--- _id: '14846' abstract: - lang: eng text: Contraction and flow of the actin cell cortex have emerged as a common principle by which cells reorganize their cytoplasm and take shape. However, how these cortical flows interact with adjacent cytoplasmic components, changing their form and localization, and how this affects cytoplasmic organization and cell shape remains unclear. Here we show that in ascidian oocytes, the cooperative activities of cortical actomyosin flows and deformation of the adjacent mitochondria-rich myoplasm drive oocyte cytoplasmic reorganization and shape changes following fertilization. We show that vegetal-directed cortical actomyosin flows, established upon oocyte fertilization, lead to both the accumulation of cortical actin at the vegetal pole of the zygote and compression and local buckling of the adjacent elastic solid-like myoplasm layer due to friction forces generated at their interface. Once cortical flows have ceased, the multiple myoplasm buckles resolve into one larger buckle, which again drives the formation of the contraction pole—a protuberance of the zygote’s vegetal pole where maternal mRNAs accumulate. Thus, our findings reveal a mechanism where cortical actomyosin network flows determine cytoplasmic reorganization and cell shape by deforming adjacent cytoplasmic components through friction forces. acknowledged_ssus: - _id: EM-Fac - _id: Bio - _id: NanoFab acknowledgement: We would like to thank A. McDougall, E. Hannezo and the Heisenberg lab for fruitful discussions and reagents. We also thank E. Munro for the iMyo-YFP and Bra>iMyo-mScarlet constructs. This research was supported by the Scientific Service Units of the Institute of Science and Technology Austria through resources provided by the Electron Microscopy Facility, Imaging and Optics Facility and the Nanofabrication Facility. This work was supported by a Joint Project Grant from the FWF (I 3601-B27). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Silvia full_name: Caballero Mancebo, Silvia id: 2F1E1758-F248-11E8-B48F-1D18A9856A87 last_name: Caballero Mancebo orcid: 0000-0002-5223-3346 - first_name: Rushikesh full_name: Shinde, Rushikesh last_name: Shinde - first_name: Madison full_name: Bolger-Munro, Madison id: 516F03FA-93A3-11EA-A7C5-D6BE3DDC885E last_name: Bolger-Munro orcid: 0000-0002-8176-4824 - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Gregory full_name: Szep, Gregory id: 4BFB7762-F248-11E8-B48F-1D18A9856A87 last_name: Szep - first_name: Irene full_name: Steccari, Irene id: 2705C766-9FE2-11EA-B224-C6773DDC885E last_name: Steccari - first_name: David full_name: Labrousse Arias, David id: CD573DF4-9ED3-11E9-9D77-3223E6697425 last_name: Labrousse Arias - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden orcid: 0000-0002-9438-4783 - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Andrew full_name: Callan-Jones, Andrew last_name: Callan-Jones - first_name: Raphaël full_name: Voituriez, Raphaël last_name: Voituriez - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Caballero Mancebo S, Shinde R, Bolger-Munro M, et al. Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization. Nature Physics. 2024. doi:10.1038/s41567-023-02302-1 apa: Caballero Mancebo, S., Shinde, R., Bolger-Munro, M., Peruzzo, M., Szep, G., Steccari, I., … Heisenberg, C.-P. J. (2024). Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-02302-1 chicago: Caballero Mancebo, Silvia, Rushikesh Shinde, Madison Bolger-Munro, Matilda Peruzzo, Gregory Szep, Irene Steccari, David Labrousse Arias, et al. “Friction Forces Determine Cytoplasmic Reorganization and Shape Changes of Ascidian Oocytes upon Fertilization.” Nature Physics. Springer Nature, 2024. https://doi.org/10.1038/s41567-023-02302-1. ieee: S. Caballero Mancebo et al., “Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization,” Nature Physics. Springer Nature, 2024. ista: Caballero Mancebo S, Shinde R, Bolger-Munro M, Peruzzo M, Szep G, Steccari I, Labrousse Arias D, Zheden V, Merrin J, Callan-Jones A, Voituriez R, Heisenberg C-PJ. 2024. Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization. Nature Physics. mla: Caballero Mancebo, Silvia, et al. “Friction Forces Determine Cytoplasmic Reorganization and Shape Changes of Ascidian Oocytes upon Fertilization.” Nature Physics, Springer Nature, 2024, doi:10.1038/s41567-023-02302-1. short: S. Caballero Mancebo, R. Shinde, M. Bolger-Munro, M. Peruzzo, G. Szep, I. Steccari, D. Labrousse Arias, V. Zheden, J. Merrin, A. Callan-Jones, R. Voituriez, C.-P.J. Heisenberg, Nature Physics (2024). date_created: 2024-01-21T23:00:57Z date_published: 2024-01-09T00:00:00Z date_updated: 2024-03-05T09:33:38Z day: '09' department: - _id: CaHe - _id: JoFi - _id: MiSi - _id: EM-Fac - _id: NanoFab doi: 10.1038/s41567-023-02302-1 has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41567-023-02302-1 month: '01' oa: 1 oa_version: Published Version project: - _id: 2646861A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03601 name: Control of embryonic cleavage pattern publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/stranger-than-friction-a-force-initiating-life/ scopus_import: '1' status: public title: Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '12837' abstract: - lang: eng text: As developing tissues grow in size and undergo morphogenetic changes, their material properties may be altered. Such changes result from tension dynamics at cell contacts or cellular jamming. Yet, in many cases, the cellular mechanisms controlling the physical state of growing tissues are unclear. We found that at early developmental stages, the epithelium in the developing mouse spinal cord maintains both high junctional tension and high fluidity. This is achieved via a mechanism in which interkinetic nuclear movements generate cell area dynamics that drive extensive cell rearrangements. Over time, the cell proliferation rate declines, effectively solidifying the tissue. Thus, unlike well-studied jamming transitions, the solidification uncovered here resembles a glass transition that depends on the dynamical stresses generated by proliferation and differentiation. Our finding that the fluidity of developing epithelia is linked to interkinetic nuclear movements and the dynamics of growth is likely to be relevant to multiple developing tissues. acknowledgement: 'We thank S. Hippenmeyer for the reagents and C. P. Heisenberg, J. Briscoe and K. Page for comments on the manuscript. This work was supported by IST Austria; the European Research Council under Horizon 2020 research and innovation programme grant no. 680037 and Horizon Europe grant 101044579 (A.K.); Austrian Science Fund (FWF): F78 (Stem Cell Modulation) (A.K.); ISTFELLOW postdoctoral program (A.S.); Narodowe Centrum Nauki, Poland SONATA, 2017/26/D/NZ2/00454 (M.Z.); and the Polish National Agency for Academic Exchange (M.Z.).' article_processing_charge: No article_type: original author: - first_name: Laura full_name: Bocanegra, Laura id: 4896F754-F248-11E8-B48F-1D18A9856A87 last_name: Bocanegra - first_name: Amrita full_name: Singh, Amrita id: 76250f9f-3a21-11eb-9a80-a6180a0d7958 last_name: Singh - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 citation: ama: Bocanegra L, Singh A, Hannezo EB, Zagórski MP, Kicheva A. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. 2023;19:1050-1058. doi:10.1038/s41567-023-01977-w apa: Bocanegra, L., Singh, A., Hannezo, E. B., Zagórski, M. P., & Kicheva, A. (2023). Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-01977-w chicago: Bocanegra, Laura, Amrita Singh, Edouard B Hannezo, Marcin P Zagórski, and Anna Kicheva. “Cell Cycle Dynamics Control Fluidity of the Developing Mouse Neuroepithelium.” Nature Physics. Springer Nature, 2023. https://doi.org/10.1038/s41567-023-01977-w. ieee: L. Bocanegra, A. Singh, E. B. Hannezo, M. P. Zagórski, and A. Kicheva, “Cell cycle dynamics control fluidity of the developing mouse neuroepithelium,” Nature Physics, vol. 19. Springer Nature, pp. 1050–1058, 2023. ista: Bocanegra L, Singh A, Hannezo EB, Zagórski MP, Kicheva A. 2023. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. 