--- _id: '13352' abstract: - lang: eng text: Optoelectronic effects differentiating absorption of right and left circularly polarized photons in thin films of chiral materials are typically prohibitively small for their direct photocurrent observation. Chiral metasurfaces increase the electronic sensitivity to circular polarization, but their out-of-plane architecture entails manufacturing and performance trade-offs. Here, we show that nanoporous thin films of chiral nanoparticles enable high sensitivity to circular polarization due to light-induced polarization-dependent ion accumulation at nanoparticle interfaces. Self-assembled multilayers of gold nanoparticles modified with L-phenylalanine generate a photocurrent under right-handed circularly polarized light as high as 2.41 times higher than under left-handed circularly polarized light. The strong plasmonic coupling between the multiple nanoparticles producing planar chiroplasmonic modes facilitates the ejection of electrons, whose entrapment at the membrane–electrolyte interface is promoted by a thick layer of enantiopure phenylalanine. Demonstrated detection of light ellipticity with equal sensitivity at all incident angles mimics phenomenological aspects of polarization vision in marine animals. The simplicity of self-assembly and sensitivity of polarization detection found in optoionic membranes opens the door to a family of miniaturized fluidic devices for chiral photonics. article_processing_charge: No article_type: original author: - first_name: Jiarong full_name: Cai, Jiarong last_name: Cai - first_name: Wei full_name: Zhang, Wei last_name: Zhang - first_name: Liguang full_name: Xu, Liguang last_name: Xu - first_name: Changlong full_name: Hao, Changlong last_name: Hao - first_name: Wei full_name: Ma, Wei last_name: Ma - first_name: Maozhong full_name: Sun, Maozhong last_name: Sun - first_name: Xiaoling full_name: Wu, Xiaoling last_name: Wu - first_name: Xian full_name: Qin, Xian last_name: Qin - first_name: Felippe Mariano full_name: Colombari, Felippe Mariano last_name: Colombari - first_name: André Farias full_name: de Moura, André Farias last_name: de Moura - first_name: Jiahui full_name: Xu, Jiahui last_name: Xu - first_name: Mariana Cristina full_name: Silva, Mariana Cristina last_name: Silva - first_name: Evaldo Batista full_name: Carneiro-Neto, Evaldo Batista last_name: Carneiro-Neto - first_name: Weverson Rodrigues full_name: Gomes, Weverson Rodrigues last_name: Gomes - first_name: Renaud A. L. full_name: Vallée, Renaud A. L. last_name: Vallée - first_name: Ernesto Chaves full_name: Pereira, Ernesto Chaves last_name: Pereira - first_name: Xiaogang full_name: Liu, Xiaogang last_name: Liu - first_name: Chuanlai full_name: Xu, Chuanlai last_name: Xu - first_name: Rafal full_name: Klajn, Rafal id: 8e84690e-1e48-11ed-a02b-a1e6fb8bb53b last_name: Klajn - first_name: Nicholas A. full_name: Kotov, Nicholas A. last_name: Kotov - first_name: Hua full_name: Kuang, Hua last_name: Kuang citation: ama: Cai J, Zhang W, Xu L, et al. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nature Nanotechnology. 2022;17(4):408-416. doi:10.1038/s41565-022-01079-3 apa: Cai, J., Zhang, W., Xu, L., Hao, C., Ma, W., Sun, M., … Kuang, H. (2022). Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nature Nanotechnology. Springer Nature. https://doi.org/10.1038/s41565-022-01079-3 chicago: Cai, Jiarong, Wei Zhang, Liguang Xu, Changlong Hao, Wei Ma, Maozhong Sun, Xiaoling Wu, et al. “Polarization-Sensitive Optoionic Membranes from Chiral Plasmonic Nanoparticles.” Nature Nanotechnology. Springer Nature, 2022. https://doi.org/10.1038/s41565-022-01079-3. ieee: J. Cai et al., “Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles,” Nature Nanotechnology, vol. 17, no. 4. Springer Nature, pp. 408–416, 2022. ista: Cai J, Zhang W, Xu L, Hao C, Ma W, Sun M, Wu X, Qin X, Colombari FM, de Moura AF, Xu J, Silva MC, Carneiro-Neto EB, Gomes WR, Vallée RAL, Pereira EC, Liu X, Xu C, Klajn R, Kotov NA, Kuang H. 2022. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nature Nanotechnology. 