonstrate our technique on a range of physical models and virtual examples, creating intricate surface light patterns from hundreds of LEDs." acknowledged_ssus: - _id: M-Shop acknowledgement: We thank the reviewers for the valuable feedback. We also thank the Miba Machine Shop at ISTA, PCBWay, and PragoBoard for helping us with fabrication and assembly. This project was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 715767 – MATERIALIZABLE). article_number: '142' article_processing_charge: No article_type: original author: - first_name: Marco full_name: Freire, Marco last_name: Freire - first_name: Manas full_name: Bhargava, Manas id: FF8FA64C-AA6A-11E9-99AD-50D4E5697425 last_name: Bhargava orcid: 0009-0007-6138-6890 - first_name: Camille full_name: Schreck, Camille id: 2B14B676-F248-11E8-B48F-1D18A9856A87 last_name: Schreck - first_name: Pierre-Alexandre full_name: Hugron, Pierre-Alexandre last_name: Hugron - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Sylvain full_name: Lefebvre, Sylvain last_name: Lefebvre citation: ama: 'Freire M, Bhargava M, Schreck C, Hugron P-A, Bickel B, Lefebvre S. PCBend: Light up your 3D shapes with foldable circuit boards. Transactions on Graphics. 2023;42(4). doi:10.1145/3592411' apa: 'Freire, M., Bhargava, M., Schreck, C., Hugron, P.-A., Bickel, B., & Lefebvre, S. (2023). PCBend: Light up your 3D shapes with foldable circuit boards. Transactions on Graphics. Los Angeles, CA, United States: Association for Computing Machinery. https://doi.org/10.1145/3592411' chicago: 'Freire, Marco, Manas Bhargava, Camille Schreck, Pierre-Alexandre Hugron, Bernd Bickel, and Sylvain Lefebvre. “PCBend: Light up Your 3D Shapes with Foldable Circuit Boards.” Transactions on Graphics. Association for Computing Machinery, 2023. https://doi.org/10.1145/3592411.' ieee: 'M. Freire, M. Bhargava, C. Schreck, P.-A. Hugron, B. Bickel, and S. Lefebvre, “PCBend: Light up your 3D shapes with foldable circuit boards,” Transactions on Graphics, vol. 42, no. 4. Association for Computing Machinery, 2023.' ista: 'Freire M, Bhargava M, Schreck C, Hugron P-A, Bickel B, Lefebvre S. 2023. PCBend: Light up your 3D shapes with foldable circuit boards. Transactions on Graphics. 42(4), 142.' mla: 'Freire, Marco, et al. “PCBend: Light up Your 3D Shapes with Foldable Circuit Boards.” Transactions on Graphics, vol. 42, no. 4, 142, Association for Computing Machinery, 2023, doi:10.1145/3592411.' short: M. Freire, M. Bhargava, C. Schreck, P.-A. Hugron, B. Bickel, S. Lefebvre, Transactions on Graphics 42 (2023). conference: end_date: 2023-08-10 location: Los Angeles, CA, United States name: 'SIGGRAPH: Computer Graphics and Interactive Techniques Conference' start_date: 2023-08-06 date_created: 2023-05-22T08:37:04Z date_published: 2023-07-26T00:00:00Z date_updated: 2024-01-29T10:30:49Z day: '26' ddc: - '006' department: - _id: GradSch - _id: BeBi doi: 10.1145/3592411 ec_funded: 1 external_id: isi: - '001044671300108' file: - access_level: open_access checksum: a0b0ba3b36f43a94388e8824613d812a content_type: application/pdf creator: dernst date_created: 2023-06-19T11:02:23Z date_updated: 2023-06-19T11:02:23Z file_id: '13156' file_name: 2023_ACMToG_Freire.pdf file_size: 78940724 relation: main_file success: 1 - access_level: open_access checksum: b9206bbb67af82df49b7e7cdbde3410c content_type: application/pdf creator: dernst date_created: 2023-06-20T12:20:51Z date_updated: 2023-06-20T12:20:51Z file_id: '13157' file_name: 2023_ACMToG_SuppMaterial_Freire.pdf file_size: 34345905 relation: main_file success: 1 file_date_updated: 2023-06-20T12:20:51Z has_accepted_license: '1' intvolume: ' 42' isi: 1 issue: '4' keyword: - PCB design and layout - Mesh geometry models language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: 'PCBend: Light up your 3D shapes with foldable circuit boards' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2023' ... --- _id: '13188' abstract: - lang: eng text: "The Kirchhoff rod model describes the bending and twisting of slender elastic rods in three dimensions, and has been widely studied to enable the prediction of how a rod will deform, given its geometry and boundary conditions. In this work, we study a number of inverse problems with the goal of computing the geometry of a straight rod that will automatically deform to match a curved target shape after attaching its endpoints to a support structure. Our solution lets us finely control the static equilibrium state of a rod by varying the cross-sectional profiles along its length.