--- _id: '14845' abstract: - lang: eng text: We study a linear rotor in a bosonic bath within the angulon formalism. Our focus is on systems where isotropic or anisotropic impurity-boson interactions support a shallow bound state. To study the fate of the angulon in the vicinity of bound-state formation, we formulate a beyond-linear-coupling angulon Hamiltonian. First, we use it to study attractive, spherically symmetric impurity-boson interactions for which the linear rotor can be mapped onto a static impurity. The well-known polaron formalism provides an adequate description in this limit. Second, we consider anisotropic potentials, and show that the presence of a shallow bound state with pronounced anisotropic character leads to a many-body instability that washes out the angulon dynamics. acknowledgement: "We would like to thank G. Bighin, I. Cherepanov, E. Paerschke, and E. Yakaboylu for insightful discussions on a wide range of topics. This work has been supported by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). A.G. and A.G.V. acknowledge support from the European Union’s Horizon 2020 research and innovation\r\nprogram under the Marie Skłodowska-Curie Grant Agreement No. 754411. Numerical calculations were performed on the Euler cluster managed by the HPC team at ETH Zurich.\r\nR.S. acknowledges support by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy Grant No. EXC 2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster). T.D. acknowledges support from the Isaac Newton Studentship and the Science and Technology Facilities Council under Grant No. ST/V50659X/1." article_number: '014102' article_processing_charge: No article_type: original author: - first_name: Tibor full_name: Dome, Tibor id: 7e3293e2-b9dc-11ee-97a9-cd73400f6994 last_name: Dome orcid: 0000-0003-2586-3702 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Laleh full_name: Safari, Laleh id: 3C325E5E-F248-11E8-B48F-1D18A9856A87 last_name: Safari - first_name: Richard full_name: Schmidt, Richard last_name: Schmidt - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Dome T, Volosniev A, Ghazaryan A, Safari L, Schmidt R, Lemeshko M. Linear rotor in an ideal Bose gas near the threshold for binding. Physical Review B. 2024;109(1). doi:10.1103/PhysRevB.109.014102 apa: Dome, T., Volosniev, A., Ghazaryan, A., Safari, L., Schmidt, R., & Lemeshko, M. (2024). Linear rotor in an ideal Bose gas near the threshold for binding. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.109.014102 chicago: Dome, Tibor, Artem Volosniev, Areg Ghazaryan, Laleh Safari, Richard Schmidt, and Mikhail Lemeshko. “Linear Rotor in an Ideal Bose Gas near the Threshold for Binding.” Physical Review B. American Physical Society, 2024. https://doi.org/10.1103/PhysRevB.109.014102. ieee: T. Dome, A. Volosniev, A. Ghazaryan, L. Safari, R. Schmidt, and M. Lemeshko, “Linear rotor in an ideal Bose gas near the threshold for binding,” Physical Review B, vol. 109, no. 1. American Physical Society, 2024. ista: Dome T, Volosniev A, Ghazaryan A, Safari L, Schmidt R, Lemeshko M. 2024. Linear rotor in an ideal Bose gas near the threshold for binding. Physical Review B. 109(1), 014102. mla: Dome, Tibor, et al. “Linear Rotor in an Ideal Bose Gas near the Threshold for Binding.” Physical Review B, vol. 109, no. 1, 014102, American Physical Society, 2024, doi:10.1103/PhysRevB.109.014102. short: T. Dome, A. Volosniev, A. Ghazaryan, L. Safari, R. Schmidt, M. Lemeshko, Physical Review B 109 (2024). date_created: 2024-01-21T23:00:57Z date_published: 2024-01-01T00:00:00Z date_updated: 2024-01-23T10:51:09Z day: '01' department: - _id: MiLe doi: 10.1103/PhysRevB.109.014102 ec_funded: 1 intvolume: ' 109' issue: '1' language: - iso: eng month: '01' oa_version: None project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Linear rotor in an ideal Bose gas near the threshold for binding type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 109 year: '2024' ... --- _id: '15003' abstract: - lang: eng text: Magnetic frustration allows to access novel and intriguing properties of magnetic systems and has been explored mainly in planar triangular-like arrays of magnetic ions. In this work, we describe the phosphide Ce6Ni6P17, where the Ce+3 ions accommodate in a body-centered cubic lattice of Ce6 regular octahedra. From measurements of magnetization, specific heat, and resistivity, we determine a rich phase diagram as a function of temperature and magnetic field in which different magnetic phases are found. Besides clear evidence of magnetic frustration is obtained from entropy analysis. At zero field, a second-order antiferromagnetic transition occurs at TN1≈1 K followed by a first-order transition at TN2≈0.45 K. With magnetic field new magnetic phases appear, including a weakly first-order transition which ends in a classical critical point and a third magnetic phase. We also study the exact solution of the spin-1/2 Heisenberg