17(4), 408–416. mla: Cai, Jiarong, et al. “Polarization-Sensitive Optoionic Membranes from Chiral Plasmonic Nanoparticles.” Nature Nanotechnology, vol. 17, no. 4, Springer Nature, 2022, pp. 408–16, doi:10.1038/s41565-022-01079-3. short: J. Cai, W. Zhang, L. Xu, C. Hao, W. Ma, M. Sun, X. Wu, X. Qin, F.M. Colombari, A.F. de Moura, J. Xu, M.C. Silva, E.B. Carneiro-Neto, W.R. Gomes, R.A.L. Vallée, E.C. Pereira, X. Liu, C. Xu, R. Klajn, N.A. Kotov, H. Kuang, Nature Nanotechnology 17 (2022) 408–416. date_created: 2023-08-01T09:32:40Z date_published: 2022-03-14T00:00:00Z date_updated: 2023-08-02T09:44:31Z day: '14' doi: 10.1038/s41565-022-01079-3 extern: '1' external_id: pmid: - '35288671' intvolume: ' 17' issue: '4' keyword: - Electrical and Electronic Engineering - Condensed Matter Physics - General Materials Science - Biomedical Engineering - Atomic and Molecular Physics - and Optics - Bioengineering language: - iso: eng main_file_link: - open_access: '1' url: https://hal.science/hal-03623036/ month: '03' oa: 1 oa_version: Published Version page: 408-416 pmid: 1 publication: Nature Nanotechnology publication_identifier: eissn: - 1748-3395 issn: - 1748-3387 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2022' ... --- _id: '13367' abstract: - lang: eng text: Confining molecules can fundamentally change their chemical and physical properties. Confinement effects are considered instrumental at various stages of the origins of life, and life continues to rely on layers of compartmentalization to maintain an out-of-equilibrium state and efficiently synthesize complex biomolecules under mild conditions. As interest in synthetic confined systems grows, we are realizing that the principles governing reactivity under confinement are the same in abiological systems as they are in nature. In this Review, we categorize the ways in which nanoconfinement effects impact chemical reactivity in synthetic systems. Under nanoconfinement, chemical properties can be modulated to increase reaction rates, enhance selectivity and stabilize reactive species. Confinement effects also lead to changes in physical properties. The fluorescence of light emitters, the colours of dyes and electronic communication between electroactive species can all be tuned under confinement. Within each of these categories, we elucidate design principles and strategies that are widely applicable across a range of confined systems, specifically highlighting examples of different nanocompartments that influence reactivity in similar ways. article_processing_charge: No article_type: original author: - first_name: Angela B. full_name: Grommet, Angela B. last_name: Grommet - first_name: Moran full_name: Feller, Moran last_name: Feller - first_name: Rafal full_name: Klajn, Rafal id: 8e84690e-1e48-11ed-a02b-a1e6fb8bb53b last_name: Klajn citation: ama: Grommet AB, Feller M, Klajn R. Chemical reactivity under nanoconfinement. Nature Nanotechnology. 2020;15:256-271. doi:10.1038/s41565-020-0652-2 apa: Grommet, A. B., Feller, M., & Klajn, R. (2020). Chemical reactivity under nanoconfinement. Nature Nanotechnology. Springer Nature. https://doi.org/10.1038/s41565-020-0652-2 chicago: Grommet, Angela B., Moran Feller, and Rafal Klajn. “Chemical Reactivity under Nanoconfinement.” Nature Nanotechnology. Springer Nature, 2020. https://doi.org/10.1038/s41565-020-0652-2. ieee: A. B. Grommet, M. Feller, and R. Klajn, “Chemical reactivity under nanoconfinement,” Nature Nanotechnology, vol. 15. Springer Nature, pp. 256–271, 2020. ista: Grommet AB, Feller M, Klajn R. 2020. Chemical reactivity under nanoconfinement. Nature Nanotechnology. 