\r\nWe also show that the set of physically realizable equilibrium states admits a concise geometric description in terms of linear line complexes, which leads to very efficient computational design algorithms. Implemented in an interactive software tool, they allow us to convert three-dimensional hand-drawn spline curves to elastic rods, and give feedback about the feasibility and practicality of a design in real time. We demonstrate the efficacy of our method by designing and manufacturing several physical prototypes with applications to interior design and soft robotics." acknowledged_ssus: - _id: M-Shop acknowledgement: We thank the anonymous reviewers for their generous feedback, and Julian Fischer for his help in proving Proposition 1. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 715767). article_number: '171' article_processing_charge: No article_type: original author: - first_name: Christian full_name: Hafner, Christian id: 400429CC-F248-11E8-B48F-1D18A9856A87 last_name: Hafner - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Hafner C, Bickel B. The design space of Kirchhoff rods. ACM Transactions on Graphics. 2023;42(5). doi:10.1145/3606033 apa: Hafner, C., & Bickel, B. (2023). The design space of Kirchhoff rods. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3606033 chicago: Hafner, Christian, and Bernd Bickel. “The Design Space of Kirchhoff Rods.” ACM Transactions on Graphics. Association for Computing Machinery, 2023. https://doi.org/10.1145/3606033. ieee: C. Hafner and B. Bickel, “The design space of Kirchhoff rods,” ACM Transactions on Graphics, vol. 42, no. 5. Association for Computing Machinery, 2023. ista: Hafner C, Bickel B. 2023. The design space of Kirchhoff rods. ACM Transactions on Graphics. 42(5), 171. mla: Hafner, Christian, and Bernd Bickel. “The Design Space of Kirchhoff Rods.” ACM Transactions on Graphics, vol. 42, no. 5, 171, Association for Computing Machinery, 2023, doi:10.1145/3606033. short: C. Hafner, B. Bickel, ACM Transactions on Graphics 42 (2023). date_created: 2023-07-04T07:41:30Z date_published: 2023-09-20T00:00:00Z date_updated: 2024-03-28T23:30:47Z day: '20' ddc: - '516' department: - _id: BeBi doi: 10.1145/3606033 ec_funded: 1 external_id: isi: - '001086833300010' file: - access_level: open_access checksum: 4954c1cfa487725bc156dcfec872478a content_type: application/pdf creator: chafner date_created: 2023-07-04T08:11:28Z date_updated: 2023-07-04T08:11:28Z file_id: '13194' file_name: kirchhoff-rods.pdf file_size: 19635168 relation: main_file success: 1 - access_level: open_access checksum: 79c9975fbc82ff71f1767331d2204cca content_type: application/pdf creator: chafner date_created: 2023-07-04T07:46:28Z date_updated: 2023-07-04T07:46:28Z file_id: '13190' file_name: supp-main.pdf file_size: 420909 relation: supplementary_material title: Supplemental Material with Proofs - access_level: open_access checksum: 4ab647e4f03c711e1e6a5fc1eb8684db content_type: application/pdf creator: chafner date_created: 2023-07-04T07:46:30Z date_updated: 2023-07-04T07:46:30Z file_id: '13191' file_name: supp-cheat.pdf file_size: 430086 relation: supplementary_material title: Cheat Sheet for Notation - access_level: open_access checksum: c0fd9a57d012046de90c185ffa904b76 content_type: video/mp4 creator: chafner date_created: 2023-07-04T07:46:39Z date_updated: 2023-07-04T07:46:39Z file_id: '13192' file_name: kirchhoff-video-final.mp4 file_size: 268088064 relation: supplementary_material title: Supplemental Video - access_level: open_access checksum: 71b00712b489ada2cd9815910ee180a9 content_type: application/x-zip-compressed creator: chafner date_created: 2023-07-04T07:47:10Z date_updated: 2023-07-04T07:47:10Z file_id: '13193' file_name: matlab-submission.zip file_size: 25790 relation: supplementary_material title: Matlab Source Code with Example file_date_updated: 2023-07-04T08:11:28Z has_accepted_license: '1' intvolume: ' 42' isi: 1 issue: '5' keyword: - Computer Graphics - Computational Design - Computational Geometry - Shape Modeling language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: record: - id: '12897' relation: part_of_dissertation status: public status: public title: The design space of Kirchhoff rods type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2023' ... --- _id: '11993' abstract: - lang: eng text: Moulding refers to a set of manufacturing techniques in which