model in an octahedron which allows us a qualitative understanding of the phase diagram and compare with the experimental results. acknowledgement: "The authors thank Bernardo Pentke for the SEM micrographs (Departamento Fisicoquímica de Materiales CABCNEA). We are indebted to Julián Sereni for useful discussions. D. G. F. acknowledges financial support provided by Agencia I+D+i, Argentina, Grant No. PICT-2021-I-INVI00852 and Universidad Nacional de Cuyo (SIIP) Grant No. 06/C018-T1. A. A. A. acknowledges financial support provided by PICT 2018-01546 and PICT 2020A-03661 of the\r\nAgencia I+D+i. " article_number: '054405' article_processing_charge: No article_type: original author: - first_name: D. G. full_name: Franco, D. G. last_name: Franco - first_name: R. full_name: Avalos, R. last_name: Avalos - first_name: D. full_name: Hafner, D. last_name: Hafner - first_name: Kimberly A full_name: Modic, Kimberly A id: 13C26AC0-EB69-11E9-87C6-5F3BE6697425 last_name: Modic orcid: 0000-0001-9760-3147 - first_name: Yu full_name: Prots, Yu last_name: Prots - first_name: O. full_name: Stockert, O. last_name: Stockert - first_name: A. full_name: Hoser, A. last_name: Hoser - first_name: P. J.W. full_name: Moll, P. J.W. last_name: Moll - first_name: M. full_name: Brando, M. last_name: Brando - first_name: A. A. full_name: Aligia, A. A. last_name: Aligia - first_name: C. full_name: Geibel, C. last_name: Geibel citation: ama: Franco DG, Avalos R, Hafner D, et al. Frustrated magnetism in octahedra-based Ce6 Ni6 P17. Physical Review B. 2024;109(5). doi:10.1103/PhysRevB.109.054405 apa: Franco, D. G., Avalos, R., Hafner, D., Modic, K. A., Prots, Y., Stockert, O., … Geibel, C. (2024). Frustrated magnetism in octahedra-based Ce6 Ni6 P17. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.109.054405 chicago: Franco, D. G., R. Avalos, D. Hafner, Kimberly A Modic, Yu Prots, O. Stockert, A. Hoser, et al. “Frustrated Magnetism in Octahedra-Based Ce6 Ni6 P17.” Physical Review B. American Physical Society, 2024. https://doi.org/10.1103/PhysRevB.109.054405. ieee: D. G. Franco et al., “Frustrated magnetism in octahedra-based Ce6 Ni6 P17,” Physical Review B, vol. 109, no. 5. American Physical Society, 2024. ista: Franco DG, Avalos R, Hafner D, Modic KA, Prots Y, Stockert O, Hoser A, Moll PJW, Brando M, Aligia AA, Geibel C. 2024. Frustrated magnetism in octahedra-based Ce6 Ni6 P17. Physical Review B. 109(5), 054405. mla: Franco, D. G., et al. “Frustrated Magnetism in Octahedra-Based Ce6 Ni6 P17.” Physical Review B, vol. 109, no. 5, 054405, American Physical Society, 2024, doi:10.1103/PhysRevB.109.054405. short: D.G. Franco, R. Avalos, D. Hafner, K.A. Modic, Y. Prots, O. Stockert, A. Hoser, P.J.W. Moll, M. Brando, A.A. Aligia, C. Geibel, Physical Review B 109 (2024). date_created: 2024-02-18T23:01:01Z date_published: 2024-02-01T00:00:00Z date_updated: 2024-02-26T09:50:10Z day: '01' department: - _id: KiMo doi: 10.1103/PhysRevB.109.054405 intvolume: ' 109' issue: '5' language: - iso: eng month: '02' oa_version: None publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Frustrated magnetism in octahedra-based Ce6 Ni6 P17 type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 109 year: '2024' ... --- _id: '15052' abstract: - lang: eng text: "Substrate induces mechanical strain on perovskite devices, which can result in alterations to its lattice dynamics and thermal transport. Herein, we have performed a theoretical investigation on the anharmonic lattice dynamics and thermal property of perovskite Rb2SnBr6 and Cs2SnBr6 under strains using perturbation theory up to the fourth-order terms and the unified thermal transport theory. We demonstrate a pronounced hardening of low-frequency optical phonons as temperature increases, indicating strong lattice anharmonicity and the necessity of adopting temperature-dependent interatomic force constants in the lattice thermal conductivity (\r\nκL) calculations. It is found that the low-lying optical phonon modes of Rb2SnBr6 are extremely soft and their phonon energies are almost strain independent, which ultimately lead to a lower \r\nκL and a weaker strain dependence than Cs2SnBr6. We further reveal that the strain dependence of these phonon modes in the A2XB6-type perovskites weakens as their ibrational frequency decreases. This study deepens the understanding of lattice thermal transport in perovskites A2XB6 and provides a perspective on the selection of materials that meet the expected thermal behaviors in practical applications." acknowledgement: "This work is supported by the Research Grants Council of Hong Kong (C7002-22Y and 17318122). The authors are grateful for the research computing facilities offered by\r\nITS, HKU. Z.Z. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413." article_number: '054305' article_processing_charge: No article_type: original author: - first_name: Ruihuan full_name: Cheng, Ruihuan last_name: Cheng - first_name: Zezhu full_name: Zeng, Zezhu id: 54a2c730-803f-11ed-ab7e-95b29d2680e7 last_name: Zeng - first_name: Chen full_name: Wang, Chen last_name: Wang - first_name: Niuchang full_name: Ouyang, Niuchang last_name: Ouyang - first_name: Yue full_name: Chen, Yue last_name: Chen citation: ama: Cheng R, Zeng Z, Wang C, Ouyang N, Chen Y. Impact of strain-insensitive low-frequency phonon modes on lattice thermal transport in AxXB6-type perovskites. Physical Review B. 2024;109(5). doi:10.1103/physrevb.109.054305 apa: Cheng, R., Zeng, Z., Wang, C., Ouyang, N., & Chen, Y. (2024). Impact of strain-insensitive low-frequency phonon modes on lattice thermal transport in AxXB6-type perovskites. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.109.054305 chicago: Cheng, Ruihuan, Zezhu Zeng, Chen Wang, Niuchang Ouyang, and Yue Chen. “Impact of Strain-Insensitive Low-Frequency Phonon Modes on Lattice Thermal Transport in AxXB6-Type Perovskites.” Physical Review B. American Physical Society, 2024. https://doi.org/10.1103/physrevb.109.054305. ieee: R. Cheng, Z. Zeng, C. Wang, N. Ouyang, and Y. Chen, “Impact of strain-insensitive low-frequency phonon modes on lattice thermal transport in AxXB6-type perovskites,” Physical Review B, vol. 109, no. 5. American Physical Society, 2024. ista: Cheng R, Zeng Z, Wang C, Ouyang N, Chen Y. 2024. Impact of strain-insensitive low-frequency phonon modes on lattice thermal transport in AxXB6-type perovskites. Physical Review B. 109(5), 054305. mla: Cheng, Ruihuan, et al. “Impact of Strain-Insensitive Low-Frequency Phonon Modes on Lattice Thermal Transport in AxXB6-Type Perovskites.” Physical Review B, vol. 109, no. 5, 054305, American Physical Society, 2024, doi:10.1103/physrevb.109.054305. short: R. Cheng, Z. Zeng, C. Wang, N. Ouyang, Y. Chen, Physical Review B 109 (2024). date_created: 2024-03-04T07:41:23Z date_published: 2024-02-14T00:00:00Z date_updated: 2024-03-04T07:48:55Z day: '14' department: - _id: BiCh doi: 10.1103/physrevb.109.054305 ec_funded: 1 intvolume: ' 109' issue: '5' language: - iso: eng month: '02' oa_version: None project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Impact of strain-insensitive low-frequency phonon modes on lattice thermal transport in AxXB6-type perovskites type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 109 year: '2024' ... --- _id: '12724' abstract: - lang: eng text: 'We use general symmetry-based arguments to construct an effective model suitable for studying optical properties of lead halide perovskites. To build the model, we identify an atomic-level interaction between electromagnetic fields and the spin degree of freedom that should be added to a minimally coupled k⋅p Hamiltonian. As a first application, we study two basic optical characteristics of the material: the Verdet constant and the refractive index. Beyond these linear characteristics of the material, the model is suitable for calculating nonlinear effects such as the third-order optical susceptibility. Analysis of this quantity shows that the geometrical properties of the spin-electric term imply isotropic optical response of the system, and that optical anisotropy of lead halide perovskites is a manifestation of hopping of charge carriers. To illustrate this, we discuss third-harmonic generation.' article_number: '125201' article_processing_charge: No article_type: original author: - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Abhishek full_name: Shiva Kumar, Abhishek id: 5e9a6931-eb97-11eb-a6c2-e96f7058d77a last_name: Shiva Kumar - first_name: Dusan full_name: Lorenc, Dusan id: 40D8A3E6-F248-11E8-B48F-1D18A9856A87 last_name: Lorenc - first_name: Younes full_name: Ashourishokri, Younes id: e32c111f-f6e0-11ea-865d-eb955baea334 last_name: Ashourishokri - first_name: Ayan full_name: Zhumekenov, Ayan last_name: Zhumekenov - first_name: Osman M. full_name: Bakr, Osman M. last_name: Bakr - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 citation: ama: Volosniev A, Shiva Kumar A, Lorenc D, et al. Effective model for studying optical properties of lead halide perovskites. Physical Review B. 2023;107(12). doi:10.1103/physrevb.107.125201 apa: Volosniev, A., Shiva Kumar, A., Lorenc, D., Ashourishokri, Y., Zhumekenov, A., Bakr, O. M., … Alpichshev, Z. (2023). Effective model for studying optical properties of lead halide perovskites. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.107.125201 chicago: Volosniev, Artem, Abhishek Shiva Kumar, Dusan Lorenc, Younes Ashourishokri, Ayan Zhumekenov, Osman M. Bakr, Mikhail Lemeshko, and Zhanybek Alpichshev. “Effective Model for Studying Optical Properties of Lead Halide Perovskites.