@misc{8067,
abstract = {With the lithium-ion technology approaching its intrinsic limit with graphite-based anodes, lithium metal is recently receiving renewed interest from the battery community as potential high capacity anode for next-generation rechargeable batteries. In this focus paper, we review the main advances in this field since the first attempts in the
mid-1970s. Strategies for enabling reversible cycling and avoiding dendrite growth are thoroughly discussed, including specific applications in all-solid-state (polymeric and inorganic), Lithium-sulphur and Li-O2 (air) batteries. A particular attention is paid to review recent developments in regard of prototype manufacturing and current state-ofthe-art of these battery technologies with respect to the 2030 targets of the EU Integrated Strategic Energy Technology Plan (SET-Plan) Action 7.},
author = {Varzi, Alberto and Thanner, Katharina and Scipioni, Roberto and Di Lecce, Daniele and Hassoun, Jusef and Dörfler, Susanne and Altheus, Holger and Kaskel, Stefan and Prehal, Christian and Freunberger, Stefan Alexander},
issn = {2664-1690},
keywords = {Battery, Lithium metal, Lithium-sulphur, Lithium-air, All-solid-state},
pages = {63},
publisher = {IST Austria},
title = {{Current status and future perspectives of Lithium metal batteries}},
doi = {10.15479/AT:ISTA:8067},
year = {2020},
}
@misc{5457,
abstract = {We consider the problem of expected cost analysis over nondeterministic probabilistic programs, which aims at automated methods for analyzing the resource-usage of such programs. Previous approaches for this problem could only handle nonnegative bounded costs. However, in many scenarios, such as queuing networks or analysis of cryptocurrency protocols, both positive and negative costs are necessary and the costs are unbounded as well.
In this work, we present a sound and efficient approach to obtain polynomial bounds on the expected accumulated cost of nondeterministic probabilistic programs. Our approach can handle (a) general positive and negative costs with bounded updates in variables; and (b) nonnegative costs with general updates to variables. We show that several natural examples which could not be handled by previous approaches are captured in our framework.
Moreover, our approach leads to an efficient polynomial-time algorithm, while no previous approach for cost analysis of probabilistic programs could guarantee polynomial runtime. Finally, we show the effectiveness of our approach by presenting experimental results on a variety of programs, motivated by real-world applications, for which we efficiently synthesize tight resource-usage bounds.},
author = {Anonymous, 1 and Anonymous, 2 and Anonymous, 3 and Anonymous, 4 and Anonymous, 5 and Anonymous, 6},
issn = {2664-1690},
pages = {27},
publisher = {IST Austria},
title = {{Cost analysis of nondeterministic probabilistic programs}},
year = {2018},
}
@misc{5455,
abstract = {A fundamental algorithmic problem at the heart of static analysis is Dyck reachability. The input is a graphwhere the edges are labeled with different types of opening and closing parentheses, and the reachabilityinformation is computed via paths whose parentheses are properly matched. We present new results for Dyckreachability problems with applications to alias analysis and data-dependence analysis. Our main contributions,that include improved upper bounds as well as lower bounds that establish optimality guarantees, are asfollows:First, we consider Dyck reachability on bidirected graphs, which is the standard way of performing field-sensitive points-to analysis. Given a bidirected graph withnnodes andmedges, we present: (i) an algorithmwith worst-case running timeO(m+n·α(n)), whereα(n)is the inverse Ackermann function, improving thepreviously knownO(n2)time bound; (ii) a matching lower bound that shows that our algorithm is optimalwrt to worst-case complexity; and (iii) an optimal average-case upper bound ofO(m)time, improving thepreviously knownO(m·logn)bound.Second, we consider the problem of context-sensitive data-dependence analysis, where the task is to obtainanalysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almostlinear time, after which the contribution of the library in the complexity of the client analysis is only linear,and only wrt the number of call sites.Third, we prove that combinatorial algorithms for Dyck reachability on general graphs with truly sub-cubic bounds cannot be obtained without obtaining sub-cubic combinatorial algorithms for Boolean MatrixMultiplication, which is a long-standing open problem. Thus we establish that the existing combinatorialalgorithms for Dyck reachability are (conditionally) optimal for general graphs. We also show that the samehardness holds for graphs of constant treewidth.Finally, we provide a prototype implementation of our algorithms for both alias analysis and data-dependenceanalysis. Our experimental evaluation demonstrates that the new algorithms significantly outperform allexisting methods on the two problems, over real-world benchmarks.},
author = {Chatterjee, Krishnendu and Choudhary, Bhavya and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {37},
publisher = {IST Austria},
title = {{Optimal Dyck reachability for data-dependence and alias analysis}},
doi = {10.15479/AT:IST-2017-870-v1-1},
year = {2017},
}
@misc{5456,
abstract = {We present a new dynamic partial-order reduction method for stateless model checking of concurrent programs. A common approach for exploring program behaviors relies on enumerating the traces of the program, without storing the visited states (aka stateless exploration). As the number of distinct traces grows exponentially, dynamic partial-order reduction (DPOR) techniques have been successfully used to partition the space of traces into equivalence classes (Mazurkiewicz partitioning), with the goal of exploring only few representative traces from each class.
