TY - JOUR AB - We study a linear rotor in a bosonic bath within the angulon formalism. Our focus is on systems where isotropic or anisotropic impurity-boson interactions support a shallow bound state. To study the fate of the angulon in the vicinity of bound-state formation, we formulate a beyond-linear-coupling angulon Hamiltonian. First, we use it to study attractive, spherically symmetric impurity-boson interactions for which the linear rotor can be mapped onto a static impurity. The well-known polaron formalism provides an adequate description in this limit. Second, we consider anisotropic potentials, and show that the presence of a shallow bound state with pronounced anisotropic character leads to a many-body instability that washes out the angulon dynamics. AU - Dome, Tibor AU - Volosniev, Artem AU - Ghazaryan, Areg AU - Safari, Laleh AU - Schmidt, Richard AU - Lemeshko, Mikhail ID - 14845 IS - 1 JF - Physical Review B SN - 2469-9950 TI - Linear rotor in an ideal Bose gas near the threshold for binding VL - 109 ER - TY - JOUR AB - Magnetic frustration allows to access novel and intriguing properties of magnetic systems and has been explored mainly in planar triangular-like arrays of magnetic ions. In this work, we describe the phosphide Ce6Ni6P17, where the Ce+3 ions accommodate in a body-centered cubic lattice of Ce6 regular octahedra. From measurements of magnetization, specific heat, and resistivity, we determine a rich phase diagram as a function of temperature and magnetic field in which different magnetic phases are found. Besides clear evidence of magnetic frustration is obtained from entropy analysis. At zero field, a second-order antiferromagnetic transition occurs at TN1≈1 K followed by a first-order transition at TN2≈0.45 K. With magnetic field new magnetic phases appear, including a weakly first-order transition which ends in a classical critical point and a third magnetic phase. We also study the exact solution of the spin-1/2 Heisenberg model in an octahedron which allows us a qualitative understanding of the phase diagram and compare with the experimental results. AU - Franco, D. G. AU - Avalos, R. AU - Hafner, D. AU - Modic, Kimberly A AU - Prots, Yu AU - Stockert, O. AU - Hoser, A. AU - Moll, P. J.W. AU - Brando, M. AU - Aligia, A. A. AU - Geibel, C. ID - 15003 IS - 5 JF - Physical Review B SN - 2469-9950 TI - Frustrated magnetism in octahedra-based Ce6 Ni6 P17 VL - 109 ER - TY - JOUR AB - Substrate induces mechanical strain on perovskite devices, which can result in alterations to its lattice dynamics and thermal transport. Herein, we have performed a theoretical investigation on the anharmonic lattice dynamics and thermal property of perovskite Rb2SnBr6 and Cs2SnBr6 under strains using perturbation theory up to the fourth-order terms and the unified thermal transport theory. We demonstrate a pronounced hardening of low-frequency optical phonons as temperature increases, indicating strong lattice anharmonicity and the necessity of adopting temperature-dependent interatomic force constants in the lattice thermal conductivity ( κL) calculations. It is found that the low-lying optical phonon modes of Rb2SnBr6 are extremely soft and their phonon energies are almost strain independent, which ultimately lead to a lower κL and a weaker strain dependence than Cs2SnBr6. We further reveal that the strain dependence of these phonon modes in the A2XB6-type perovskites weakens as their ibrational frequency decreases. This study deepens the understanding of lattice thermal transport in perovskites A2XB6 and provides a perspective on the selection of materials that meet the expected thermal behaviors in practical applications. AU - Cheng, Ruihuan AU - Zeng, Zezhu AU - Wang, Chen AU - Ouyang, Niuchang AU - Chen, Yue ID - 15052 IS - 5 JF - Physical Review B SN - 2469-9950 TI - Impact of strain-insensitive low-frequency phonon modes on lattice thermal transport in AxXB6-type perovskites VL - 109 ER - TY - JOUR AB - We use general symmetry-based arguments to construct an effective model suitable for studying optical properties of lead halide perovskites. To build the model, we identify an atomic-level interaction between electromagnetic fields and the spin degree of freedom that should be added to a minimally coupled k⋅p Hamiltonian. As a first application, we study two basic optical characteristics of the material: the Verdet constant and the refractive index. Beyond these linear characteristics of the material, the model is suitable for calculating nonlinear effects such as the third-order optical susceptibility. Analysis of this quantity shows that the geometrical properties of the spin-electric term imply isotropic optical response of the system, and that optical anisotropy of lead halide perovskites is a manifestation of hopping of charge carriers. To illustrate this, we discuss third-harmonic generation. AU - Volosniev, Artem AU - Shiva Kumar, Abhishek AU - Lorenc, Dusan AU - Ashourishokri, Younes AU - Zhumekenov, Ayan AU - Bakr, Osman M. AU - Lemeshko, Mikhail AU - Alpichshev, Zhanybek ID - 12724 IS - 12 JF - Physical Review B SN - 2469-9950 TI - Effective model for studying optical properties of lead halide perovskites VL - 107 ER - TY - JOUR AB - Motivated by the recent discoveries of superconductivity in bilayer and trilayer graphene, we theoretically investigate superconductivity and other interaction-driven phases in multilayer graphene stacks. To this end, we study the density of states of multilayer graphene with up to four layers at the single-particle band structure level in the presence of a transverse electric field. Among the considered structures, tetralayer graphene with rhombohedral (ABCA) stacking reaches the highest density of states. We study the phases that can arise in ABCA graphene by tuning the carrier density and transverse electric field. For a broad region of the tuning parameters, the presence of strong Coulomb repulsion leads to a spontaneous spin and valley symmetry breaking via Stoner transitions. Using a model that incorporates the spontaneous spin and valley polarization, we explore the Kohn-Luttinger mechanism for superconductivity driven by repulsive Coulomb interactions. We find that the strongest superconducting instability is in the p-wave channel, and occurs in proximity to the onset of Stoner transitions. Interestingly, we find a range of densities and transverse electric fields where superconductivity develops out of a strongly corrugated, singly connected Fermi surface in each valley, leading to a topologically nontrivial chiral p+ip superconducting state with an even number of copropagating chiral Majorana edge modes. Our work establishes ABCA-stacked tetralayer graphene as a promising platform for observing strongly correlated physics and topological superconductivity. AU - Ghazaryan, Areg AU - Holder, Tobias AU - Berg, Erez AU - Serbyn, Maksym ID - 12790 IS - 10 JF - Physical Review B SN - 2469-9950 TI - Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity VL - 107 ER - TY - JOUR AB - We calculate reflectivities of dynamically compressed water, water-ethanol mixtures, and ammonia at infrared and optical wavelengths with density functional theory and molecular dynamics simulations. The influence of the exchange-correlation functional on the results is examined in detail. Our findings indicate that the consistent use of the HSE hybrid functional reproduces experimental results much better than the commonly used PBE functional. The HSE functional offers not only a more accurate description of the electronic band gap but also shifts the onset of molecular dissociation in the molecular dynamics simulations to significantly higher pressures. We also highlight the importance of using accurate reference standards in reflectivity experiments and reanalyze infrared and optical reflectivity data from recent experiments. Thus, our combined theoretical and experimental work explains and resolves lingering discrepancies between calculations and measurements for the investigated molecular substances under shock compression. AU - French, Martin AU - Bethkenhagen, Mandy AU - Ravasio, Alessandra AU - Hernandez, Jean Alexis ID - 13039 IS - 13 JF - Physical Review B SN - 2469-9950 TI - Ab initio calculation of the reflectivity of molecular fluids under shock compression VL - 107 ER - TY - JOUR AB - We consider the spin- 1 2 Heisenberg chain (XXX model) weakly perturbed away from integrability by an isotropic next-to-nearest neighbor exchange interaction. Recently, it was conjectured that this model possesses an infinite tower of quasiconserved integrals of motion (charges) [D. Kurlov et al., Phys. Rev. B 105, 104302 (2022)]. In this work we first test this conjecture by investigating how the norm of the adiabatic gauge potential (AGP) scales with the system size, which is known to be a remarkably accurate measure of chaos. We find that for the perturbed XXX chain the behavior of the AGP norm corresponds to neither an integrable nor a chaotic regime, which supports the conjectured quasi-integrability of the model. We then prove the conjecture and explicitly construct the infinite set of quasiconserved charges. Our proof relies on the fact that the XXX chain perturbed by next-to-nearest exchange interaction can be viewed as a truncation of an integrable long-range deformation of the Heisenberg spin chain. AU - Orlov, Pavel AU - Tiutiakina, Anastasiia AU - Sharipov, Rustem AU - Petrova, Elena AU - Gritsev, Vladimir AU - Kurlov, Denis V. ID - 13138 IS - 18 JF - Physical Review B SN - 2469-9950 TI - Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain VL - 107 ER - TY - JOUR AB - The many-body localization (MBL) proximity effect is an intriguing phenomenon where a thermal bath localizes due to the interaction with a disordered system. The interplay of thermal and nonergodic behavior in these systems gives rise to a rich phase diagram, whose exploration is an active field of research. In this paper, we study a bosonic Hubbard model featuring two particle species representing the bath and the disordered system. Using state-of-the-art numerical techniques, we investigate the dynamics of the model in different regimes, based on which we obtain a tentative phase diagram as a function of coupling strength and bath size. When the bath is composed of a single particle, we observe clear signatures of a transition from an MBL proximity effect to a delocalized phase. Increasing the bath size, however, its thermalizing effect becomes stronger and eventually the whole system delocalizes in the range of moderate interaction strengths studied. In this regime, we characterize particle transport, revealing diffusive behavior of the originally localized bosons. AU - Brighi, Pietro AU - Ljubotina, Marko AU - Abanin, Dmitry A. AU - Serbyn, Maksym ID - 13963 IS - 5 JF - Physical Review B SN - 2469-9950 TI - Many-body localization proximity effect in a two-species bosonic Hubbard model VL - 108 ER - TY - JOUR AB - We present a low-scaling diagrammatic Monte Carlo approach to molecular correlation energies. Using combinatorial graph theory to encode many-body Hugenholtz diagrams, we sample the Møller-Plesset (MPn) perturbation series, obtaining accurate correlation energies up to n=5, with quadratic scaling in the number of basis functions. Our technique reduces the computational complexity of the molecular many-fermion correlation problem, opening up the possibility of low-scaling, accurate stochastic computations for a wide class of many-body systems described by Hugenholtz diagrams. AU - Bighin, Giacomo AU - Ho, Quoc P AU - Lemeshko, Mikhail AU - Tscherbul, T. V. ID - 13966 IS - 4 JF - Physical Review B SN - 2469-9950 TI - Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling VL - 108 ER - TY - JOUR AB - The development of two-dimensional materials has resulted in a diverse range of novel, high-quality compounds with increasing complexity. A key requirement for a comprehensive quantitative theory is the accurate determination of these materials' band structure parameters. However, this task is challenging due to the intricate band structures and the indirect nature of experimental probes. In this work, we introduce a general framework to derive band structure parameters from experimental data using deep neural networks. We applied our method to the penetration field capacitance measurement of trilayer graphene, an effective probe of its density of states. First, we demonstrate that a trained deep network gives accurate predictions for the penetration field capacitance as a function of tight-binding parameters. Next, we use the fast and accurate predictions from the trained network to automatically determine tight-binding parameters directly from experimental data, with extracted parameters being in a good agreement with values in the literature. We conclude by discussing potential applications of our method to other materials and experimental techniques beyond penetration field capacitance. AU - Henderson, Paul M AU - Ghazaryan, Areg AU - Zibrov, Alexander A. AU - Young, Andrea F. AU - Serbyn, Maksym ID - 14320 IS - 12 JF - Physical Review B SN - 2469-9950 TI - Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene VL - 108 ER - TY - JOUR AB - Recently, a concept of generalized multifractality, which characterizes fluctuations and correlations of critical eigenstates, was introduced and explored for all 10 symmetry classes of disordered systems. Here, by using the nonlinear sigma-model ( NL σ M ) field theory, we extend the theory of generalized multifractality to boundaries of systems at criticality. Our numerical simulations on two-dimensional systems of symmetry classes A, C, and AII fully confirm the analytical predictions of pure-scaling observables and Weyl symmetry relations between critical exponents of surface generalized multifractality. This demonstrates the validity of the NL σ M for the description of Anderson-localization critical phenomena, not only in the bulk but also