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/physrevb.107.125201. ieee: A. Volosniev et al., “Effective model for studying optical properties of lead halide perovskites,” Physical Review B, vol. 107, no. 12. American Physical Society, 2023. ista: Volosniev A, Shiva Kumar A, Lorenc D, Ashourishokri Y, Zhumekenov A, Bakr OM, Lemeshko M, Alpichshev Z. 2023. Effective model for studying optical properties of lead halide perovskites. Physical Review B. 107(12), 125201. mla: Volosniev, Artem, et al. “Effective Model for Studying Optical Properties of Lead Halide Perovskites.” Physical Review B, vol. 107, no. 12, 125201, American Physical Society, 2023, doi:10.1103/physrevb.107.125201. short: A. Volosniev, A. Shiva Kumar, D. Lorenc, Y. Ashourishokri, A. Zhumekenov, O.M. Bakr, M. Lemeshko, Z. Alpichshev, Physical Review B 107 (2023). date_created: 2023-03-14T13:13:05Z date_published: 2023-03-15T00:00:00Z date_updated: 2023-08-01T13:39:47Z day: '15' department: - _id: GradSch - _id: ZhAl - _id: MiLe doi: 10.1103/physrevb.107.125201 external_id: arxiv: - '2204.04022' isi: - '000972602200006' intvolume: ' 107' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2204.04022 month: '03' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Effective model for studying optical properties of lead halide perovskites type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '12790' abstract: - lang: eng text: Motivated by the recent discoveries of superconductivity in bilayer and trilayer graphene, we theoretically investigate superconductivity and other interaction-driven phases in multilayer graphene stacks. To this end, we study the density of states of multilayer graphene with up to four layers at the single-particle band structure level in the presence of a transverse electric field. Among the considered structures, tetralayer graphene with rhombohedral (ABCA) stacking reaches the highest density of states. We study the phases that can arise in ABCA graphene by tuning the carrier density and transverse electric field. For a broad region of the tuning parameters, the presence of strong Coulomb repulsion leads to a spontaneous spin and valley symmetry breaking via Stoner transitions. Using a model that incorporates the spontaneous spin and valley polarization, we explore the Kohn-Luttinger mechanism for superconductivity driven by repulsive Coulomb interactions. We find that the strongest superconducting instability is in the p-wave channel, and occurs in proximity to the onset of Stoner transitions. Interestingly, we find a range of densities and transverse electric fields where superconductivity develops out of a strongly corrugated, singly connected Fermi surface in each valley, leading to a topologically nontrivial chiral p+ip superconducting state with an even number of copropagating chiral Majorana edge modes. Our work establishes ABCA-stacked tetralayer graphene as a promising platform for observing strongly correlated physics and topological superconductivity. acknowledgement: E.B. and T.H. were supported by the European Research Council (ERC) under grant HQMAT (Grant Agreement No. 817799), by the Israel-USA Binational Science Foundation (BSF), and by a Research grant from Irving and Cherna Moskowitz. article_number: '104502' article_processing_charge: No article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Tobias full_name: Holder, Tobias last_name: Holder - first_name: Erez full_name: Berg, Erez last_name: Berg - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Ghazaryan A, Holder T, Berg E, Serbyn M. Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity. Physical Review B. 2023;107(10). doi:10.1103/PhysRevB.107.104502 apa: Ghazaryan, A., Holder, T., Berg, E., & Serbyn, M. (2023). Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.107.104502 chicago: Ghazaryan, Areg, Tobias Holder, Erez Berg, and Maksym Serbyn. “Multilayer Graphenes as a Platform for Interaction-Driven Physics and Topological Superconductivity.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.107.104502. ieee: A. Ghazaryan, T. Holder, E. Berg, and M. Serbyn, “Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity,” Physical Review B, vol. 107, no. 10. American Physical Society, 2023. ista: Ghazaryan A, Holder T, Berg E, Serbyn M. 2023. Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity. Physical Review B. 107(10), 104502. mla: Ghazaryan, Areg, et al. “Multilayer Graphenes as a Platform for Interaction-Driven Physics and Topological Superconductivity.” Physical Review B, vol. 107, no. 10, 104502, American Physical Society, 2023, doi:10.1103/PhysRevB.107.104502. short: A. Ghazaryan, T. Holder, E. Berg, M. Serbyn, Physical Review B 107 (2023). date_created: 2023-04-02T22:01:10Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-01T13:59:29Z day: '01' department: - _id: MaSe - _id: MiLe doi: 10.1103/PhysRevB.107.104502 external_id: arxiv: - '2211.02492' isi: - '000945526400003' intvolume: ' 107' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2211.02492 month: '03' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News on the ISTA website relation: press_release url: https://ista.ac.at/en/news/reaching-superconductivity-layer-by-layer/ scopus_import: '1' status: public title: Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '13039' abstract: - lang: eng text: We calculate reflectivities of dynamically compressed water, water-ethanol mixtures, and ammonia at infrared and optical wavelengths with density functional theory and molecular dynamics simulations. The influence of the exchange-correlation functional on the results is examined in detail. Our findings indicate that the consistent use of the HSE hybrid functional reproduces experimental results much better than the commonly used PBE functional. The HSE functional offers not only a more accurate description of the electronic band gap but also shifts the onset of molecular dissociation in the molecular dynamics simulations to significantly higher pressures. We also highlight the importance of using accurate reference standards in reflectivity experiments and reanalyze infrared and optical reflectivity data from recent experiments. Thus, our combined theoretical and experimental work explains and resolves lingering discrepancies between calculations and measurements for the investigated molecular substances under shock compression. acknowledgement: 'We thank R. Redmer for helpful discussions. M.F. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) within the FOR 2440. M.B. gratefully acknowledges support by the European Horizon 2020 programme within the Marie Skłodowska-Curie actions (xICE Grant No. 894725) and the NOMIS foundation. A.R. and J.-A.H. acknowledge support form the French National Research Agency (ANR) through the projects POMPEI (Grant No. ANR-16-CE31-0008) and SUPER-ICES (Grant No. ANR-15-CE30-008-01). The ab initio calculations were performed at the NorthGerman Supercomputing Alliance (HLRN) facilities. ' article_number: '134109' article_processing_charge: No article_type: original author: - first_name: Martin full_name: French, Martin last_name: French - first_name: Mandy full_name: Bethkenhagen, Mandy id: 201939f4-803f-11ed-ab7e-d8da4bd1517f last_name: Bethkenhagen orcid: 0000-0002-1838-2129 - first_name: Alessandra full_name: Ravasio, Alessandra last_name: Ravasio - first_name: Jean Alexis full_name: Hernandez, Jean Alexis last_name: Hernandez citation: ama: French M, Bethkenhagen M, Ravasio A, Hernandez JA. Ab initio calculation of the reflectivity of molecular fluids under shock compression. Physical Review B. 2023;107(13). doi:10.1103/PhysRevB.107.134109 apa: French, M., Bethkenhagen, M., Ravasio, A., & Hernandez, J. A. (2023). Ab initio calculation of the reflectivity of molecular fluids under shock compression. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.107.134109 chicago: French, Martin, Mandy Bethkenhagen, Alessandra Ravasio, and Jean Alexis Hernandez. “Ab Initio Calculation of the Reflectivity of Molecular Fluids under Shock Compression.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.107.134109. ieee: M. French, M. Bethkenhagen, A. Ravasio, and J. A. Hernandez, “Ab initio calculation of the reflectivity of molecular fluids under shock compression,” Physical Review B, vol. 107, no. 13. American Physical Society, 2023. ista: French M, Bethkenhagen M, Ravasio A, Hernandez JA. 2023. Ab initio calculation of the reflectivity of molecular fluids under shock compression. Physical Review B. 107(13), 134109. mla: French, Martin, et al. “Ab Initio Calculation of the Reflectivity of Molecular Fluids under Shock Compression.” Physical Review B, vol. 107, no. 13, 134109, American Physical Society, 2023, doi:10.1103/PhysRevB.107.134109. short: M. French, M. Bethkenhagen, A. Ravasio, J.A. Hernandez, Physical Review B 107 (2023). date_created: 2023-05-21T22:01:04Z date_published: 2023-04-01T00:00:00Z date_updated: 2023-08-01T14:45:25Z day: '01' department: - _id: BiCh doi: 10.1103/PhysRevB.107.134109 external_id: isi: - '000974672600001' intvolume: ' 107' isi: 1 issue: '13' language: - iso: eng month: '04' oa_version: None publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Ab initio calculation of the reflectivity of molecular fluids under shock compression type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '13138' abstract: - lang: eng text: "We consider the spin-\r\n1\r\n2\r\n Heisenberg chain (XXX model) weakly perturbed away from integrability by an isotropic next-to-nearest neighbor exchange interaction. Recently, it was conjectured that this model possesses an infinite tower of quasiconserved integrals of motion (charges) [D. Kurlov et al., Phys. Rev. B 105, 104302 (2022)]. In this work we first test this conjecture by investigating how the norm of the adiabatic gauge potential (AGP) scales with the system size, which is known to be a remarkably accurate measure of chaos. We find that for the perturbed XXX chain the behavior of the AGP norm corresponds to neither an integrable nor a chaotic regime, which supports the conjectured quasi-integrability of the model. We then prove the conjecture and explicitly construct