19, 1050–1058. mla: Bocanegra, Laura, et al. “Cell Cycle Dynamics Control Fluidity of the Developing Mouse Neuroepithelium.” Nature Physics, vol. 19, Springer Nature, 2023, pp. 1050–58, doi:10.1038/s41567-023-01977-w. short: L. Bocanegra, A. Singh, E.B. Hannezo, M.P. Zagórski, A. Kicheva, Nature Physics 19 (2023) 1050–1058. date_created: 2023-04-16T22:01:09Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-10-04T11:14:05Z day: '01' ddc: - '570' department: - _id: EdHa - _id: AnKi doi: 10.1038/s41567-023-01977-w ec_funded: 1 external_id: isi: - '000964029300003' file: - access_level: open_access checksum: 858225a4205b74406e5045006cdd853f content_type: application/pdf creator: dernst date_created: 2023-10-04T11:13:28Z date_updated: 2023-10-04T11:13:28Z file_id: '14392' file_name: 2023_NaturePhysics_Boncanegra.pdf file_size: 5532285 relation: main_file success: 1 file_date_updated: 2023-10-04T11:13:28Z has_accepted_license: '1' intvolume: ' 19' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 1050-1058 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord - _id: bd7e737f-d553-11ed-ba76-d69ffb5ee3aa grant_number: '101044579' name: Mechanisms of tissue size regulation in spinal cord development - _id: 059DF620-7A3F-11EA-A408-12923DDC885E grant_number: F07802 name: Morphogen control of growth and pattern in the spinal cord - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '13081' relation: dissertation_contains status: public scopus_import: '1' status: public title: Cell cycle dynamics control fluidity of the developing mouse neuroepithelium tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2023' ... --- _id: '13118' abstract: - lang: eng text: Under high pressures and temperatures, molecular systems with substantial polarization charges, such as ammonia and water, are predicted to form superionic phases and dense fluid states with dissociating molecules and high electrical conductivity. This behaviour potentially plays a role in explaining the origin of the multipolar magnetic fields of Uranus and Neptune, whose mantles are thought to result from a mixture of H2O, NH3 and CH4 ices. Determining the stability domain, melting curve and electrical conductivity of these superionic phases is therefore crucial for modelling planetary interiors and dynamos. Here we report the melting curve of superionic ammonia up to 300 GPa from laser-driven shock compression of pre-compressed samples and atomistic calculations. We show that ammonia melts at lower temperatures than water above 100 GPa and that fluid ammonia’s electrical conductivity exceeds that of water at conditions predicted by hot, super-adiabatic models for Uranus and Neptune, and enhances the conductivity in their fluid water-rich dynamo layers. acknowledgement: We acknowledge the crucial contribution of the LULI2000 laser and support teams to the success of the experiments. We also thank S. Brygoo and P. Loubeyre for useful discussions. This research was supported by the French National Research Agency (ANR) through the projects POMPEI (grant no. ANR-16-CE31-0008) and SUPER-ICES (grant ANR-15-CE30-008-01), and by the PLAS@PAR Federation. M.F. and R.R. gratefully acknowledge support by the DFG within the Research Unit FOR 2440. M.B. was supported by the European Union within the Marie Skłodowska-Curie actions (xICE grant 894725) and the NOMIS foundation. The DFT-MD calculations were performed at the North-German Supercomputing Alliance facilities. article_processing_charge: No article_type: original author: - first_name: J.-A. full_name: Hernandez, J.-A. last_name: Hernandez - first_name: Mandy full_name: Bethkenhagen, Mandy id: 201939f4-803f-11ed-ab7e-d8da4bd1517f last_name: Bethkenhagen orcid: 0000-0002-1838-2129 - first_name: S. full_name: Ninet, S. last_name: Ninet - first_name: M. full_name: French, M. last_name: French - first_name: A. full_name: Benuzzi-Mounaix, A. last_name: Benuzzi-Mounaix - first_name: F. full_name: Datchi, F. last_name: Datchi - first_name: M. full_name: Guarguaglini, M. last_name: Guarguaglini - first_name: F. full_name: Lefevre, F. last_name: Lefevre - first_name: F. full_name: Occelli, F. last_name: Occelli - first_name: R. full_name: Redmer, R. last_name: Redmer - first_name: T. full_name: Vinci, T. last_name: Vinci - first_name: A. full_name: Ravasio, A. last_name: Ravasio citation: ama: Hernandez J-A, Bethkenhagen M, Ninet S, et al. Melting curve of superionic ammonia at planetary interior conditions. Nature Physics. 