We introduce a new equivalence on traces under sequential consistency semantics, which we call the observation equivalence. Two traces are observationally equivalent if every read event observes the same write event in both traces. While the traditional Mazurkiewicz equivalence is control-centric, our new definition is data-centric. We show that our observation equivalence is coarser than the Mazurkiewicz equivalence, and in many cases even exponentially coarser. We devise a DPOR exploration of the trace space, called data-centric DPOR, based on the observation equivalence.
1. For acyclic architectures, our algorithm is guaranteed to explore exactly one representative trace from each observation class, while spending polynomial time per class. Hence, our algorithm is optimal wrt the observation equivalence, and in several cases explores exponentially fewer traces than any enumerative method based on the Mazurkiewicz equivalence.
2. For cyclic architectures, we consider an equivalence between traces which is finer than the observation equivalence; but coarser than the Mazurkiewicz equivalence, and in some cases is exponentially coarser. Our data-centric DPOR algorithm remains optimal under this trace equivalence.
Finally, we perform a basic experimental comparison between the existing Mazurkiewicz-based DPOR and our data-centric DPOR on a set of academic benchmarks. Our results show a significant reduction in both running time and the number of explored equivalence classes.},
author = {Chalupa, Marek and Chatterjee, Krishnendu and Pavlogiannis, Andreas and Sinha, Nishant and Vaidya, Kapil},
issn = {2664-1690},
pages = {36},
publisher = {IST Austria},
title = {{Data-centric dynamic partial order reduction}},
doi = {10.15479/AT:IST-2017-872-v1-1},
year = {2017},
}
@misc{6426,
abstract = {Synchronous programs are easy to specify because the side effects of an operation are finished by the time the invocation of the operation returns to the caller. Asynchronous programs, on the other hand, are difficult to specify because there are side effects due to pending computation scheduled as a result of the invocation of an operation. They are also difficult to verify because of the large number of possible interleavings of concurrent asynchronous computation threads. We show that specifications and correctness proofs for asynchronous programs can be structured by introducing the fiction, for proof purposes, that intermediate, non-quiescent states of asynchronous operations can be ignored. Then, the task of specification becomes relatively simple and the task of verification can be naturally decomposed into smaller sub-tasks. The sub-tasks iteratively summarize, guided by the structure of an asynchronous program, the atomic effect of non-atomic operations and the synchronous effect of asynchronous operations. This structuring of specifications and proofs corresponds to the introduction of multiple layers of stepwise refinement for asynchronous programs. We present the first proof rule, called synchronization, to reduce asynchronous invocations on a lower layer to synchronous invocations on a higher layer. We implemented our proof method in CIVL and evaluated it on a collection of benchmark programs.},
author = {Henzinger, Thomas A and Kragl, Bernhard and Qadeer, Shaz},
issn = {2664-1690},
pages = {28},
publisher = {IST Austria},
title = {{Synchronizing the asynchronous}},
doi = {10.15479/AT:IST-2018-853-v2-2},
year = {2017},
}
@misc{5446,
abstract = {We study the problem of developing efficient approaches for proving termination of recursive programs with one-dimensional arrays. Ranking functions serve as a sound and complete approach for proving termination of non-recursive programs without array operations. First, we generalize ranking functions to the notion of measure functions, and prove that measure functions (i) provide a sound method to prove termination of recursive programs (with one-dimensional arrays), and (ii) is both sound and complete over recursive programs without array operations. Our second contribution is the synthesis of measure functions of specific forms in polynomial time. More precisely, we prove that (i) polynomial measure functions over recursive programs can be synthesized in polynomial time through Farkas’ Lemma and Handelman’s Theorem, and (ii) measure functions involving logarithm and exponentiation can be synthesized in polynomial time through abstraction of logarithmic or exponential terms and Handelman’s Theorem. A key application of our method is the worst-case analysis of recursive programs. While previous methods obtain worst-case polynomial bounds of the form O(n^k), where k is an integer, our polynomial time methods can synthesize bounds of the form O(n log n), as well as O(n^x), where x is not an integer. We show the applicability of our automated technique to obtain worst-case complexity of classical recursive algorithms such as (i) Merge-Sort, the divideand-