on the boundary. The critical exponents strongly violate generalized parabolicity, in analogy with earlier results for the bulk, corroborating the conclusion that the considered Anderson-localization critical points are not described by conformal field theories. We further derive relations between generalized surface multifractal spectra and linear combinations of Lyapunov exponents of a strip in quasi-one-dimensional geometry, which hold under the assumption of invariance with respect to a logarithmic conformal map. Our numerics demonstrate that these relations hold with an excellent accuracy. Taken together, our results indicate an intriguing situation: the conformal invariance is broken but holds partially at critical points of Anderson localization. AU - Babkin, Serafim AU - Karcher, Jonas F. AU - Burmistrov, Igor S. AU - Mirlin, Alexander D. ID - 14406 IS - 10 JF - Physical Review B SN - 2469-9950 TI - Generalized surface multifractality in two-dimensional disordered systems VL - 108 ER - TY - JOUR AB - The phonon transport mechanisms and ultralow lattice thermal conductivities (κL) in silver halide AgX (X=Cl,Br,I) compounds are not yet well understood. Herein, we study the lattice dynamics and thermal property of AgX under the framework of perturbation theory and the two-channel Wigner thermal transport model based on accurate machine learning potentials. We find that an accurate extraction of the third-order atomic force constants from largely displaced configurations is significant for the calculation of the κL of AgX, and the coherence thermal transport is also non-negligible. In AgI, however, the calculated κL still considerably overestimates the experimental values even including four-phonon scatterings. Molecular dynamics (MD) simulations using machine learning potential suggest an important role of the higher-than-fourth-order lattice anharmonicity in the low-frequency phonon linewidths of AgI at room temperature, which can be related to the simultaneous restrictions of the three- and four-phonon phase spaces. The κL of AgI calculated using MD phonon lifetimes including full-order lattice anharmonicity shows a better agreement with experiments. AU - Ouyang, Niuchang AU - Zeng, Zezhu AU - Wang, Chen AU - Wang, Qi AU - Chen, Yue ID - 14605 IS - 17 JF - Physical Review B SN - 2469-9950 TI - Role of high-order lattice anharmonicity in the phonon thermal transport of silver halide AgX (X=Cl,Br, I) VL - 108 ER - TY - JOUR AB - The magnetotropic susceptibility is the thermodynamic coefficient associated with the rotational anisotropy of the free energy in an external magnetic field and is closely related to the magnetic susceptibility. It emerges naturally in frequency-shift measurements of oscillating mechanical cantilevers, which are becoming an increasingly important tool in the quantitative study of the thermodynamics of modern condensed-matter systems. Here we discuss the basic properties of the magnetotropic susceptibility as they relate to the experimental aspects of frequency-shift measurements, as well as to the interpretation of those experiments in terms of the intrinsic properties of the system under study. AU - Shekhter, A. AU - Mcdonald, R. D. AU - Ramshaw, B. J. AU - Modic, Kimberly A ID - 13257 IS - 3 JF - Physical Review B SN - 2469-9950 TI - Magnetotropic susceptibility VL - 108 ER - TY - JOUR AB - Generalized multifractality characterizes system size dependence of pure scaling local observables at Anderson transitions in all 10 symmetry classes of disordered systems. Recently, the concept of generalized multifractality has been extended to boundaries of critical disordered noninteracting systems. Here we study the generalized boundary multifractality in the presence of electron-electron interaction, focusing on the spin quantum Hall symmetry class (class C). Employing the two-loop renormalization group analysis within the Finkel'stein nonlinear sigma model, we compute the anomalous dimensions of the pure scaling operators located at the boundary of the system. We find that generalized boundary multifractal exponents are twice larger than their bulk counterparts. Exact symmetry relations between generalized boundary multifractal exponents in the case of noninteracting systems are explicitly broken by the interaction. AU - Babkin, Serafim AU - Burmistrov, I ID - 14690 IS - 20 JF - Physical Review B SN - 2469-9950 TI - Boundary multifractality in the spin quantum Hall symmetry class with interaction VL - 108 ER - TY - JOUR AB - Nonanalytic points in the return probability of a quantum state as a function of time, known as dynamical quantum phase transitions (DQPTs), have received great attention in recent years, but the understanding of their mechanism is still incomplete. In our recent work [Phys. Rev. Lett. 126, 040602 (2021)], we demonstrated that one-dimensional DQPTs can be produced by two distinct mechanisms, namely semiclassical precession and entanglement generation, leading to the definition of precession (pDQPTs) and entanglement (eDQPTs) dynamical quantum phase transitions. In this manuscript, we extend and investigate the notion of p- and eDQPTs in two-dimensional systems by considering semi-infinite ladders of varying width. For square lattices, we find that pDQPTs and eDQPTs persist and are characterized by similar phenomenology as in 1D: pDQPTs are associated with a magnetization sign change and a wide entanglement gap, while eDQPTs correspond to suppressed local observables and avoided crossings in the entanglement spectrum. However, DQPTs show higher sensitivity to the ladder width and other details, challenging the extrapolation to the thermodynamic limit especially for eDQPTs. Moving to honeycomb lattices, we also demonstrate that lattices with an odd number of nearest neighbors give rise to phenomenologies beyond the one-dimensional classification. AU - De Nicola, Stefano AU - Michailidis, Alexios AU - Serbyn, Maksym ID - 11337 JF - Physical Review B SN - 2469-9950 TI - Entanglement and precession in two-dimensional dynamical quantum phase transitions VL - 105 ER - TY - JOUR AB - Many-body localization (MBL) is an example of a dynamical phase of matter that avoids thermalization. While the MBL phase is robust to weak local perturbations, the fate of an MBL system coupled to a thermalizing quantum system that represents a “heat bath” is an open question that is actively investigated theoretically and experimentally. In this work, we consider the stability of an Anderson insulator with a finite density of particles interacting with a single mobile impurity—a small quantum bath. We give perturbative arguments that support the stability of localization in the strong interaction regime. Large-scale tensor network simulations of dynamics are employed to corroborate the presence of the localized phase and give quantitative predictions in the thermodynamic limit. We develop a phenomenological description of the dynamics in the strong interaction regime, and we demonstrate