@article{15033, abstract = {The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.}, author = {Adamowski, Maciek and Matijevic, Ivana and Friml, Jiří}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery}}, doi = {10.7554/elife.68993}, volume = {13}, year = {2024}, } @article{11448, abstract = {Studies of protein fitness landscapes reveal biophysical constraints guiding protein evolution and empower prediction of functional proteins. However, generalisation of these findings is limited due to scarceness of systematic data on fitness landscapes of proteins with a defined evolutionary relationship. We characterized the fitness peaks of four orthologous fluorescent proteins with a broad range of sequence divergence. While two of the four studied fitness peaks were sharp, the other two were considerably flatter, being almost entirely free of epistatic interactions. Mutationally robust proteins, characterized by a flat fitness peak, were not optimal templates for machine-learning-driven protein design – instead, predictions were more accurate for fragile proteins with epistatic landscapes. Our work paves insights for practical application of fitness landscape heterogeneity in protein engineering.}, author = {Gonzalez Somermeyer, Louisa and Fleiss, Aubin and Mishin, Alexander S and Bozhanova, Nina G and Igolkina, Anna A and Meiler, Jens and Alaball Pujol, Maria-Elisenda and Putintseva, Ekaterina V and Sarkisyan, Karen S and Kondrashov, Fyodor}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Heterogeneity of the GFP fitness landscape and data-driven protein design}}, doi = {10.7554/elife.75842}, volume = {11}, year = {2022}, } @article{10301, abstract = {De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement.}, author = {Conde-Dusman, María J and Dey, Partha N and Elía-Zudaire, Óscar and Garcia Rabaneda, Luis E and García-Lira, Carmen and Grand, Teddy and Briz, Victor and Velasco, Eric R and Andero Galí, Raül and Niñerola, Sergio and Barco, Angel and Paoletti, Pierre and Wesseling, John F and Gardoni, Fabrizio and Tavalin, Steven J and Perez-Otaño, Isabel}, issn = {2050-084X}, journal = {eLife}, keywords = {general immunology and microbiology, general biochemistry, genetics and molecular biology, general medicine, general neuroscience}, publisher = {eLife Sciences Publications}, title = {{Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly}}, doi = {10.7554/elife.71575}, volume = {10}, year = {2021}, } @article{10270, abstract = {Plants develop new organs to adjust their bodies to dynamic changes in the environment. How independent organs achieve anisotropic shapes and polarities is poorly understood. To address this question, we constructed a mechano-biochemical model for Arabidopsis root meristem growth that integrates biologically plausible principles. Computer model simulations demonstrate how differential growth of neighboring tissues results in the initial symmetry-breaking leading to anisotropic root growth. Furthermore, the root growth feeds back on a polar transport network of the growth regulator auxin. Model, predictions are in close agreement with in vivo patterns of anisotropic growth, auxin distribution, and cell polarity, as well as several root phenotypes caused by chemical, mechanical, or genetic perturbations. Our study demonstrates that the combination of tissue mechanics and polar auxin transport organizes anisotropic root growth and cell polarities during organ outgrowth. Therefore, a mobile auxin signal transported through immobile cells drives polarity and growth mechanics to coordinate complex organ development.}, author = {Marconi, Marco and Gallemi, Marçal and Benková, Eva and Wabnik, Krzysztof}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{A coupled mechano-biochemical model for cell polarity guided anisotropic root growth}}, doi = {10.7554/elife.72132}, volume = {10}, year = {2021}, } @article{10533, abstract = {Flowering plants utilize small RNA molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically associated with small RNA biogenesis, and without H1 small RNA production quantitatively expands to non-CG methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the small RNA-generating branch of RdDM from non-CG methylated heterochromatin.}, author = {Choi, Jaemyung and Lyons, David B and Zilberman, Daniel}, issn = {2050-084X}, journal = {eLife}, keywords = {genetics and molecular biology}, publisher = {eLife Sciences Publications}, title = {{Histone H1 prevents non-CG methylation-mediated small RNA biogenesis in Arabidopsis heterochromatin}}, doi = {10.7554/elife.72676}, volume = {10}, year = {2021}, } @article{9283, abstract = {Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks (GRNs) remains a major challenge. Here, we use a well-defined synthetic GRN to study in Escherichia coli how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one GRN with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Transcriptional read-through is the main molecular mechanism that places one transcriptional unit (TU) within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual TUs, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of GRNs.