conquer algorithm for the Closest-Pair problem, where we obtain O(n log n) worst-case bound, and (ii) Karatsuba’s algorithm for polynomial multiplication and Strassen’s algorithm for matrix multiplication, where we obtain O(n^x) bound, where x is not an integer and close to the best-known bounds for the respective algorithms. Finally, we present experimental results to demonstrate the
effectiveness of our approach.},
author = {Anonymous, 1 and Anonymous, 2 and Anonymous, 3},
issn = {2664-1690},
pages = {26},
publisher = {IST Austria},
title = {{Termination and worst-case analysis of recursive programs}},
year = {2016},
}
@misc{5447,
abstract = {We consider the problem of developing automated techniques to aid the average-case complexity analysis of programs. Several classical textbook algorithms have quite efficient average-case complexity, whereas the corresponding worst-case bounds are either inefficient (e.g., QUICK-SORT), or completely ineffective (e.g., COUPONCOLLECTOR). Since the main focus of average-case analysis is to obtain efficient bounds, we consider bounds that are either logarithmic,
linear, or almost-linear (O(log n), O(n), O(n · log n),
respectively, where n represents the size of the input). Our main contribution is a sound approach for deriving such average-case bounds for randomized recursive programs. Our approach is efficient (a simple linear-time algorithm), and it is based on (a) the analysis of recurrence relations induced by randomized algorithms, and (b) a guess-and-check technique. Our approach can infer the asymptotically optimal average-case bounds for classical randomized algorithms, including RANDOMIZED-SEARCH, QUICKSORT, QUICK-SELECT, COUPON-COLLECTOR, where the worstcase
bounds are either inefficient (such as linear as compared to logarithmic of average-case, or quadratic as compared to linear or almost-linear of average-case), or ineffective. We have implemented our approach, and the experimental results show that we obtain the bounds efficiently for various classical algorithms.},
author = {Anonymous, 1 and Anonymous, 2 and Anonymous, 3},
issn = {2664-1690},
pages = {20},
publisher = {IST Austria},
title = {{Average-case analysis of programs: Automated recurrence analysis for almost-linear bounds}},
year = {2016},
}
@misc{5448,
abstract = {We present a new dynamic partial-order reduction method for stateless model checking of concurrent programs. A common approach for exploring program behaviors relies on enumerating the traces of the program, without storing the visited states (aka stateless exploration). As the number of distinct traces grows exponentially, dynamic partial-order reduction (DPOR) techniques have been successfully used to partition the space of traces into equivalence classes (Mazurkiewicz partitioning), with the goal of exploring only few representative traces from each class.
We introduce a new equivalence on traces under sequential consistency semantics, which we call the observation equivalence. Two traces are observationally equivalent if every read event observes the same write event in both traces. While the traditional Mazurkiewicz equivalence is control-centric, our new definition is data-centric. We show that our observation equivalence is coarser than the Mazurkiewicz equivalence, and in many cases even exponentially coarser. We devise a DPOR exploration of the trace space, called data-centric DPOR, based on the observation equivalence.
1. For acyclic architectures, our algorithm is guaranteed to explore exactly one representative trace from each observation class, while spending polynomial time per class. Hence, our algorithm is optimal wrt the observation equivalence, and in several cases explores exponentially fewer traces than any enumerative method based on the Mazurkiewicz equivalence.
2. For cyclic architectures, we consider an equivalence between traces which is finer than the observation equivalence; but coarser than the Mazurkiewicz equivalence, and in some cases is exponentially coarser. Our data-centric DPOR algorithm remains optimal under this trace equivalence.
Finally, we perform a basic experimental comparison between the existing Mazurkiewicz-based DPOR and our data-centric DPOR on a set of academic benchmarks. Our results show a significant reduction in both running time and the number of explored equivalence classes.},
author = {Anonymous, 1 and Anonymous, 2 and Anonymous, 3 and Anonymous, 4},
issn = {2664-1690},
pages = {20},
publisher = {IST Austria},
title = {{Data-centric dynamic partial order reduction}},
year = {2016},
}
@misc{5451,
author = {Pavlogiannis, Andreas and Tkadlec, Josef and Chatterjee, Krishnendu and Nowak, Martin},
issn = {2664-1690},
pages = {34},
publisher = {IST Austria},
title = {{Strong amplifiers of natural selection}},
doi = {10.15479/AT:IST-2016-728-v1-1},
year = {2016},
}
@misc{5452,
author = {Pavlogiannis, Andreas and Tkadlec, Josef and Chatterjee, Krishnendu and Nowak, Martin},
issn = {2664-1690},
pages = {32},
publisher = {IST Austria},
title = {{Arbitrarily strong amplifiers of natural selection}},
doi = {10.15479/AT:IST-2017-728-v2-1},
year = {2016},
}