a mould, usually a cavity or a solid frame, is used to shape a liquid or pliable material into an object of the desired shape. The popularity of moulding comes from its effectiveness, scalability and versatility in terms of employed materials. Its relevance as a fabrication process is demonstrated by the extensive literature covering different aspects related to mould design, from material flow simulation to the automation of mould geometry design. In this state-of-the-art report, we provide an extensive review of the automatic methods for the design of moulds, focusing on contributions from a geometric perspective. We classify existing mould design methods based on their computational approach and the nature of their target moulding process. We summarize the relationships between computational approaches and moulding techniques, highlighting their strengths and limitations. Finally, we discuss potential future research directions. article_processing_charge: No article_type: original author: - first_name: Thomas full_name: Alderighi, Thomas last_name: Alderighi - first_name: Luigi full_name: Malomo, Luigi last_name: Malomo - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Paulo full_name: Cignoni, Paulo last_name: Cignoni - first_name: Nico full_name: Pietroni, Nico last_name: Pietroni citation: ama: Alderighi T, Malomo L, Auzinger T, Bickel B, Cignoni P, Pietroni N. State of the art in computational mould design. Computer Graphics Forum. 2022;41(6):435-452. doi:10.1111/cgf.14581 apa: Alderighi, T., Malomo, L., Auzinger, T., Bickel, B., Cignoni, P., & Pietroni, N. (2022). State of the art in computational mould design. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.14581 chicago: Alderighi, Thomas, Luigi Malomo, Thomas Auzinger, Bernd Bickel, Paulo Cignoni, and Nico Pietroni. “State of the Art in Computational Mould Design.” Computer Graphics Forum. Wiley, 2022. https://doi.org/10.1111/cgf.14581. ieee: T. Alderighi, L. Malomo, T. Auzinger, B. Bickel, P. Cignoni, and N. Pietroni, “State of the art in computational mould design,” Computer Graphics Forum, vol. 41, no. 6. Wiley, pp. 435–452, 2022. ista: Alderighi T, Malomo L, Auzinger T, Bickel B, Cignoni P, Pietroni N. 2022. State of the art in computational mould design. Computer Graphics Forum. 41(6), 435–452. mla: Alderighi, Thomas, et al. “State of the Art in Computational Mould Design.” Computer Graphics Forum, vol. 41, no. 6, Wiley, 2022, pp. 435–52, doi:10.1111/cgf.14581. short: T. Alderighi, L. Malomo, T. Auzinger, B. Bickel, P. Cignoni, N. Pietroni, Computer Graphics Forum 41 (2022) 435–452. date_created: 2022-08-28T18:17:01Z date_published: 2022-09-01T00:00:00Z date_updated: 2023-08-03T13:21:55Z day: '01' ddc: - '000' department: - _id: BeBi doi: 10.1111/cgf.14581 external_id: isi: - '000842638900001' file: - access_level: open_access checksum: c40cc8ceb7b7f0512172b883d712198e content_type: application/pdf creator: bbickel date_created: 2022-08-28T18:18:08Z date_updated: 2022-08-28T18:18:08Z description: 'This is the pre-peer reviewed version of the following article: Alderighi, T., Malomo, L., Auzinger, T., Bickel, B., Cignoni, P. and Pietroni, N. (2022), State of the Art in Computational Mould Design. Computer Graphics Forum, which has been published in final form at https://doi.org/10.1111/cgf.14581. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.' file_id: '11994' file_name: star_molding_preprint.pdf file_size: 32480850 relation: main_file title: pre-peer reviewed version file_date_updated: 2022-08-28T18:18:08Z has_accepted_license: '1' intvolume: ' 41' isi: 1 issue: '6' keyword: - Computer Graphics and Computer-Aided Design language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version page: 435-452 publication: Computer Graphics Forum publication_identifier: eissn: - 1467-8659 issn: - 0167-7055 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: State of the art in computational mould design type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2022' ... --- _id: '9376' abstract: - lang: eng text: This paper presents a method for designing planar multistable compliant structures. Given a sequence of desired stable states and the corresponding poses of the structure, we identify the topology and geometric realization of a mechanism—consisting of bars and joints—that is able to physically reproduce the desired multistable behavior. In order to solve this problem efficiently, we build on insights