}, author = {Nagy-Staron, Anna A and Tomasek, Kathrin and Caruso Carter, Caroline and Sonnleitner, Elisabeth and Kavcic, Bor and Paixão, Tiago and Guet, Calin C}, issn = {2050-084X}, journal = {eLife}, keywords = {Genetics and Molecular Biology}, publisher = {eLife Sciences Publications}, title = {{Local genetic context shapes the function of a gene regulatory network}}, doi = {10.7554/elife.65993}, volume = {10}, year = {2021}, } @article{11055, abstract = {Vascular dysfunctions are a common feature of multiple age-related diseases. However, modeling healthy and pathological aging of the human vasculature represents an unresolved experimental challenge. Here, we generated induced vascular endothelial cells (iVECs) and smooth muscle cells (iSMCs) by direct reprogramming of healthy human fibroblasts from donors of different ages and Hutchinson-Gilford Progeria Syndrome (HGPS) patients. iVECs induced from old donors revealed upregulation of GSTM1 and PALD1, genes linked to oxidative stress, inflammation and endothelial junction stability, as vascular aging markers. A functional assay performed on PALD1 KD VECs demonstrated a recovery in vascular permeability. We found that iSMCs from HGPS donors overexpressed bone morphogenetic protein (BMP)−4, which plays a key role in both vascular calcification and endothelial barrier damage observed in HGPS. Strikingly, BMP4 concentrations are higher in serum from HGPS vs. age-matched mice. Furthermore, targeting BMP4 with blocking antibody recovered the functionality of the vascular barrier in vitro, hence representing a potential future therapeutic strategy to limit cardiovascular dysfunction in HGPS. These results show that iVECs and iSMCs retain disease-related signatures, allowing modeling of vascular aging and HGPS in vitro.}, author = {Bersini, Simone and Schulte, Roberta and Huang, Ling and Tsai, Hannah and HETZER, Martin W}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Direct reprogramming of human smooth muscle and vascular endothelial cells reveals defects associated with aging and Hutchinson-Gilford progeria syndrome}}, doi = {10.7554/elife.54383}, volume = {9}, year = {2020}, } @article{7593, abstract = {Heterozygous loss of human PAFAH1B1 (coding for LIS1) results in the disruption of neurogenesis and neuronal migration via dysregulation of microtubule (MT) stability and dynein motor function/localization that alters mitotic spindle orientation, chromosomal segregation, and nuclear migration. Recently, human induced pluripotent stem cell (iPSC) models revealed an important role for LIS1 in controlling the length of terminal cell divisions of outer radial glial (oRG) progenitors, suggesting cellular functions of LIS1 in regulating neural progenitor cell (NPC) daughter cell separation. Here we examined the late mitotic stages NPCs in vivo and mouse embryonic fibroblasts (MEFs) in vitro from Pafah1b1-deficient mutants. Pafah1b1-deficient neocortical NPCs and MEFs similarly exhibited cleavage plane displacement with mislocalization of furrow-associated markers, associated with actomyosin dysfunction and cell membrane hyper-contractility. Thus, it suggests LIS1 acts as a key molecular link connecting MTs/dynein and actomyosin, ensuring that cell membrane contractility is tightly controlled to execute proper daughter cell separation.}, author = {Moon, Hyang Mi and Hippenmeyer, Simon and Luo, Liqun and Wynshaw-Boris, Anthony}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility}}, doi = {10.7554/elife.51512}, volume = {9}, year = {2020}, } @article{7793, abstract = {Hormonal signalling in animals often involves direct transcription factor-hormone interactions that modulate gene expression. In contrast, plant hormone signalling is most commonly based on de-repression via the degradation of transcriptional repressors. Recently, we uncovered a non-canonical signalling mechanism for the plant hormone auxin whereby auxin directly affects the activity of the atypical auxin response factor (ARF), ETTIN towards target genes without the requirement for protein degradation. Here we show that ETTIN directly binds auxin, leading to dissociation from co-repressor proteins of the TOPLESS/TOPLESS-RELATED family followed by histone acetylation and induction of gene expression. This mechanism is reminiscent of animal hormone signalling as it affects the activity towards regulation of target genes and provides the first example of a DNA-bound hormone receptor in plants. Whilst auxin affects canonical ARFs indirectly by facilitating degradation of Aux/IAA repressors, direct ETTIN-auxin interactions allow switching between repressive and de-repressive chromatin states in an instantly-reversible manner.