that the impurity effectively turns the Anderson insulator into an MBL phase, giving rise to nontrivial entanglement dynamics well captured by our phenomenology. AU - Brighi, Pietro AU - Michailidis, Alexios A. AU - Abanin, Dmitry A. AU - Serbyn, Maksym ID - 11470 IS - 22 JF - Physical Review B SN - 2469-9950 TI - Propagation of many-body localization in an Anderson insulator VL - 105 ER - TY - JOUR AB - Spin-orbit coupling in thin HgTe quantum wells results in a relativistic-like electron band structure, making it a versatile solid state platform to observe and control nontrivial electrodynamic phenomena. Here we report an observation of universal terahertz (THz) transparency determined by fine-structure constant α≈1/137 in 6.5-nm-thick HgTe layer, close to the critical thickness separating phases with topologically different electronic band structure. Using THz spectroscopy in a magnetic field we obtain direct evidence of asymmetric spin splitting of the Dirac cone. This particle-hole asymmetry facilitates optical control of edge spin currents in the quantum wells. AU - Dziom, Uladzislau AU - Shuvaev, A. AU - Gospodarič, J. AU - Novik, E. G. AU - Dobretsova, A. A. AU - Mikhailov, N. N. AU - Kvon, Z. D. AU - Alpichshev, Zhanybek AU - Pimenov, A. ID - 11737 IS - 4 JF - Physical Review B SN - 2469-9950 TI - Universal transparency and asymmetric spin splitting near the Dirac point in HgTe quantum wells VL - 106 ER - TY - JOUR AB - We demonstrate the formation of robust zero-energy modes close to magnetic impurities in the iron-based superconductor FeSe1-z Tez. We find that the Zeeman field generated by the impurity favors a spin-triplet interorbital pairing as opposed to the spin-singlet intraorbital pairing prevalent in the bulk. The preferred spin-triplet pairing preserves time-reversal symmetry and is topological, as robust, topologically protected zero modes emerge at the boundary between regions with different pairing states. Moreover, the zero modes form Kramers doublets that are insensitive to the direction of the spin polarization or to the separation between impurities. We argue that our theoretical results are consistent with recent experimental measurements on FeSe1-z Tez. AU - Ghazaryan, Areg AU - Kirmani, Ammar AU - Fernandes, Rafael M. AU - Ghaemi, Pouyan ID - 12139 IS - 20 JF - Physical Review B SN - 2469-9950 TI - Anomalous Shiba states in topological iron-based superconductors VL - 106 ER - TY - JOUR AB - Methods inspired from machine learning have recently attracted great interest in the computational study of quantum many-particle systems. So far, however, it has proven challenging to deal with microscopic models in which the total number of particles is not conserved. To address this issue, we propose a variant of neural network states, which we term neural coherent states. Taking the Fröhlich impurity model as a case study, we show that neural coherent states can learn the ground state of nonadditive systems very well. In particular, we recover exact diagonalization in all regimes tested and observe substantial improvement over the standard coherent state estimates in the most challenging intermediate-coupling regime. Our approach is generic and does not assume specific details of the system, suggesting wide applications. AU - Rzadkowski, Wojciech AU - Lemeshko, Mikhail AU - Mentink, Johan H. ID - 12150 IS - 15 JF - Physical Review B SN - 2469-9950 TI - Artificial neural network states for nonadditive systems VL - 106 ER - TY - JOUR AB - We study the thermalization of a small XX chain coupled to long, gapped XXZ leads at either side by observing the relaxation dynamics of the whole system. Using extensive tensor network simulations, we show that such systems, although not integrable, appear to show either extremely slow thermalization or even lack thereof since the two cannot be distinguished within the accuracy of our numerics. We show that the persistent oscillations observed in the spin current in the middle of the XX chain are related to eigenstates of the entire system located within the gap of the boundary chains. We find from exact diagonalization that some of these states remain strictly localized within the XX chain and do not hybridize with the rest of the system. The frequencies of the persistent oscillations determined by numerical simulations of dynamics match the energy differences between these states exactly. This has important implications for open systems, where the strongly interacting leads are often assumed to thermalize the central system. Our results suggest that, if we employ gapped systems for the leads, this assumption does not hold. AU - Ljubotina, Marko AU - Roy, Dibyendu AU - Prosen, Tomaž ID - 12269 IS - 5 JF - Physical Review B SN - 2469-9950 TI - Absence of thermalization of free systems coupled to gapped interacting reservoirs VL - 106 ER - TY - JOUR AB - Thermalizing and localized many-body quantum systems present two distinct dynamical phases of matter. Recently the fate of a localized system coupled to a thermalizing system viewed as a quantum bath received significant theoretical and experimental attention. In this work, we study a mobile impurity, representing a small quantum bath, that interacts locally with an Anderson insulator with a finite density of localized particles. Using static Hartree approximation to obtain an effective disorder strength, we formulate an analytic criterion for the perturbative stability of the localization. Next, we use an approximate dynamical Hartree method and the quasi-exact time-evolved block decimation (TEBD) algorithm to study the dynamics of the system. We find that the dynamical Hartree approach which completely ignores entanglement between the impurity and localized particles predicts the delocalization of the system. In contrast, the full numerical simulation of the unitary dynamics with TEBD suggests the stability of localization on numerically accessible timescales. Finally, using an extension of the density matrix renormalization group algorithm to excited states (DMRG-X), we approximate the highly excited eigenstates of the system. We find that the impurity remains localized in the eigenstates and entanglement is enhanced in a finite region around the position of the impurity, confirming the dynamical predictions. Dynamics and the DMRG-X results provide compelling evidence for the stability of localization. AU - Brighi, Pietro AU - Michailidis, Alexios AU - Kirova, Kristina AU - Abanin, Dmitry A. AU - Serbyn, Maksym ID - 11469 IS - 22 JF - Physical Review B SN - 2469-9950 TI - Localization of a mobile impurity interacting with an Anderson insulator VL - 105 ER - TY - JOUR AB - Harnessing the properties of vortices in superconductors is crucial for fundamental science and technological applications; thus, it has been an ongoing goal to locally probe and control vortices. Here, we use a scanning probe technique that enables studies of vortex dynamics in superconducting systems by leveraging the resonant