from minimally rigid graph theory to identify simple but effective topologies for the mechanism. We then optimize its geometric parameters, such as joint positions and bar lengths, to obtain correct transitions between the given poses. Simultaneously, we ensure adequate stability of each pose based on an effective approximate error metric related to the elastic energy Hessian of the bars in the mechanism. As demonstrated by our results, we obtain functional multistable mechanisms of manageable complexity that can be fabricated using 3D printing. Further, we evaluated the effectiveness of our method on a large number of examples in the simulation and fabricated several physical prototypes. acknowledged_ssus: - _id: M-Shop acknowledgement: 'We would like to thank everyone who contributed to this paper, the authors of artworks for all the examples, including @macrovec-tor_official and Wikimedia for the FLAG semaphore, and @pikisuper-star for the FIGURINE. The photos of iconic poses in the teaser were supplied by (from left to right): Mike Hewitt/Olympics Day 8 - Athletics/Gettty Images, Oneinchpunch/Basketball player training on acourt in New york city/Shutterstock, and Andrew Redington/TigerWoods/Getty Images. We also want to express our gratitude to Christian Hafner for insightful discussions, the IST Austria machine shop SSU, all proof-readers, and anonymous reviewers. This project has received funding from the European Union’s Horizon 2020 research and innovation programme, under the Marie Skłodowska-Curie grant agreement No 642841 (DISTRO), and under the European Research Council grant agreement No 715767 (MATERIALIZABLE).' article_number: '186' article_processing_charge: No article_type: original author: - first_name: Ran full_name: Zhang, Ran id: 4DDBCEB0-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0002-3808-281X - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Zhang R, Auzinger T, Bickel B. Computational design of planar multistable compliant structures. ACM Transactions on Graphics. 2021;40(5). doi:10.1145/3453477 apa: Zhang, R., Auzinger, T., & Bickel, B. (2021). Computational design of planar multistable compliant structures. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3453477 chicago: Zhang, Ran, Thomas Auzinger, and Bernd Bickel. “Computational Design of Planar Multistable Compliant Structures.” ACM Transactions on Graphics. Association for Computing Machinery, 2021. https://doi.org/10.1145/3453477. ieee: R. Zhang, T. Auzinger, and B. Bickel, “Computational design of planar multistable compliant structures,” ACM Transactions on Graphics, vol. 40, no. 5. Association for Computing Machinery, 2021. ista: Zhang R, Auzinger T, Bickel B. 2021. Computational design of planar multistable compliant structures. ACM Transactions on Graphics. 40(5), 186. mla: Zhang, Ran, et al. “Computational Design of Planar Multistable Compliant Structures.” ACM Transactions on Graphics, vol. 40, no. 5, 186, Association for Computing Machinery, 2021, doi:10.1145/3453477. short: R. Zhang, T. Auzinger, B. Bickel, ACM Transactions on Graphics 40 (2021). date_created: 2021-05-08T17:37:08Z date_published: 2021-10-08T00:00:00Z date_updated: 2023-08-08T13:31:38Z day: '08' ddc: - '000' department: - _id: BeBi doi: 10.1145/3453477 ec_funded: 1 external_id: isi: - '000752079300003' file: - access_level: open_access checksum: 8564b3118457d4c8939a8ef2b1a2f16c content_type: application/pdf creator: bbickel date_created: 2021-05-08T17:36:59Z date_updated: 2021-05-08T17:36:59Z file_id: '9377' file_name: Multistable-authorversion.pdf file_size: 18926557 relation: main_file - access_level: open_access checksum: 3b6e874e30bfa1bfc3ad3498710145a1 content_type: video/mp4 creator: bbickel date_created: 2021-05-08T17:38:22Z date_updated: 2021-05-08T17:38:22Z file_id: '9378' file_name: multistable-video.mp4 file_size: 76542901 relation: main_file success: 1 - access_level: open_access checksum: 20dc3bc42e1a912a5b0247c116772098 content_type: application/pdf creator: bbickel date_created: 2021-12-17T08:13:51Z date_updated: 2021-12-17T08:13:51Z description: This document provides additional results and analyzes the robustness and limitations of our approach. file_id: '10562' file_name: multistable-supplementary material.pdf file_size: 3367072 relation: supplementary_material title: Supplementary Material for “Computational Design of Planar Multistable Compliant Structures” file_date_updated: 