2023;19:1280-1285. doi:10.1038/s41567-023-02074-8 apa: Hernandez, J.-A., Bethkenhagen, M., Ninet, S., French, M., Benuzzi-Mounaix, A., Datchi, F., … Ravasio, A. (2023). Melting curve of superionic ammonia at planetary interior conditions. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-02074-8 chicago: Hernandez, J.-A., Mandy Bethkenhagen, S. Ninet, M. French, A. Benuzzi-Mounaix, F. Datchi, M. Guarguaglini, et al. “Melting Curve of Superionic Ammonia at Planetary Interior Conditions.” Nature Physics. Springer Nature, 2023. https://doi.org/10.1038/s41567-023-02074-8. ieee: J.-A. Hernandez et al., “Melting curve of superionic ammonia at planetary interior conditions,” Nature Physics, vol. 19. Springer Nature, pp. 1280–1285, 2023. ista: Hernandez J-A, Bethkenhagen M, Ninet S, French M, Benuzzi-Mounaix A, Datchi F, Guarguaglini M, Lefevre F, Occelli F, Redmer R, Vinci T, Ravasio A. 2023. Melting curve of superionic ammonia at planetary interior conditions. Nature Physics. 19, 1280–1285. mla: Hernandez, J. A., et al. “Melting Curve of Superionic Ammonia at Planetary Interior Conditions.” Nature Physics, vol. 19, Springer Nature, 2023, pp. 1280–85, doi:10.1038/s41567-023-02074-8. short: J.-A. Hernandez, M. Bethkenhagen, S. Ninet, M. French, A. Benuzzi-Mounaix, F. Datchi, M. Guarguaglini, F. Lefevre, F. Occelli, R. Redmer, T. Vinci, A. Ravasio, Nature Physics 19 (2023) 1280–1285. date_created: 2023-06-04T22:01:02Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-11-14T12:58:31Z day: '01' department: - _id: BiCh doi: 10.1038/s41567-023-02074-8 external_id: isi: - '000996921200001' intvolume: ' 19' isi: 1 language: - iso: eng month: '09' oa_version: None page: 1280-1285 publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: 10.1038/s41567-023-02130-3 scopus_import: '1' status: public title: Melting curve of superionic ammonia at planetary interior conditions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2023' ... --- _id: '14032' abstract: - lang: eng text: Arrays of Josephson junctions are governed by a competition between superconductivity and repulsive Coulomb interactions, and are expected to exhibit diverging low-temperature resistance when interactions exceed a critical level. Here we report a study of the transport and microwave response of Josephson arrays with interactions exceeding this level. Contrary to expectations, we observe that the array resistance drops dramatically as the temperature is decreased—reminiscent of superconducting behaviour—and then saturates at low temperature. Applying a magnetic field, we eventually observe a transition to a highly resistive regime. These observations can be understood within a theoretical picture that accounts for the effect of thermal fluctuations on the insulating phase. On the basis of the agreement between experiment and theory, we suggest that apparent superconductivity in our Josephson arrays arises from melting the zero-temperature insulator. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: We thank D. Haviland, J. Pekola, C. Ciuti, A. Bubis and A. Shnirman for helpful feedback on the paper. This research was supported by the Scientific Service Units of IST Austria through resources provided by the MIBA Machine Shop and the Nanofabrication Facility. Work supported by the Austrian FWF grant P33692-N (S.M., J.S. and A.P.H.), the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411 (J.S.) and a NOMIS foundation research grant (J.M.F. and A.P.H.). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Soham full_name: Mukhopadhyay, Soham id: FDE60288-A89D-11E9-947F-1AF6E5697425 last_name: Mukhopadhyay - first_name: Jorden L full_name: Senior, Jorden L id: 5479D234-2D30-11EA-89CC-40953DDC885E last_name: Senior orcid: 0000-0002-0672-9295 - first_name: Jaime full_name: Saez Mollejo, Jaime id: e0390f72-f6e0-11ea-865d-862393336714 last_name: Saez Mollejo - first_name: Denise full_name: Puglia, Denise id: 4D495994-AE37-11E9-AC72-31CAE5697425 last_name: Puglia orcid: 0000-0003-1144-2763 - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 citation: ama: Mukhopadhyay S, Senior JL, Saez Mollejo J, et al. Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. 2023;19:1630-1635. doi:10.1038/s41567-023-02161-w apa: Mukhopadhyay, S., Senior, J. L., Saez Mollejo, J., Puglia, D., Zemlicka, M., Fink, J. M., & Higginbotham, A. P. (2023). Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-02161-w chicago: Mukhopadhyay, Soham, Jorden L Senior, Jaime Saez Mollejo, Denise Puglia, Martin Zemlicka, Johannes M Fink, and Andrew P Higginbotham. “Superconductivity from a Melted Insulator in Josephson Junction Arrays.” Nature Physics. Springer Nature, 2023. https://doi.org/10.1038/s41567-023-02161-w. ieee: S. Mukhopadhyay et al., “Superconductivity from a melted insulator in Josephson junction arrays,” Nature Physics, vol. 19. Springer Nature, pp. 1630–1635, 2023. ista: Mukhopadhyay S, Senior JL, Saez Mollejo J, Puglia D, Zemlicka M, Fink JM, Higginbotham AP. 2023. Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. 19, 1630–1635. mla: Mukhopadhyay, Soham, et al. “Superconductivity from a Melted Insulator in Josephson Junction Arrays.” Nature Physics, vol. 19, Springer Nature, 2023, pp. 1630–35, doi:10.1038/s41567-023-02161-w. short: S. Mukhopadhyay, J.L. Senior, J. Saez Mollejo, D. Puglia, M. Zemlicka, J.M. Fink, A.P. Higginbotham, Nature Physics 19 (2023) 1630–1635. date_created: 2023-08-11T07:41:17Z date_published: 2023-11-01T00:00:00Z date_updated: 2024-01-29T11:27:49Z day: '01' ddc: - '530' department: - _id: GradSch - _id: AnHi - _id: JoFi doi: 10.1038/s41567-023-02161-w ec_funded: 1 external_id: isi: - '001054563800006' file: - access_level: open_access checksum: 1fc86d71bfbf836e221c1e925343adc5 content_type: application/pdf creator: dernst date_created: 2024-01-29T11:25:38Z date_updated: 2024-01-29T11:25:38Z file_id: '14899' file_name: 2023_NaturePhysics_Mukhopadhyay.pdf file_size: 1977706 relation: main_file success: 1 file_date_updated: 2024-01-29T11:25:38Z has_accepted_license: '1' intvolume: ' 19' isi: 1 keyword: - General Physics and Astronomy language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1630-1635 project: - _id: 0aa3608a-070f-11eb-9043-e9cd8a2bd931 grant_number: P33692 name: Cavity electromechanics across a quantum phase transition - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: eb9b30ac-77a9-11ec-83b8-871f581d53d2 name: Protected states of quantum matter - _id: bd5b4ec5-d553-11ed-ba76-a6eedb083344 name: Protected states of quantum matter publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Superconductivity from a melted insulator in Josephson junction arrays tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2023' ... --- _id: '13971' abstract: - lang: eng text: When in equilibrium, thermal forces agitate molecules, which then diffuse, collide and bind to form materials. However, the space of accessible structures in which micron-scale particles can be organized by thermal forces is limited, owing to the slow dynamics and metastable states. Active agents in a passive fluid generate forces and flows, forming a bath with active fluctuations. Two unanswered questions are whether those active agents can drive the assembly of passive components into unconventional states and which material properties they will exhibit. Here we show that passive, sticky beads immersed in a bath of swimming Escherichia coli bacteria aggregate into unconventional clusters and gels that are controlled by the activity of the bath. We observe a slow but persistent rotation of the aggregates that originates in the chirality of the E. coli flagella and directs aggregation into structures that are not accessible thermally. We elucidate the aggregation mechanism with a numerical model of spinning, sticky beads and reproduce quantitatively the experimental results. We show that internal activity controls the phase diagram and the structure of the aggregates. Overall, our results highlight the promising role of active baths in designing the structural and mechanical properties of materials with unconventional phases. acknowledgement: D.G. and J.P. thank E. Krasnopeeva, C. Guet, G. Guessous and T. Hwa for providing the E. coli strains. This material is based upon work supported by the US Department of Energy under award DE-SC0019769. I.P. acknowledges funding by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie Grant Agreement No. 101034413. A.