behavior of a raster-scanned, magnetic-tipped cantilever. This experimental setup allows us to image and control vortices, as well as extract key energy scales of the vortex interactions. Applying this technique to lattices of superconductor island arrays on a metal, we obtain a variety of striking spatial patterns that encode information about the energy landscape for vortices in the system. We interpret these patterns in terms of local vortex dynamics and extract the relative strengths of the characteristic energy scales in the system, such as the vortex-magnetic field and vortex-vortex interaction strengths, as well as the vortex chemical potential. We also demonstrate that the relative strengths of the interactions can be tuned and show how these interactions shift with an applied bias. The high degree of tunability and local nature of such vortex imaging and control not only enable new understanding of vortex interactions, but also have potential applications in more complex systems such as those relevant to quantum computing. AU - Naibert, Tyler R. AU - Polshyn, Hryhoriy AU - Garrido-Menacho, Rita AU - Durkin, Malcolm AU - Wolin, Brian AU - Chua, Victor AU - Mondragon-Shem, Ian AU - Hughes, Taylor AU - Mason, Nadya AU - Budakian, Raffi ID - 10649 IS - 22 JF - Physical Review B SN - 2469-9950 TI - Imaging and controlling vortex dynamics in mesoscopic superconductor-normal-metal-superconductor arrays VL - 103 ER - TY - JOUR AB - We study an effective one-dimensional quantum model that includes friction and spin-orbit coupling (SOC), and show that the model exhibits spin polarization when both terms are finite. Most important, strong spin polarization can be observed even for moderate SOC, provided that the friction is strong. Our findings might help to explain the pronounced effect of chirality on spin distribution and transport in chiral molecules. In particular, our model implies static magnetic properties of a chiral molecule, which lead to Shiba-like states when a molecule is placed on a superconductor, in accordance with recent experimental data. AU - Volosniev, Artem AU - Alpern, Hen AU - Paltiel, Yossi AU - Millo, Oded AU - Lemeshko, Mikhail AU - Ghazaryan, Areg ID - 9770 IS - 2 JF - Physical Review B SN - 2469-9950 TI - Interplay between friction and spin-orbit coupling as a source of spin polarization VL - 104 ER - TY - JOUR AB - The notion of Thouless energy plays a central role in the theory of Anderson localization. We investigate and compare the scaling of Thouless energy across the many-body localization (MBL) transition in a Floquet model. We use a combination of methods that are reliable on the ergodic side of the transition (e.g., spectral form factor) and methods that work on the MBL side (e.g., typical matrix elements of local operators) to obtain a complete picture of the Thouless energy behavior across the transition. On the ergodic side, Thouless energy decreases slowly with the system size, while at the transition it becomes comparable to the level spacing. Different probes yield consistent estimates of Thouless energy in their overlapping regime of applicability, giving the location of the transition point nearly free of finite-size drift. This work establishes a connection between different definitions of Thouless energy in a many-body setting and yields insights into the MBL transition in Floquet systems. AU - Sonner, Michael AU - Serbyn, Maksym AU - Papić, Zlatko AU - Abanin, Dmitry A. ID - 9961 IS - 8 JF - Physical Review B SN - 2469-9950 TI - Thouless energy across the many-body localization transition in Floquet systems VL - 104 ER - TY - JOUR AB - The search for novel entangled phases of matter has lead to the recent discovery of a new class of “entanglement transitions,” exemplified by random tensor networks and monitored quantum circuits. Most known examples can be understood as some classical ordering transitions in an underlying statistical mechanics model, where entanglement maps onto the free-energy cost of inserting a domain wall. In this paper we study the possibility of entanglement transitions driven by physics beyond such statistical mechanics mappings. Motivated by recent applications of neural-network-inspired variational Ansätze, we investigate under what conditions on the variational parameters these Ansätze can capture an entanglement transition. We study the entanglement scaling of short-range restricted Boltzmann machine (RBM) quantum states with random phases. For uncorrelated random phases, we analytically demonstrate the absence of an entanglement transition and reveal subtle finite-size effects in finite-size numerical simulations. Introducing phases with correlations decaying as 1/r^α in real space, we observe three regions with a different scaling of entanglement entropy depending on the exponent α. We study the nature of the transition between these regions, finding numerical evidence for critical behavior. Our work establishes the presence of long-range correlated phases in RBM-based wave functions as a required ingredient for entanglement transitions. AU - Medina Ramos, Raimel A AU - Vasseur, Romain AU - Serbyn, Maksym ID - 10067 IS - 10 JF - Physical Review B SN - 2469-9950 TI - Entanglement transitions from restricted Boltzmann machines VL - 104 ER - TY - JOUR AB - Many-body localization provides a mechanism to avoid thermalization in isolated interacting quantum systems. The breakdown of thermalization may be complete, when all eigenstates in the many-body spectrum become localized, or partial, when the so-called many-body mobility edge separates localized and delocalized parts of the spectrum. Previously, De Roeck et al. [Phys. Rev. B 93, 014203 (2016)] suggested a possible instability of the many-body mobility edge in energy density. The local ergodic regions—so-called “bubbles”—resonantly spread throughout the system, leading to delocalization. In order to study such instability mechanism, in this work we design a model featuring many-body mobility edge in particle density: the states at small particle density are localized, while increasing the density of particles leads to delocalization. Using numerical simulations with matrix product states, we demonstrate the stability of many-body localization with respect to small bubbles in large dilute systems for experimentally relevant timescales. In addition, we demonstrate that processes where the bubble spreads are favored over processes that lead to resonant tunneling, suggesting a possible mechanism behind the observed stability of many-body mobility edge. We conclude by proposing experiments to probe particle density mobility edge in the Bose-Hubbard model. AU - Brighi, Pietro AU - Abanin, Dmitry A. AU - Serbyn, Maksym ID - 8308 IS - 6 JF - Physical Review B SN - 2469-9950 TI - Stability of mobility edges in disordered interacting systems VL - 102 ER - TY - JOUR AB - Dipolar (or spatially indirect) excitons (IXs) in semiconductor double quantum well (DQW) subjected to an electric field