}, author = {Kuhn, André and Ramans Harborough, Sigurd and McLaughlin, Heather M and Natarajan, Bhavani and Verstraeten, Inge and Friml, Jiří and Kepinski, Stefan and Østergaard, Lars}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Direct ETTIN-auxin interaction controls chromatin states in gynoecium development}}, doi = {10.7554/elife.51787}, volume = {9}, year = {2020}, } @article{7888, abstract = {Embryonic stem cell cultures are thought to self-organize into embryoid bodies, able to undergo symmetry-breaking, germ layer specification and even morphogenesis. Yet, it is unclear how to reconcile this remarkable self-organization capacity with classical experiments demonstrating key roles for extrinsic biases by maternal factors and/or extraembryonic tissues in embryogenesis. Here, we show that zebrafish embryonic tissue explants, prepared prior to germ layer induction and lacking extraembryonic tissues, can specify all germ layers and form a seemingly complete mesendoderm anlage. Importantly, explant organization requires polarized inheritance of maternal factors from dorsal-marginal regions of the blastoderm. Moreover, induction of endoderm and head-mesoderm, which require peak Nodal-signaling levels, is highly variable in explants, reminiscent of embryos with reduced Nodal signals from the extraembryonic tissues. Together, these data suggest that zebrafish explants do not undergo bona fide self-organization, but rather display features of genetically encoded self-assembly, where intrinsic genetic programs control the emergence of order.}, author = {Schauer, Alexandra and Nunes Pinheiro, Diana C and Hauschild, Robert and Heisenberg, Carl-Philipp J}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Zebrafish embryonic explants undergo genetically encoded self-assembly}}, doi = {10.7554/elife.55190}, volume = {9}, year = {2020}, } @article{15153, abstract = {Mammalian circadian rhythms are generated by a transcription-based feedback loop in which CLOCK:BMAL1 drives transcription of its repressors (PER1/2, CRY1/2), which ultimately interact with CLOCK:BMAL1 to close the feedback loop with ~24 hr periodicity. Here we pinpoint a key difference between CRY1 and CRY2 that underlies their differential strengths as transcriptional repressors. Both cryptochromes bind the BMAL1 transactivation domain similarly to sequester it from coactivators and repress CLOCK:BMAL1 activity. However, we find that CRY1 is recruited with much higher affinity to the PAS domain core of CLOCK:BMAL1, allowing it to serve as a stronger repressor that lengthens circadian period. We discovered a dynamic serine-rich loop adjacent to the secondary pocket in the photolyase homology region (PHR) domain that regulates differential binding of cryptochromes to the PAS domain core of CLOCK:BMAL1. Notably, binding of the co-repressor PER2 remodels the serine loop of CRY2, making it more CRY1-like and enhancing its affinity for CLOCK:BMAL1.}, author = {Fribourgh, Jennifer L and Srivastava, Ashutosh and Sandate, Colby R and Michael, Alicia Kathleen and Hsu, Peter L and Rakers, Christin and Nguyen, Leslee T and Torgrimson, Megan R and Parico, Gian Carlo G and Tripathi, Sarvind and Zheng, Ning and Lander, Gabriel C and Hirota, Tsuyoshi and Tama, Florence and Partch, Carrie L}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing}}, doi = {10.7554/elife.55275}, volume = {9}, year = {2020}, } @article{12192, abstract = {Transposable elements (TEs), the movement of which can damage the genome, are epigenetically silenced in eukaryotes. Intriguingly, TEs are activated in the sperm companion cell – vegetative cell (VC) – of the flowering plant Arabidopsis thaliana. However, the extent and mechanism of this activation are unknown. Here we show that about 100 heterochromatic TEs are activated in VCs, mostly by DEMETER-catalyzed DNA demethylation. We further demonstrate that DEMETER access to some of these TEs is permitted by the natural depletion of linker histone H1 in VCs. Ectopically expressed H1 suppresses TEs in VCs by reducing DNA demethylation and via a methylation-independent mechanism. We demonstrate that H1 is required for heterochromatin condensation in plant cells and show that H1 overexpression creates heterochromatic foci in the VC progenitor cell. Taken together, our results demonstrate that the natural depletion of H1 during male gametogenesis facilitates DEMETER-directed DNA demethylation, heterochromatin relaxation, and TE activation.