15, 256–271. mla: Grommet, Angela B., et al. “Chemical Reactivity under Nanoconfinement.” Nature Nanotechnology, vol. 15, Springer Nature, 2020, pp. 256–71, doi:10.1038/s41565-020-0652-2. short: A.B. Grommet, M. Feller, R. Klajn, Nature Nanotechnology 15 (2020) 256–271. date_created: 2023-08-01T09:37:39Z date_published: 2020-04-17T00:00:00Z date_updated: 2023-08-07T10:29:06Z day: '17' doi: 10.1038/s41565-020-0652-2 extern: '1' external_id: pmid: - '32303705' intvolume: ' 15' keyword: - Electrical and Electronic Engineering - Condensed Matter Physics - General Materials Science - Biomedical Engineering - Atomic and Molecular Physics - and Optics - Bioengineering language: - iso: eng month: '04' oa_version: None page: 256-271 pmid: 1 publication: Nature Nanotechnology publication_identifier: eissn: - 1748-3395 issn: - 1748-3387 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Chemical reactivity under nanoconfinement type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2020' ... --- _id: '6053' abstract: - lang: eng text: Recent technical developments in the fields of quantum electromechanics and optomechanics have spawned nanoscale mechanical transducers with the sensitivity to measure mechanical displacements at the femtometre scale and the ability to convert electromagnetic signals at the single photon level. A key challenge in this field is obtaining strong coupling between motion and electromagnetic fields without adding additional decoherence. Here we present an electromechanical transducer that integrates a high-frequency (0.42 GHz) hypersonic phononic crystal with a superconducting microwave circuit. The use of a phononic bandgap crystal enables quantum-level transduction of hypersonic mechanical motion and concurrently eliminates decoherence caused by acoustic radiation. Devices with hypersonic mechanical frequencies provide a natural pathway for integration with Josephson junction quantum circuits, a leading quantum computing technology, and nanophotonic systems capable of optical networking and distributing quantum information. article_processing_charge: No article_type: original author: - first_name: Mahmoud full_name: Kalaee, Mahmoud last_name: Kalaee - first_name: Mohammad full_name: Mirhosseini, Mohammad last_name: Mirhosseini - first_name: Paul B. full_name: Dieterle, Paul B. last_name: Dieterle - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Oskar full_name: Painter, Oskar last_name: Painter citation: ama: Kalaee M, Mirhosseini M, Dieterle PB, Peruzzo M, Fink JM, Painter O. Quantum electromechanics of a hypersonic crystal. Nature Nanotechnology. 2019;14(4):334–339. doi:10.1038/s41565-019-0377-2 apa: Kalaee, M., Mirhosseini, M., Dieterle, P. B., Peruzzo, M., Fink, J. M., & Painter, O. (2019). Quantum electromechanics of a hypersonic crystal. Nature Nanotechnology. Springer Nature. https://doi.org/10.1038/s41565-019-0377-2 chicago: Kalaee, Mahmoud, Mohammad Mirhosseini, Paul B. Dieterle, Matilda Peruzzo, Johannes M Fink, and Oskar Painter. “Quantum Electromechanics of a Hypersonic Crystal.” Nature Nanotechnology. Springer Nature, 2019. https://doi.org/10.1038/s41565-019-0377-2. ieee: M. Kalaee, M. Mirhosseini, P. B. Dieterle, M. Peruzzo, J. M. Fink, and O. Painter, “Quantum electromechanics of a hypersonic crystal,” Nature Nanotechnology, vol. 14, no. 4. Springer Nature, pp. 334–339, 2019. ista: Kalaee M, Mirhosseini M, Dieterle PB, Peruzzo M, Fink JM, Painter O. 2019. Quantum electromechanics of a hypersonic crystal. Nature Nanotechnology. 14(4), 334–339. mla: Kalaee, Mahmoud, et al. “Quantum Electromechanics of a Hypersonic Crystal.” Nature Nanotechnology, vol. 14, no. 4, Springer Nature, 2019, pp. 334–339, doi:10.1038/s41565-019-0377-2. short: M. Kalaee, M. Mirhosseini, P.B. Dieterle, M. Peruzzo, J.M. Fink, O. Painter, Nature Nanotechnology 14 (2019) 334–339. date_created: 2019-02-24T22:59:21Z date_published: 2019-04-01T00:00:00Z date_updated: 2023-08-24T14:48:08Z day: '01' department: - _id: JoFi doi: 10.1038/s41565-019-0377-2 external_id: isi: - '000463195700014' intvolume: ' 14' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://authors.library.caltech.edu/92123/ month: '04' oa: 1 oa_version: Submitted Version page: 334–339 publication: Nature Nanotechnology publication_identifier: eissn: - 1748-3395 issn: - 1748-3387 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Quantum electromechanics of a hypersonic crystal type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2019' ... --- _id: '13392' abstract: - lang: eng text: The chemical behaviour