are neutral species with a dipole moment oriented perpendicular to the DQW plane. Here, we theoretically study interactions between IXs in stacked DQW bilayers, where the dipolar coupling can be either attractive or repulsive depending on the relative positions of the particles. By using microscopic band structure calculations to determine the electronic states forming the excitons, we show that the attractive dipolar interaction between stacked IXs deforms their electronic wave function, thereby increasing the inter-DQW interaction energy and making the IX even more electrically polarizable. Many-particle interaction effects are addressed by considering the coupling between a single IX in one of the DQWs to a cloud of IXs in the other DQW, which is modeled either as a closed-packed lattice or as a continuum IX fluid. We find that the lattice model yields IX interlayer binding energies decreasing with increasing lattice density. This behavior is due to the dominating role of the intra-DQW dipolar repulsion, which prevents more than one exciton from entering the attractive region of the inter-DQW coupling. Finally, both models shows that the single IX distorts the distribution of IXs in the adjacent DQW, thus inducing the formation of an IX dipolar polaron (dipolaron). While the interlayer binding energy reduces with IX density for lattice dipolarons, the continuous polaron model predicts a nonmonotonous dependence on density in semiquantitative agreement with a recent experimental study [cf. Hubert et al., Phys. Rev. X 9, 021026 (2019)]. AU - Hubert, C. AU - Cohen, K. AU - Ghazaryan, Areg AU - Lemeshko, Mikhail AU - Rapaport, R. AU - Santos, P. V. ID - 8588 IS - 4 JF - Physical Review B SN - 2469-9950 TI - Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids VL - 102 ER - TY - JOUR AB - One of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter, is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall systems, they have not yet been unambiguously detected in experiment. Here we introduce a simple quantum impurity model, where bosonic or fermionic impurities turn into anyons as a consequence of their interaction with the surrounding many-particle bath. A cloud of phonons dresses each impurity in such a way that it effectively attaches fluxes or vortices to it and thereby converts it into an Abelian anyon. The corresponding quantum impurity model, first, provides a different approach to the numerical solution of the many-anyon problem, along with a concrete perspective of anyons as emergent quasiparticles built from composite bosons or fermions. More importantly, the model paves the way toward realizing anyons using impurities in crystal lattices as well as ultracold gases. In particular, we consider two heavy electrons interacting with a two-dimensional lattice crystal in a magnetic field, and show that when the impurity-bath system is rotated at the cyclotron frequency, impurities behave as anyons as a consequence of the angular momentum exchange between the impurities and the bath. A possible experimental realization is proposed by identifying the statistics parameter in terms of the mean-square distance of the impurities and the magnetization of the impurity-bath system, both of which are accessible to experiment. Another proposed application is impurities immersed in a two-dimensional weakly interacting Bose gas. AU - Yakaboylu, Enderalp AU - Ghazaryan, Areg AU - Lundholm, D. AU - Rougerie, N. AU - Lemeshko, Mikhail AU - Seiringer, Robert ID - 8769 IS - 14 JF - Physical Review B SN - 2469-9950 TI - Quantum impurity model for anyons VL - 102 ER - TY - JOUR AB - Multilayer graphene lattices allow for an additional tunability of the band structure by the strong perpendicular electric field. In particular, the emergence of the new multiple Dirac points in ABA stacked trilayer graphene subject to strong transverse electric fields was proposed theoretically and confirmed experimentally. These new Dirac points dubbed “gullies” emerge from the interplay between strong electric field and trigonal warping. In this work, we first characterize the properties of new emergent Dirac points and show that the electric field can be used to tune the distance between gullies in the momentum space. We demonstrate that the band structure has multiple Lifshitz transitions and higher-order singularity of “monkey saddle” type. Following the characterization of the band structure, we consider the spectrum of Landau levels and structure of their wave functions. In the limit of strong electric fields when gullies are well separated in momentum space, they give rise to triply degenerate Landau levels. In the second part of this work, we investigate how degeneracy between three gully Landau levels is lifted in the presence of interactions. Within the Hartree-Fock approximation we show that the symmetry breaking state interpolates between the fully gully polarized state that breaks C3 symmetry at high displacement field and the gully symmetric state when the electric field is decreased. The discontinuous transition between these two states is driven by enhanced intergully tunneling and exchange. We conclude by outlining specific experimental predictions for the existence of such a symmetry-breaking state. AU - Rao, Peng AU - Serbyn, Maksym ID - 7971 IS - 24 JF - Physical Review B SN - 2469-9950 TI - Gully quantum Hall ferromagnetism in biased trilayer graphene VL - 101 ER - TY - JOUR AB - We propose a scaling theory for the many-body localization (MBL) phase transition in one dimension, building on the idea that it proceeds via a “quantum avalanche.” We argue that the critical properties can be captured at a coarse-grained level by a Kosterlitz-Thouless (KT) renormalization group (RG) flow. On phenomenological grounds, we identify the scaling variables as the density of thermal regions and the length scale that controls the decay of typical matrix elements. Within this KT picture, the MBL phase is a line of fixed points that terminates at the delocalization transition. We discuss two possible scenarios distinguished by the distribution of rare, fractal thermal inclusions within the MBL phase. In the first scenario, these regions have a stretched exponential distribution in the MBL phase. In the second scenario, the near-critical MBL phase hosts rare thermal regions that are power-law-distributed in size. This points to the existence of a second transition within the MBL phase, at which these power laws change to the stretched exponential form expected at strong disorder. We numerically simulate two different phenomenological RGs previously proposed to describe the MBL transition. Both RGs display a universal power-law length distribution of thermal regions at the transition with a critical exponent αc=2, and continuously varying exponents in the MBL phase consistent with the KT picture. AU - Dumitrescu, Philipp T. AU - Goremykina, Anna AU - Parameswaran, Siddharth A. AU - Serbyn, Maksym AU - Vasseur, Romain ID - 6174 IS - 9 JF - Physical Review B SN - 2469-9950 TI - Kosterlitz-Thouless scaling at many-body localization phase transitions VL - 99 ER - TY - JOUR AB - Chains of superconducting circuit devices provide a natural platform for studies of synthetic bosonic quantum matter. Motivated by the recent experimental progress in realizing disordered and interacting chains of superconducting transmon devices, we study the bosonic many-body localization phase transition using the methods of exact diagonalization as well as matrix product state dynamics. We estimate the location of transition separating the ergodic and the many-body localized phases as a function of the disorder strength and the many-body on-site interaction strength. The main difference between the bosonic model realized by superconducting circuits and similar fermionic model is that the effect of the on-site interaction is stronger due to the possibility of multiple excitations occupying the same site. The phase transition is found to be robust upon including longer-range hopping and interaction terms present in the experiments. Furthermore, we calculate experimentally relevant local observables and show that their temporal fluctuations can be used to distinguish between the dynamics of Anderson insulator, many-body localization, and delocalized phases. While we consider unitary dynamics, neglecting the effects of dissipation, decoherence, and measurement back action, the timescales on which the dynamics is unitary are sufficient for observation of characteristic dynamics in the many-body localized phase. Moreover, the experimentally available disorder strength and interactions allow for tuning the many-body localization phase transition, thus making the arrays of superconducting circuit devices a promising platform for exploring localization physics and phase transition. AU - Orell, Tuure AU - Michailidis, Alexios AU - Serbyn, Maksym AU - Silveri, Matti ID - 7013 IS - 13 JF - Physical Review B SN - 2469-9950 TI - Probing the many-body localization phase transition with superconducting circuits VL - 100 ER - TY - JOUR AB - Recent scanning tunneling microscopy experiments in NbN thin disordered superconducting films found an emergent inhomogeneity at the scale of tens of nanometers. This inhomogeneity is mirrored by an apparent dimensional crossover in the paraconductivity measured in transport above the superconducting critical temperature Tc. This behavior was interpreted in terms of an anomalous diffusion of fluctuating Cooper pairs that display a quasiconfinement (i.e., a slowing down of their diffusive dynamics) on length scales shorter than the inhomogeneity identified by tunneling experiments. Here, we assume this anomalous diffusive behavior of fluctuating Cooper pairs and calculate the effect of these fluctuations on the electron density of states above Tc. We find that the density of states is substantially suppressed up to temperatures well above Tc. This behavior, which is closely reminiscent of a pseudogap, only arises from the anomalous diffusion of fluctuating Cooper pairs in the absence of stable preformed pairs, setting the stage for an intermediate behavior between the two common paradigms in the superconducting-insulator transition, namely, the localization of Cooper pairs (the so-called bosonic scenario) and the breaking of Cooper pairs into unpaired electrons due to strong disorder (the so-called fermionic scenario). AU - Brighi, Pietro AU - Grilli, Marco AU - Leridon, Brigitte AU - Caprara, Sergio ID - 7200 IS - 17 JF - Physical Review B SN - 2469-9950 TI - Effect of anomalous diffusion of fluctuating Cooper pairs on the density of states of superconducting NbN thin films VL - 100 ER - TY - JOUR AB - We modify the "floating crystal" trial state for the classical homogeneous electron gas (also known as jellium), in order to suppress the boundary charge fluctuations that are known to lead to a macroscopic increase of the energy. The argument is to melt a thin layer of the crystal close to the boundary and consequently replace it by an incompressible fluid. With the aid of this trial state we show that three different definitions of the ground-state energy of jellium coincide. In the first point of view the electrons are placed in a neutralizing uniform background. In the second definition there is no background but the electrons are submitted to the constraint that their density is constant, as is appropriate in density functional theory. Finally, in the third system each electron interacts with a periodic image of itself; that is, periodic boundary conditions are imposed on the interaction potential. AU - Lewin, Mathieu AU - Lieb, Elliott H. AU - Seiringer, Robert ID - 7015 IS - 3 JF - Physical Review B SN - 2469-9950 TI - Floating Wigner crystal with no boundary charge fluctuations VL - 100 ER - TY - JOUR AB - End-to-end correlated bound states are investigated in superconductor-semiconductor hybrid nanowires at zero magnetic field. Peaks in subgap conductance are independently identified from each wire end, and a cross-correlation function is computed that counts end-to-end coincidences, averaging over thousands of subgap features. Strong correlations in a short, 300-nm device are reduced by a factor of 4 in a long, 900-nm device. In addition, subgap conductance distributions are investigated, and correlations between the left and right distributions are identified based on their mutual information. AU - Anselmetti, G. L. R. AU - Martinez, E. A. AU - Ménard, G. C. AU - Puglia, D. AU - Malinowski, F. K. AU - Lee, J. S. AU - Choi, S. AU - Pendharkar, M. AU - Palmstrøm, C. J. AU - Marcus, C. M. AU - Casparis, L. AU - Higginbotham, Andrew P ID - 7145 IS - 20 JF - Physical Review B SN - 2469-9950 TI - End-to-end correlated subgap states in hybrid nanowires VL - 100 ER - TY - JOUR AB - We present a scanning probe technique for measuring the dynamics of individual fluxoid transitions in multiply connected superconducting structures. In these measurements, a small magnetic particle attached to the tip of a silicon cantilever is scanned over a micron-size superconducting ring fabricated from a thin aluminum film. We find that near the superconducting transition temperature of the aluminum, the dissipation and frequency of the cantilever changes significantly at particular locations where the tip-induced magnetic flux penetrating the ring causes the two lowest-energy fluxoid states to become nearly degenerate. In this regime, we show that changes in the cantilever frequency and dissipation are well-described by a stochastic resonance (SR) process, wherein small oscillations of the cantilever in the presence of thermally activated phase slips (TAPS) in the ring give rise to a dynamical force that modifies the mechanical properties of the cantilever. Using the SR model, we calculate the average fluctuation rate of the TAPS as a function of temperature over a 32-dB range in frequency, and we compare it to the Langer-Ambegaokar-McCumber-Halperin