Š. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant No. 802960). M.C.U. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie Grant Agreement No. 754411. article_processing_charge: Yes article_type: original author: - first_name: Daniel full_name: Grober, Daniel id: abdfc56f-34fb-11ee-bd33-fd766fce5a99 last_name: Grober - first_name: Ivan full_name: Palaia, Ivan id: 9c805cd2-4b75-11ec-a374-db6dd0ed57fa last_name: Palaia orcid: ' 0000-0002-8843-9485 ' - first_name: Mehmet C full_name: Ucar, Mehmet C id: 50B2A802-6007-11E9-A42B-EB23E6697425 last_name: Ucar orcid: 0000-0003-0506-4217 - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 - first_name: Jérémie A full_name: Palacci, Jérémie A id: 8fb92548-2b22-11eb-b7c1-a3f0d08d7c7d last_name: Palacci orcid: 0000-0002-7253-9465 citation: ama: Grober D, Palaia I, Ucar MC, Hannezo EB, Šarić A, Palacci JA. Unconventional colloidal aggregation in chiral bacterial baths. Nature Physics. 2023;19:1680-1688. doi:10.1038/s41567-023-02136-x apa: Grober, D., Palaia, I., Ucar, M. C., Hannezo, E. B., Šarić, A., & Palacci, J. A. (2023). Unconventional colloidal aggregation in chiral bacterial baths. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-02136-x chicago: Grober, Daniel, Ivan Palaia, Mehmet C Ucar, Edouard B Hannezo, Anđela Šarić, and Jérémie A Palacci. “Unconventional Colloidal Aggregation in Chiral Bacterial Baths.” Nature Physics. Springer Nature, 2023. https://doi.org/10.1038/s41567-023-02136-x. ieee: D. Grober, I. Palaia, M. C. Ucar, E. B. Hannezo, A. Šarić, and J. A. Palacci, “Unconventional colloidal aggregation in chiral bacterial baths,” Nature Physics, vol. 19. Springer Nature, pp. 1680–1688, 2023. ista: Grober D, Palaia I, Ucar MC, Hannezo EB, Šarić A, Palacci JA. 2023. Unconventional colloidal aggregation in chiral bacterial baths. Nature Physics. 19, 1680–1688. mla: Grober, Daniel, et al. “Unconventional Colloidal Aggregation in Chiral Bacterial Baths.” Nature Physics, vol. 19, Springer Nature, 2023, pp. 1680–88, doi:10.1038/s41567-023-02136-x. short: D. Grober, I. Palaia, M.C. Ucar, E.B. Hannezo, A. Šarić, J.A. Palacci, Nature Physics 19 (2023) 1680–1688. date_created: 2023-08-06T22:01:11Z date_published: 2023-11-01T00:00:00Z date_updated: 2024-01-30T12:26:55Z day: '01' ddc: - '530' department: - _id: EdHa - _id: AnSa - _id: JePa doi: 10.1038/s41567-023-02136-x ec_funded: 1 external_id: isi: - '001037346400005' file: - access_level: open_access checksum: 7e282c2ebc0ac82125a04f6b4742d4c1 content_type: application/pdf creator: dernst date_created: 2024-01-30T12:26:08Z date_updated: 2024-01-30T12:26:08Z file_id: '14906' file_name: 2023_NaturePhysics_Grober.pdf file_size: 6365607 relation: main_file success: 1 file_date_updated: 2024-01-30T12:26:08Z has_accepted_license: '1' intvolume: ' 19' isi: 1 language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1680-1688 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' - _id: eba2549b-77a9-11ec-83b8-a81e493eae4e call_identifier: H2020 grant_number: '802960' name: 'Non-Equilibrium Protein Assembly: from Building Blocks to Biological Machines' - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Unconventional colloidal aggregation in chiral bacterial baths tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2023' ... --- _id: '13314' abstract: - lang: eng text: The emergence of large-scale order in self-organized systems relies on local interactions between individual components. During bacterial cell division, FtsZ—a prokaryotic homologue of the eukaryotic protein tubulin—polymerizes into treadmilling filaments that further organize into a cytoskeletal ring. In vitro, FtsZ filaments can form dynamic chiral assemblies. However, how the active and