2021-12-17T08:13:51Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '5' keyword: - multistability - mechanism - computational design - rigidity language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Computational design of planar multistable compliant structures tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '8366' abstract: - lang: eng text: "Fabrication of curved shells plays an important role in modern design, industry, and science. Among their remarkable properties are, for example, aesthetics of organic shapes, ability to evenly distribute loads, or efficient flow separation. They find applications across vast length scales ranging from sky-scraper architecture to microscopic devices. But, at\r\nthe same time, the design of curved shells and their manufacturing process pose a variety of challenges. In this thesis, they are addressed from several perspectives. In particular, this thesis presents approaches based on the transformation of initially flat sheets into the target curved surfaces. This involves problems of interactive design of shells with nontrivial mechanical constraints, inverse design of complex structural materials, and data-driven modeling of delicate and time-dependent physical properties. At the same time, two newly-developed self-morphing mechanisms targeting flat-to-curved transformation are presented.\r\nIn architecture, doubly curved surfaces can be realized as cold bent glass panelizations. Originally flat glass panels are bent into frames and remain stressed. This is a cost-efficient fabrication approach compared to hot bending, when glass panels are shaped plastically. However such constructions are prone to breaking during bending, and it is highly\r\nnontrivial to navigate the design space, keeping the panels fabricable and aesthetically pleasing at the same time. We introduce an interactive design system for cold bent glass façades, while previously even offline optimization for such scenarios has not been sufficiently developed. Our method is based on a deep learning approach providing quick\r\nand high precision estimation of glass panel shape and stress while handling the shape\r\nmultimodality.\r\nFabrication of smaller objects of scales below 1 m, can also greatly benefit from shaping originally flat sheets. In this respect, we designed new self-morphing shell mechanisms transforming from an initial flat state to a doubly curved state with high precision and detail. Our so-called CurveUps demonstrate the encodement of the geometric information\r\ninto the shell. Furthermore, we explored the frontiers of programmable materials and showed how temporal information can additionally be encoded into a flat shell. This allows prescribing deformation sequences for doubly curved surfaces and, thus, facilitates self-collision avoidance enabling complex shapes and functionalities otherwise impossible.\r\nBoth of these methods include inverse design tools keeping the user in the design loop." acknowledged_ssus: - _id: M-Shop - _id: ScienComp acknowledgement: "During the work on this thesis, I received substantial support from IST Austria’s scientific service units. A big thank you to Todor Asenov and other Miba Machine Shop team members for their help with fabrication of experimental prototypes. In addition, I would like to thank Scientific Computing team for the support with high performance computing.\r\nFinancial support was provided by the European Research Council (ERC) under grant agreement No 715767 - MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling, which I gratefully acknowledge." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 citation: ama: 'Guseinov R. Computational design of curved thin shells: From glass façades to programmable matter. 2020. doi:10.15479/AT:ISTA:8366' apa: 'Guseinov, R. (2020). Computational design of curved thin shells: From glass façades to programmable matter. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8366' chicago: 'Guseinov, Ruslan. “Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8366.' ieee: 'R. Guseinov, “Computational design of curved thin shells: From glass façades to programmable matter,” Institute of Science and Technology Austria, 2020.' ista: 'Guseinov R. 2020. Computational design of curved thin shells: From glass façades to programmable matter. Institute of Science and Technology Austria.' mla: 'Guseinov, Ruslan. Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8366.' short: 'R. Guseinov, Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter, Institute of Science and Technology Austria, 2020.' date_created: 2020-09-10T16:19:55Z date_published: 2020-09-21T00:00:00Z date_updated: 2024-02-21T12:44:29Z day: '21' ddc: - '000' degree_awarded: PhD department: - _id: BeBi doi: 10.15479/AT:ISTA:8366 ec_funded: 1 file: - access_level: open_access checksum: f8da89553da36037296b0a80f14ebf50 content_type: application/pdf creator: rguseino date_created: 2020-09-10T16:11:49Z date_updated: 2020-09-10T16:11:49Z file_id: '8367' file_name: thesis_rguseinov.pdf file_size: 70950442 relation: main_file success: 1 - access_level: closed checksum: e8fd944c960c20e0e27e6548af69121d content_type: application/x-zip-compressed creator: rguseino date_created: 2020-09-11T09:39:48Z date_updated: 2020-09-16T15:11:01Z file_id: '8374' file_name: thesis_source.zip file_size: 76207597 relation: source_file file_date_updated: 2020-09-16T15:11:01Z has_accepted_license: '1' keyword: - computer-aided design - shape modeling - self-morphing - mechanical engineering language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '118' project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication_identifier: isbn: - 978-3-99078-010-7 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7151' relation: research_data status: deleted - id: '7262' relation: part_of_dissertation status: public - id: '8562' relation: part_of_dissertation status: public - id: '1001' relation: part_of_dissertation status: public - id: '8375' relation: research_data status: public status: public supervisor: - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 title: 'Computational design of curved thin shells: From glass façades to programmable matter' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7262' abstract: - lang: eng text: Advances in shape-morphing materials, such as hydrogels, shape-memory polymers and light-responsive polymers have enabled prescribing self-directed deformations of initially flat geometries. However, most proposed solutions evolve towards a target geometry without considering time-dependent actuation paths. To achieve more complex geometries and avoid self-collisions, it is critical to encode a spatial and temporal shape evolution within the initially flat shell. Recent realizations of time-dependent morphing are limited to the actuation of few, discrete hinges and cannot form doubly curved surfaces. Here, we demonstrate a method for encoding temporal shape evolution in architected shells that assume complex shapes and doubly curved geometries. The shells are non-periodic tessellations of pre-stressed contractile unit cells that soften in water at rates prescribed locally by mesostructure geometry. The ensuing midplane contraction is coupled to the formation of encoded curvatures. We propose an inverse design tool based on a data-driven model for unit cells’ temporal responses. article_number: '237' article_processing_charge: No article_type: original author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - first_name: Connor full_name: McMahan, Connor last_name: McMahan - first_name: Jesus full_name: Perez Rodriguez, Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - first_name: Chiara full_name: Daraio, Chiara last_name: Daraio - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Guseinov R, McMahan C, Perez Rodriguez J, Daraio C, Bickel B. Programming temporal morphing of self-actuated shells. Nature Communications. 2020;11. doi:10.1038/s41467-019-14015-2 apa: Guseinov, R., McMahan, C., Perez Rodriguez, J., Daraio, C., & Bickel, B. (2020). Programming temporal morphing of self-actuated shells. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-019-14015-2 chicago: Guseinov, Ruslan, Connor McMahan, Jesus Perez Rodriguez, Chiara Daraio, and Bernd Bickel. “Programming Temporal Morphing of Self-Actuated Shells.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-019-14015-2. ieee: R. Guseinov, C. McMahan, J. Perez Rodriguez, C. Daraio, and B. Bickel, “Programming temporal morphing of self-actuated shells,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Guseinov R, McMahan C, Perez Rodriguez J, Daraio C, Bickel B. 2020. Programming temporal morphing of self-actuated shells. Nature Communications. 