of molecules can be significantly modified by confinement to volumes comparable to the dimensions of the molecules. Although such confined spaces can be found in various nanostructured materials, such as zeolites, nanoporous organic frameworks and colloidal nanocrystal assemblies, the slow diffusion of molecules in and out of these materials has greatly hampered studying the effect of confinement on their physicochemical properties. Here, we show that this diffusion limitation can be overcome by reversibly creating and destroying confined environments by means of ultraviolet and visible light irradiation. We use colloidal nanocrystals functionalized with light-responsive ligands that readily self-assemble and trap various molecules from the surrounding bulk solution. Once trapped, these molecules can undergo chemical reactions with increased rates and with stereoselectivities significantly different from those in bulk solution. Illumination with visible light disassembles these nanoflasks, releasing the product in solution and thereby establishes a catalytic cycle. These dynamic nanoflasks can be useful for studying chemical reactivities in confined environments and for synthesizing molecules that are otherwise hard to achieve in bulk solution. article_processing_charge: No article_type: original author: - first_name: Hui full_name: Zhao, Hui last_name: Zhao - first_name: Soumyo full_name: Sen, Soumyo last_name: Sen - first_name: T. full_name: Udayabhaskararao, T. last_name: Udayabhaskararao - first_name: Michał full_name: Sawczyk, Michał last_name: Sawczyk - first_name: Kristina full_name: Kučanda, Kristina last_name: Kučanda - first_name: Debasish full_name: Manna, Debasish last_name: Manna - first_name: Pintu K. full_name: Kundu, Pintu K. last_name: Kundu - first_name: Ji-Woong full_name: Lee, Ji-Woong last_name: Lee - first_name: Petr full_name: Král, Petr last_name: Král - first_name: Rafal full_name: Klajn, Rafal id: 8e84690e-1e48-11ed-a02b-a1e6fb8bb53b last_name: Klajn citation: ama: Zhao H, Sen S, Udayabhaskararao T, et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nature Nanotechnology. 2015;11:82-88. doi:10.1038/nnano.2015.256 apa: Zhao, H., Sen, S., Udayabhaskararao, T., Sawczyk, M., Kučanda, K., Manna, D., … Klajn, R. (2015). Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nature Nanotechnology. Springer Nature. https://doi.org/10.1038/nnano.2015.256 chicago: Zhao, Hui, Soumyo Sen, T. Udayabhaskararao, Michał Sawczyk, Kristina Kučanda, Debasish Manna, Pintu K. Kundu, Ji-Woong Lee, Petr Král, and Rafal Klajn. “Reversible Trapping and Reaction Acceleration within Dynamically Self-Assembling Nanoflasks.” Nature Nanotechnology. Springer Nature, 2015. https://doi.org/10.1038/nnano.2015.256. ieee: H. Zhao et al., “Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks,” Nature Nanotechnology, vol. 11. Springer Nature, pp. 82–88, 2015. ista: Zhao H, Sen S, Udayabhaskararao T, Sawczyk M, Kučanda K, Manna D, Kundu PK, Lee J-W, Král P, Klajn R. 2015. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nature Nanotechnology. 11, 82–88. mla: Zhao, Hui, et al. “Reversible Trapping and Reaction Acceleration within Dynamically Self-Assembling Nanoflasks.” Nature Nanotechnology, vol. 11, Springer Nature, 2015, pp. 82–88, doi:10.1038/nnano.2015.256. short: H. Zhao, S. Sen, T. Udayabhaskararao, M. Sawczyk, K. Kučanda, D. Manna, P.K. Kundu, J.-W. Lee, P. Král, R. Klajn, Nature Nanotechnology 11 (2015) 82–88. date_created: 2023-08-01T09:44:04Z date_published: 2015-11-23T00:00:00Z date_updated: 2023-08-07T12:55:46Z day: '23' doi: 10.1038/nnano.2015.256 extern: '1' external_id: pmid: - '26595335' intvolume: ' 11' keyword: - Electrical and Electronic Engineering - Condensed Matter Physics - General Materials Science - Biomedical Engineering - Atomic and Molecular Physics - and Optics - Bioengineering language: - iso: eng month: '11' oa_version: None page: 82-88 pmid: 1 publication: Nature Nanotechnology publication_identifier: eissn: - 1748-3395 issn: - 1748-3387 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2015' ...