the infinite set of quasiconserved charges. Our proof relies on the fact that the XXX chain perturbed by next-to-nearest exchange interaction can be viewed as a truncation of an integrable long-range deformation of the Heisenberg spin chain." acknowledgement: "The numerical computations in this work were performed using QuSpin [83, 84]. We acknowledge useful discussions with Igor Aleiner, Boris Altshuler, Jacopo de Nardis, Anatoli Polkovnikov, and Gora Shlyapnikov. We thank Piotr Sierant and Dario Rosa for drawing our attention to Refs. [31, 42, 46] and Ref. [47], respectively. We are grateful to an anonymous referee for very useful comments and for drawing our attention to Refs. [80, 81]. The work of VG is part of the DeltaITP consortium, a program of the Netherlands Organization for Scientific\r\nResearch (NWO) funded by the Dutch Ministry of Education, Culture and Science (OCW). VG is also partially supported by RSF 19-71-10092. The work of AT was supported by the ERC Starting Grant 101042293 (HEPIQ). RS acknowledges support from Slovenian Research Agency (ARRS) - research programme P1-0402. " article_number: '184312' article_processing_charge: No article_type: original author: - first_name: Pavel full_name: Orlov, Pavel last_name: Orlov - first_name: Anastasiia full_name: Tiutiakina, Anastasiia last_name: Tiutiakina - first_name: Rustem full_name: Sharipov, Rustem last_name: Sharipov - first_name: Elena full_name: Petrova, Elena id: 0ac84990-897b-11ed-a09c-f5abb56a4ede last_name: Petrova - first_name: Vladimir full_name: Gritsev, Vladimir last_name: Gritsev - first_name: Denis V. full_name: Kurlov, Denis V. last_name: Kurlov citation: ama: Orlov P, Tiutiakina A, Sharipov R, Petrova E, Gritsev V, Kurlov DV. Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. 2023;107(18). doi:10.1103/PhysRevB.107.184312 apa: Orlov, P., Tiutiakina, A., Sharipov, R., Petrova, E., Gritsev, V., & Kurlov, D. V. (2023). Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.107.184312 chicago: Orlov, Pavel, Anastasiia Tiutiakina, Rustem Sharipov, Elena Petrova, Vladimir Gritsev, and Denis V. Kurlov. “Adiabatic Eigenstate Deformations and Weak Integrability Breaking of Heisenberg Chain.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.107.184312. ieee: P. Orlov, A. Tiutiakina, R. Sharipov, E. Petrova, V. Gritsev, and D. V. Kurlov, “Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain,” Physical Review B, vol. 107, no. 18. American Physical Society, 2023. ista: Orlov P, Tiutiakina A, Sharipov R, Petrova E, Gritsev V, Kurlov DV. 2023. Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. 107(18), 184312. mla: Orlov, Pavel, et al. “Adiabatic Eigenstate Deformations and Weak Integrability Breaking of Heisenberg Chain.” Physical Review B, vol. 107, no. 18, 184312, American Physical Society, 2023, doi:10.1103/PhysRevB.107.184312. short: P. Orlov, A. Tiutiakina, R. Sharipov, E. Petrova, V. Gritsev, D.V. Kurlov, Physical Review B 107 (2023). date_created: 2023-06-18T22:00:46Z date_published: 2023-05-01T00:00:00Z date_updated: 2023-08-02T06:16:02Z day: '01' department: - _id: GradSch doi: 10.1103/PhysRevB.107.184312 external_id: arxiv: - '2303.00729' isi: - '001003686900004' intvolume: ' 107' isi: 1 issue: '18' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2303.00729 month: '05' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '13963' abstract: - lang: eng text: The many-body localization (MBL) proximity effect is an intriguing phenomenon where a thermal bath localizes due to the interaction with a disordered system. The interplay of thermal and nonergodic behavior in these systems gives rise to a rich phase diagram, whose exploration is an active field of research. In this paper, we study a bosonic Hubbard model featuring two particle species representing the bath and the disordered system. Using state-of-the-art numerical techniques, we investigate the dynamics of the model in different regimes, based on which we obtain a tentative phase diagram as a function of coupling strength and bath size. When the bath is composed of a single particle, we observe clear signatures of a transition from an MBL proximity effect to a delocalized phase. Increasing the bath size, however, its thermalizing effect becomes stronger and eventually the whole system delocalizes in the range of moderate interaction strengths studied. In this regime, we characterize particle transport, revealing diffusive behavior of the originally localized bosons. acknowledgement: "We thank A. A. Michailidis and A. Mirlin for insightful discussions. P.B., M.L., and M.S. acknowledge support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 850899). D.A. was\r\nsupported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 864597) and by the Swiss National Science Foundation. P.B., M.L., and M.S. acknowledge PRACE for awarding us access to Joliot-Curie at GENCI@CEA, France, where the TEBD simulations were