}, author = {He, Shengbo and Vickers, Martin and Zhang, Jingyi and Feng, Xiaoqi}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications, Ltd}, title = {{Natural depletion of histone H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation}}, doi = {10.7554/elife.42530}, volume = {8}, year = {2019}, } @article{11060, abstract = {The inner nuclear membrane (INM) is a subdomain of the endoplasmic reticulum (ER) that is gated by the nuclear pore complex. It is unknown whether proteins of the INM and ER are degraded through shared or distinct pathways in mammalian cells. We applied dynamic proteomics to profile protein half-lives and report that INM and ER residents turn over at similar rates, indicating that the INM’s unique topology is not a barrier to turnover. Using a microscopy approach, we observed that the proteasome can degrade INM proteins in situ. However, we also uncovered evidence for selective, vesicular transport-mediated turnover of a single INM protein, emerin, that is potentiated by ER stress. Emerin is rapidly cleared from the INM by a mechanism that requires emerin’s LEM domain to mediate vesicular trafficking to lysosomes. This work demonstrates that the INM can be dynamically remodeled in response to environmental inputs.}, author = {Buchwalter, Abigail and Schulte, Roberta and Tsai, Hsiao and Capitanio, Juliana and HETZER, Martin W}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Selective clearance of the inner nuclear membrane protein emerin by vesicular transport during ER stress}}, doi = {10.7554/elife.49796}, volume = {8}, year = {2019}, } @article{7405, abstract = {Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis – connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.}, author = {Dura-Bernal, Salvador and Suter, Benjamin and Gleeson, Padraig and Cantarelli, Matteo and Quintana, Adrian and Rodriguez, Facundo and Kedziora, David J and Chadderdon, George L and Kerr, Cliff C and Neymotin, Samuel A and McDougal, Robert A and Hines, Michael and Shepherd, Gordon MG and Lytton, William W}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{NetPyNE, a tool for data-driven multiscale modeling of brain circuits}}, doi = {10.7554/elife.44494}, volume = {8}, year = {2019}, } @article{6187, abstract = {Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva’s vertebrate ortholog, MFSD1, rescues the minerva mutant’s migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis.}, author = {Valosková, Katarina and Biebl, Julia and Roblek, Marko and Emtenani, Shamsi and György, Attila and Misova, Michaela and Ratheesh, Aparna and Rodrigues, Patricia and Shkarina, Katerina and Larsen, Ida Signe Bohse and Vakhrushev, Sergey Y and Clausen, Henrik and Siekhaus, Daria E}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion}}, doi = {10.7554/elife.41801}, volume = {8}, year = {2019}, } @article{10370, abstract = {Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria – via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces – results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to biochemical responses in membrane dynamics may explain how organelles orderly cohabit in the crowded cytoplasm.}, author = {Helle, Sebastian Carsten Johannes and Feng, Qian and Aebersold, Mathias J and Hirt, Luca and Grüter, Raphael R and Vahid, Afshin and Sirianni, Andrea and Mostowy, Serge and Snedeker, Jess G and Šarić, Anđela and Idema, Timon and Zambelli, Tomaso and Kornmann, Benoît}, issn = {2050-084X}, journal = {eLife}, keywords = {general immunology and microbiology, general biochemistry, genetics and molecular biology, general medicine, general neuroscience}, publisher = {eLife Sciences Publications}, title = {{Mechanical force induces mitochondrial fission}}, doi = {10.7554/elife.30292}, volume = {6}, year = {2017}, } @article{8075, abstract = {Ion channel models are the building blocks of computational neuron models. Their biological fidelity is therefore crucial for the interpretation of simulations. However, the number of published models, and the lack of standardization, make the comparison of ion channel models with one another and with experimental data difficult. Here, we present a framework for the automated large-scale classification of ion channel models. Using annotated metadata and responses to a set of voltage-clamp protocols, we assigned 2378 models of voltage- and calcium-gated ion channels coded in NEURON to 211 clusters. The IonChannelGenealogy (ICGenealogy) web interface provides an interactive resource for the categorization of new and existing models and experimental recordings. It enables quantitative comparisons of simulated and/or measured ion channel kinetics, and facilitates field-wide standardization of experimentally-constrained modeling.