11, 237. mla: Guseinov, Ruslan, et al. “Programming Temporal Morphing of Self-Actuated Shells.” Nature Communications, vol. 11, 237, Springer Nature, 2020, doi:10.1038/s41467-019-14015-2. short: R. Guseinov, C. McMahan, J. Perez Rodriguez, C. Daraio, B. Bickel, Nature Communications 11 (2020). date_created: 2020-01-13T16:54:26Z date_published: 2020-01-13T00:00:00Z date_updated: 2024-02-21T12:45:02Z day: '13' ddc: - '000' department: - _id: BeBi doi: 10.1038/s41467-019-14015-2 ec_funded: 1 external_id: isi: - '000511916800015' file: - access_level: open_access checksum: 7db23fef2f4cda712f17f1004116ddff content_type: application/pdf creator: rguseino date_created: 2020-01-15T14:35:34Z date_updated: 2020-07-14T12:47:55Z file_id: '7336' file_name: 2020_NatureComm_Guseinov.pdf file_size: 1315270 relation: main_file file_date_updated: 2020-07-14T12:47:55Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - Design - Synthesis and processing - Mechanical engineering - Polymers language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/geometry-meets-time/ record: - id: '8366' relation: dissertation_contains status: public - id: '7154' relation: research_data status: public scopus_import: '1' status: public title: Programming temporal morphing of self-actuated shells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '11667' abstract: - lang: eng text: The focus of classic mechanism design has been on truthful direct-revelation mechanisms. In the context of combinatorial auctions, the truthful direct-revelation mechanism that maximizes social welfare is the Vickrey-Clarke-Groves mechanism. For many valuation spaces, computing the allocation and payments of the VCG mechanism, however, is a computationally hard problem. We thus study the performance of the VCG mechanism when bidders are forced to choose bids from a subspace of the valuation space for which the VCG outcome can be computed efficiently. We prove improved upper bounds on the welfare loss for restrictions to additive bids and upper and lower bounds for restrictions to non-additive bids. These bounds show that increased expressiveness can give rise to additional equilibria of poorer efficiency. article_number: '5' article_processing_charge: No article_type: original author: - first_name: Paul full_name: Dütting, Paul last_name: Dütting - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Martin full_name: Starnberger, Martin last_name: Starnberger citation: ama: Dütting P, Henzinger MH, Starnberger M. Valuation compressions in VCG-based combinatorial auctions. ACM Transactions on Economics and Computation. 2018;6(2). doi:10.1145/3232860 apa: Dütting, P., Henzinger, M. H., & Starnberger, M. (2018). Valuation compressions in VCG-based combinatorial auctions. ACM Transactions on Economics and Computation. Association for Computing Machinery. https://doi.org/10.1145/3232860 chicago: Dütting, Paul, Monika H Henzinger, and Martin Starnberger. “Valuation Compressions in VCG-Based Combinatorial Auctions.” ACM Transactions on Economics and Computation. Association for Computing Machinery, 2018. https://doi.org/10.1145/3232860. ieee: P. Dütting, M. H. Henzinger, and M. Starnberger, “Valuation compressions in VCG-based combinatorial auctions,” ACM Transactions on Economics and Computation, vol. 6, no. 2. Association for Computing Machinery, 2018. ista: Dütting P, Henzinger MH, Starnberger M. 2018. Valuation compressions in VCG-based combinatorial auctions. ACM Transactions on Economics and Computation. 6(2), 5. mla: Dütting, Paul, et al. “Valuation Compressions in VCG-Based Combinatorial Auctions.” ACM Transactions on Economics and Computation, vol. 6, no. 2, 5, Association for Computing Machinery, 2018, doi:10.1145/3232860. short: P. Dütting, M.H. Henzinger, M. Starnberger, ACM Transactions on Economics and Computation 6 (2018). date_created: 2022-07-27T11:46:46Z date_published: 2018-05-01T00:00:00Z date_updated: 2022-09-09T12:04:42Z day: '01' doi: 10.1145/3232860 extern: '1' external_id: arxiv: - '1310.3153' intvolume: ' 6' issue: '2' keyword: - Theory of computation - Algorithmic game theory and mechanism design - Applied computing - Economics - Simplified mechanisms - Combinatorial auctions with item bidding - Price of anarchy language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1310.3153 month: '05' oa: 1 oa_version: Preprint publication: ACM Transactions on Economics and Computation publication_identifier: eissn: - 2167-8383 issn: - 2167-8375 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Valuation compressions in VCG-based combinatorial auctions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2018' ...