performed. The TEBD simulations were performed using the ITensor library [60]." article_number: '054201' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Pietro full_name: Brighi, Pietro id: 4115AF5C-F248-11E8-B48F-1D18A9856A87 last_name: Brighi orcid: 0000-0002-7969-2729 - first_name: Marko full_name: Ljubotina, Marko id: F75EE9BE-5C90-11EA-905D-16643DDC885E last_name: Ljubotina - first_name: Dmitry A. full_name: Abanin, Dmitry A. last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Brighi P, Ljubotina M, Abanin DA, Serbyn M. Many-body localization proximity effect in a two-species bosonic Hubbard model. Physical Review B. 2023;108(5). doi:10.1103/physrevb.108.054201 apa: Brighi, P., Ljubotina, M., Abanin, D. A., & Serbyn, M. (2023). Many-body localization proximity effect in a two-species bosonic Hubbard model. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.108.054201 chicago: Brighi, Pietro, Marko Ljubotina, Dmitry A. Abanin, and Maksym Serbyn. “Many-Body Localization Proximity Effect in a Two-Species Bosonic Hubbard Model.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/physrevb.108.054201. ieee: P. Brighi, M. Ljubotina, D. A. Abanin, and M. Serbyn, “Many-body localization proximity effect in a two-species bosonic Hubbard model,” Physical Review B, vol. 108, no. 5. American Physical Society, 2023. ista: Brighi P, Ljubotina M, Abanin DA, Serbyn M. 2023. Many-body localization proximity effect in a two-species bosonic Hubbard model. Physical Review B. 108(5), 054201. mla: Brighi, Pietro, et al. “Many-Body Localization Proximity Effect in a Two-Species Bosonic Hubbard Model.” Physical Review B, vol. 108, no. 5, 054201, American Physical Society, 2023, doi:10.1103/physrevb.108.054201. short: P. Brighi, M. Ljubotina, D.A. Abanin, M. Serbyn, Physical Review B 108 (2023). date_created: 2023-08-05T18:25:22Z date_published: 2023-08-01T00:00:00Z date_updated: 2023-08-07T09:51:39Z day: '01' ddc: - '530' department: - _id: MaSe doi: 10.1103/physrevb.108.054201 ec_funded: 1 external_id: arxiv: - '2303.16876' file: - access_level: open_access checksum: f763000339b5fd543c14377109920690 content_type: application/pdf creator: dernst date_created: 2023-08-07T09:48:08Z date_updated: 2023-08-07T09:48:08Z file_id: '13981' file_name: 2023_PhysRevB_Brighi.pdf file_size: 3051398 relation: main_file success: 1 file_date_updated: 2023-08-07T09:48:08Z has_accepted_license: '1' intvolume: ' 108' issue: '5' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Many-body localization proximity effect in a two-species bosonic Hubbard model tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 108 year: '2023' ... --- _id: '13966' abstract: - lang: eng text: We present a low-scaling diagrammatic Monte Carlo approach to molecular correlation energies. Using combinatorial graph theory to encode many-body Hugenholtz diagrams, we sample the Møller-Plesset (MPn) perturbation series, obtaining accurate correlation energies up to n=5, with quadratic scaling in the number of basis functions. Our technique reduces the computational complexity of the molecular many-fermion correlation problem, opening up the possibility of low-scaling, accurate stochastic computations for a wide class of many-body systems described by Hugenholtz diagrams. acknowledgement: We acknowledge stimulating discussions with Sergey Varganov, Artur Izmaylov, Jacek Kłos, Piotr Żuchowski, Dominika Zgid, Nikolay Prokof'ev, Boris Svistunov, Robert Parrish, and Andreas Heßelmann. G.B. and Q.P.H. acknowledge support from the Austrian Science Fund (FWF) under Projects No. M2641-N27 and No. M2751. M.L. acknowledges support by the FWF under Project No. P29902-N27, and by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). T.V.T. was supported by the NSF CAREER award No. PHY-2045681. This work is supported by the German Research Foundation (DFG) under Germany's Excellence Strategy EXC2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster). The authors acknowledge support by the state of Baden-Württemberg through bwHPC. article_number: '045115' article_processing_charge: No article_type: original author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Quoc P full_name: Ho, Quoc P id: 3DD82E3C-F248-11E8-B48F-1D18A9856A87 last_name: Ho - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: T. V. full_name: Tscherbul, T. V. last_name: Tscherbul citation: ama: 'Bighin G, Ho QP, Lemeshko M, Tscherbul TV. Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling. Physical Review B. 2023;108(4). doi:10.1103/PhysRevB.108.045115' apa: 'Bighin, G., Ho, Q. P., Lemeshko, M., & Tscherbul, T. V. (2023). Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.108.045115' chicago: 'Bighin, Giacomo, Quoc P Ho, Mikhail Lemeshko, and T. V. Tscherbul. “Diagrammatic Monte Carlo for Electronic Correlation in Molecules: High-Order Many-Body Perturbation Theory with Low Scaling.