}, author = {Podlaski, William F and Seeholzer, Alexander and Groschner, Lukas N and Miesenböck, Gero and Ranjan, Rajnish and Vogels, Tim P}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications, Ltd}, title = {{Mapping the function of neuronal ion channels in model and experiment}}, doi = {10.7554/elife.22152}, volume = {6}, year = {2017}, } @article{9190, abstract = {Plant meristems carry pools of continuously active stem cells, whose activity is controlled by developmental and environmental signals. After stem cell division, daughter cells that exit the stem cell domain acquire transit amplifying cell identity before they are incorporated into organs and differentiate. In this study, we used an integrated approach to elucidate the role of HECATE (HEC) genes in regulating developmental trajectories of shoot stem cells in Arabidopsis thaliana. Our work reveals that HEC function stabilizes cell fate in distinct zones of the shoot meristem thereby controlling the spatio-temporal dynamics of stem cell differentiation. Importantly, this activity is concomitant with the local modulation of cellular responses to cytokinin and auxin, two key phytohormones regulating cell behaviour. Mechanistically, we show that HEC factors transcriptionally control and physically interact with MONOPTEROS (MP), a key regulator of auxin signalling, and modulate the autocatalytic stabilization of auxin signalling output.}, author = {Gaillochet, Christophe and Stiehl, Thomas and Wenzl, Christian and Ripoll, Juan-José and Bailey-Steinitz, Lindsay J and Li, Lanxin and Pfeiffer, Anne and Miotk, Andrej and Hakenjos, Jana P and Forner, Joachim and Yanofsky, Martin F and Marciniak-Czochra, Anna and Lohmann, Jan U}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Control of plant cell fate transitions by transcriptional and hormonal signals}}, doi = {10.7554/elife.30135}, volume = {6}, year = {2017}, } @article{15154, abstract = {Biofilm formation is critical for the infection cycle of Vibrio cholerae. Vibrio exopolysaccharides (VPS) and the matrix proteins RbmA, Bap1 and RbmC are required for the development of biofilm architecture. We demonstrate that RbmA binds VPS directly and uses a binary structural switch within its first fibronectin type III (FnIII-1) domain to control RbmA structural dynamics and the formation of VPS-dependent higher-order structures. The structural switch in FnIII-1 regulates interactions in trans with the FnIII-2 domain, leading to open (monomeric) or closed (dimeric) interfaces. The ability of RbmA to switch between open and closed states is important for V. cholerae biofilm formation, as RbmA variants with switches that are locked in either of the two states lead to biofilms with altered architecture and structural integrity.}, author = {Fong, Jiunn CN and Rogers, Andrew and Michael, Alicia Kathleen and Parsley, Nicole C and Cornell, William-Cole and Lin, Yu-Cheng and Singh, Praveen K and Hartmann, Raimo and Drescher, Knut and Vinogradov, Evgeny and Dietrich, Lars EP and Partch, Carrie L and Yildiz, Fitnat H}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms}}, doi = {10.7554/elife.26163}, volume = {6}, year = {2017}, } @article{6120, abstract = {Brains organize behavior and physiology to optimize the response to threats or opportunities. We dissect how 21% O2, an indicator of surface exposure, reprograms C. elegans' global state, inducing sustained locomotory arousal and altering expression of neuropeptides, metabolic enzymes, and other non-neural genes. The URX O2-sensing neurons drive arousal at 21% O2 by tonically activating the RMG interneurons. Stimulating RMG is sufficient to switch behavioral state. Ablating the ASH, ADL, or ASK sensory neurons connected to RMG by gap junctions does not disrupt arousal. However, disrupting cation currents in these neurons curtails RMG neurosecretion and arousal. RMG signals high O2 by peptidergic secretion. Neuropeptide reporters reveal neural circuit state, as neurosecretion stimulates neuropeptide expression. Neural imaging in unrestrained animals shows that URX and RMG encode O2 concentration rather than behavior, while the activity of downstream interneurons such as AVB and AIY reflect both O2 levels and the behavior being executed.}, author = {Laurent, Patrick and Soltesz, Zoltan and Nelson, Geoffrey M and Chen, Changchun and Arellano-Carbajal, Fausto and Levy, Emmanuel and de Bono, Mario}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Decoding a neural circuit controlling global animal state in C. elegans}}, doi = {10.7554/elife.04241}, volume = {4}, year = {2015}, }