theory for TAPS in one-dimensional superconducting structures. AU - Polshyn, Hryhoriy AU - Naibert, Tyler R. AU - Budakian, Raffi ID - 10627 IS - 18 JF - Physical Review B SN - 2469-9950 TI - Imaging phase slip dynamics in micron-size superconducting rings VL - 97 ER - TY - JOUR AB - We construct a metamaterial from radio-frequency harmonic oscillators, and find two topologically distinct phases resulting from dissipation engineered into the system. These phases are distinguished by a quantized value of bulk energy transport. The impulse response of our circuit is measured and used to reconstruct the band structure and winding number of circuit eigenfunctions around a dark mode. Our results demonstrate that dissipative topological transport can occur in a wider class of physical systems than considered before. AU - Rosenthal, Eric I. AU - Ehrlich, Nicole K. AU - Rudner, Mark S. AU - Higginbotham, Andrew P AU - Lehnert, K. W. ID - 6369 IS - 22 JF - Physical Review B SN - 2469-9950 TI - Topological phase transition measured in a dissipative metamaterial VL - 97 ER - TY - JOUR AB - We examine recent magnetic torque measurements in two compounds, γ−Li2IrO3 and RuCl3, which have been discussed as possible realizations of the Kitaev model. The analysis of the reported discontinuity in torque, as an external magnetic field is rotated across the c axis in both crystals, suggests that they have a translationally invariant chiral spin order of the form ⟨Si⋅(Sj×Sk)⟩≠0 in the ground state and persisting over a very wide range of magnetic field and temperature. An extraordinary |B|B2 dependence of the torque for small fields, beside the usual B2 part, is predicted by the chiral spin order. Data for small fields are available for γ−Li2IrO3 and are found to be consistent with the prediction upon further analysis. Other experiments such as inelastic scattering and thermal Hall effect and several questions raised by the discovery of chiral spin order, including its topological consequences, are discussed. AU - Modic, Kimberly A AU - Ramshaw, B. J. AU - Shekhter, A. AU - Varma, C. M. ID - 7058 IS - 20 JF - Physical Review B SN - 2469-9950 TI - Chiral spin order in some purported Kitaev spin-liquid compounds VL - 98 ER - TY - JOUR AB - The Gibbs free energy is the fundamental thermodynamic potential underlying the relative stability of different states of matter under constant-pressure conditions. However, computing this quantity from atomic-scale simulations is far from trivial, so the potential energy of a system is often used as a proxy. In this paper, we use a combination of thermodynamic integration methods to accurately evaluate the Gibbs free energies associated with defects in crystals, including the vacancy formation energy in bcc iron, and the stacking fault energy in fcc nickel, iron, and cobalt. We quantify the importance of entropic and anharmonic effects in determining the free energies of defects at high temperatures, and show that the potential energy approximation as well as the harmonic approximation may produce inaccurate or even qualitatively wrong results. Our calculations manifest the necessity to employ accurate free energy methods such as thermodynamic integration to estimate the stability of crystallographic defects at high temperatures. AU - Cheng, Bingqing AU - Ceriotti, Michele ID - 9687 IS - 5 JF - Physical Review B SN - 2469-9950 TI - Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids VL - 97 ER - TY - JOUR AB - We study a quantum impurity possessing both translational and internal rotational degrees of freedom interacting with a bosonic bath. Such a system corresponds to a “rotating polaron,” which can be used to model, e.g., a rotating molecule immersed in an ultracold Bose gas or superfluid helium. We derive the Hamiltonian of the rotating polaron and study its spectrum in the weak- and strong-coupling regimes using a combination of variational, diagrammatic, and mean-field approaches. We reveal how the coupling between linear and angular momenta affects stable quasiparticle states, and demonstrate that internal rotation leads to an enhanced self-localization in the translational degrees of freedom. AU - Yakaboylu, Enderalp AU - Midya, Bikashkali AU - Deuchert, Andreas AU - Leopold, Nikolai K AU - Lemeshko, Mikhail ID - 5983 IS - 22 JF - Physical Review B SN - 2469-9950 TI - Theory of the rotating polaron: Spectrum and self-localization VL - 98 ER - TY - JOUR AB - Magneto-quantum oscillation experiments in high-temperature superconductors show a strong thermally induced suppression of the oscillation amplitude approaching the critical dopings [B. J. Ramshaw et al., Science 348, 317 (2014); H. Shishido et al., Phys. Rev. Lett. 104, 057008 (2010); P. Walmsley et al., Phys. Rev. Lett. 110, 257002 (2013)]—in support of a quantum-critical origin of their phase diagrams. We suggest that, in addition to a thermodynamic mass enhancement, these experiments may directly indicate the increasing role of quantum fluctuations that suppress the quantum oscillation amplitude through inelastic scattering. We show that the traditional theoretical approaches beyond Lifshitz-Kosevich to calculate the oscillation amplitude in correlated metals result in a contradiction with the third law of thermodynamics and suggest a way to rectify this problem. AU - Shekhter, Arkady AU - Modic, Kimberly A AU - McDonald, R. D. AU - Ramshaw, B. J. ID - 7065 IS - 12 JF - Physical Review B SN - 2469-9950 TI - Thermodynamic constraints on the amplitude of quantum oscillations VL - 95 ER - TY - JOUR AB - Magnetic anisotropy in strontium iridate (Sr2IrO4) is found to be large because of the strong spin-orbit interactions. In our work, we studied the in-plane magnetic anisotropy of Sr2IrO4 and traced the anisotropic exchange interactions between the isospins in the crystal. The magnetic-field-dependent torque τ(H) showed a prominent transition from the canted antiferromagnetic state to the weak ferromagnetic (WFM) state. A comprehensive analysis was conducted to examine the isotropic and anisotropic regimes and probe the easy magnetization axis along the a b plane. The angle-dependent torque τ(θ) revealed a deviation from the sinusoidal behavior, and small differences in hysteresis were observed around 0° and 90° in the low-magnetic-field regime. This indicates that the orientation of the easy axis of the FM component is along the b axis, where the antiferromagnetic to WFM spin-flop transition occurs. We compared the coefficients of the magnetic susceptibility tensors and captured the anisotropy of the material. The in-plane τ(θ) revealed a tendency toward isotropic behavior for fields with values above the field value of the WFM transition. AU - Nauman, Muhammad AU - Hong, Yunjeong AU - Hussain, Tayyaba AU - Seo, M. S. AU - Park, S. Y. AU - Lee, N. AU - Choi, Y. J. AU - Kang, Woun AU - Jo, Younjung ID - 9065 IS - 15 JF - Physical Review B SN - 2469-9950 TI - In-plane magnetic anisotropy in strontium iridate Sr2IrO4 VL - 96 ER -