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.108.045115.' ieee: 'G. Bighin, Q. P. Ho, M. Lemeshko, and T. V. Tscherbul, “Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling,” Physical Review B, vol. 108, no. 4. American Physical Society, 2023.' ista: 'Bighin G, Ho QP, Lemeshko M, Tscherbul TV. 2023. Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling. Physical Review B. 108(4), 045115.' mla: 'Bighin, Giacomo, et al. “Diagrammatic Monte Carlo for Electronic Correlation in Molecules: High-Order Many-Body Perturbation Theory with Low Scaling.” Physical Review B, vol. 108, no. 4, 045115, American Physical Society, 2023, doi:10.1103/PhysRevB.108.045115.' short: G. Bighin, Q.P. Ho, M. Lemeshko, T.V. Tscherbul, Physical Review B 108 (2023). date_created: 2023-08-06T22:01:10Z date_published: 2023-07-15T00:00:00Z date_updated: 2023-08-07T08:41:29Z day: '15' department: - _id: MiLe - _id: TaHa doi: 10.1103/PhysRevB.108.045115 ec_funded: 1 external_id: arxiv: - '2203.12666' intvolume: ' 108' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2203.12666 month: '07' oa: 1 oa_version: Preprint project: - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities - _id: 26B96266-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02751 name: Algebro-Geometric Applications of Factorization Homology - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 108 year: '2023' ... --- _id: '14320' abstract: - lang: eng text: The development of two-dimensional materials has resulted in a diverse range of novel, high-quality compounds with increasing complexity. A key requirement for a comprehensive quantitative theory is the accurate determination of these materials' band structure parameters. However, this task is challenging due to the intricate band structures and the indirect nature of experimental probes. In this work, we introduce a general framework to derive band structure parameters from experimental data using deep neural networks. We applied our method to the penetration field capacitance measurement of trilayer graphene, an effective probe of its density of states. First, we demonstrate that a trained deep network gives accurate predictions for the penetration field capacitance as a function of tight-binding parameters. Next, we use the fast and accurate predictions from the trained network to automatically determine tight-binding parameters directly from experimental data, with extracted parameters being in a good agreement with values in the literature. We conclude by discussing potential applications of our method to other materials and experimental techniques beyond penetration field capacitance. acknowledgement: A.F.Y. acknowledges primary support from the Department of Energy under award DE-SC0020043, and additional support from the Gordon and Betty Moore Foundation under award GBMF9471 for group operations. article_number: '125411' article_processing_charge: No article_type: original author: - first_name: Paul M full_name: Henderson, Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Alexander A. full_name: Zibrov, Alexander A. last_name: Zibrov - first_name: Andrea F. full_name: Young, Andrea F. last_name: Young - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: 'Henderson PM, Ghazaryan A, Zibrov AA, Young AF, Serbyn M. Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene. Physical Review B. 2023;108(12). doi:10.1103/physrevb.108.125411' apa: 'Henderson, P. M., Ghazaryan, A., Zibrov, A. A., Young, A. F., & Serbyn, M. (2023). Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.108.125411' chicago: 'Henderson, Paul M, Areg Ghazaryan, Alexander A. Zibrov, Andrea F. Young, and Maksym Serbyn. “Deep Learning Extraction of Band Structure Parameters from Density of States: A Case Study on Trilayer Graphene.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/physrevb.108.125411.' ieee: 'P. M. Henderson, A. Ghazaryan, A. A. Zibrov, A. F. Young, and M. Serbyn, “Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene,” Physical Review B, vol. 108, no. 12. American Physical Society, 2023.' ista: 'Henderson PM, Ghazaryan A, Zibrov AA, Young AF, Serbyn M. 2023. Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene. Physical Review B. 108(12), 125411.' mla: 'Henderson, Paul M., et al. “Deep Learning Extraction of Band Structure Parameters from Density of States: A Case Study on Trilayer Graphene.” Physical Review B, vol. 108, no. 12, 125411, American Physical Society, 2023, doi:10.1103/physrevb.108.125411.' short: P.M. Henderson, A. Ghazaryan, A.A. Zibrov, A.F. Young, M. Serbyn, Physical Review B 108 (2023). date_created: 2023-09-12T07:12:12Z date_published: 2023-09-15T00:00:00Z date_updated: 2023-09-20T09:38:24Z day: '15' department: - _id: MaSe - _id: ChLa - _id: MiLe doi: 10.1103/physrevb.108.125411 external_id: arxiv: - '2210.06310' intvolume: ' 108' issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2210.06310 month: '09' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 108 year: '2023' ...