passive properties of individual filaments relate to these large-scale self-organized structures remains poorly understood. Here we connect single-filament properties with the mesoscopic scale by combining minimal active matter simulations and biochemical reconstitution experiments. We show that the density and flexibility of active chiral filaments define their global order. At intermediate densities, curved, flexible filaments organize into chiral rings and polar bands. An effectively nematic organization dominates for high densities and for straight, mutant filaments with increased rigidity. Our predicted phase diagram quantitatively captures these features, demonstrating how the flexibility, density and chirality of the active filaments affect their collective behaviour. Our findings shed light on the fundamental properties of active chiral matter and explain how treadmilling FtsZ filaments organize during bacterial cell division. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: 'This work was supported by the European Research Council through grant ERC 2015-StG-679239 and by the Austrian Science Fund (FWF) StandAlone P34607 to M.L., B. P.M. was also supported by the Kanazawa University WPI- NanoLSI Bio-SPM collaborative research program. Z.D. has received funding from Doctoral Programme of the Austrian Academy of Sciences (OeAW): Grant agreement 26360. We thank Jan Brugues (MPI CBG, Dresden, Germany), Andela Saric (ISTA, Klosterneuburg, Austria), Daniel Pearce (Uni Geneva, Switzerland) for valuable scientific input and comments on the manuscript. We are also thankful for the support by the Scientific Service Units (SSU) of IST Austria through resources provided by the Imaging and Optics Facility (IOF) and the Lab Support Facility (LSF).' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Zuzana full_name: Dunajova, Zuzana id: 4B39F286-F248-11E8-B48F-1D18A9856A87 last_name: Dunajova - first_name: Batirtze full_name: Prats Mateu, Batirtze id: 299FE892-F248-11E8-B48F-1D18A9856A87 last_name: Prats Mateu - first_name: Philipp full_name: Radler, Philipp id: 40136C2A-F248-11E8-B48F-1D18A9856A87 last_name: Radler orcid: '0000-0001-9198-2182 ' - first_name: Keesiang full_name: Lim, Keesiang last_name: Lim - first_name: Dörte full_name: Brandis, Dörte id: 21d64d35-f128-11eb-9611-b8bcca7a12fd last_name: Brandis - first_name: Philipp full_name: Velicky, Philipp id: 39BDC62C-F248-11E8-B48F-1D18A9856A87 last_name: Velicky orcid: 0000-0002-2340-7431 - first_name: Johann G full_name: Danzl, Johann G id: 42EFD3B6-F248-11E8-B48F-1D18A9856A87 last_name: Danzl orcid: 0000-0001-8559-3973 - first_name: Richard W. full_name: Wong, Richard W. last_name: Wong - first_name: Jens full_name: Elgeti, Jens last_name: Elgeti - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 citation: ama: Dunajova Z, Prats Mateu B, Radler P, et al. Chiral and nematic phases of flexible active filaments. Nature Physics. 2023;19:1916-1926. doi:10.1038/s41567-023-02218-w apa: Dunajova, Z., Prats Mateu, B., Radler, P., Lim, K., Brandis, D., Velicky, P., … Loose, M. (2023). Chiral and nematic phases of flexible active filaments. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-02218-w chicago: Dunajova, Zuzana, Batirtze Prats Mateu, Philipp Radler, Keesiang Lim, Dörte Brandis, Philipp Velicky, Johann G Danzl, et al. “Chiral and Nematic Phases of Flexible Active Filaments.” Nature Physics. Springer Nature, 2023. https://doi.org/10.1038/s41567-023-02218-w. ieee: Z. Dunajova et al., “Chiral and nematic phases of flexible active filaments,” Nature Physics, vol. 19. Springer Nature, pp. 1916–1926, 2023. ista: Dunajova Z, Prats Mateu B, Radler P, Lim K, Brandis D, Velicky P, Danzl JG, Wong RW, Elgeti J, Hannezo EB, Loose M. 2023. Chiral and nematic phases of flexible active filaments. Nature Physics. 19, 1916–1926. mla: Dunajova, Zuzana, et al. “Chiral and Nematic Phases of Flexible Active Filaments.” Nature Physics, vol. 19, Springer Nature, 2023, pp. 1916–26, doi:10.1038/s41567-023-02218-w. short: Z. Dunajova, B. Prats Mateu, P. Radler, K. Lim, D. Brandis, P. Velicky, J.G. Danzl, R.W. Wong, J. Elgeti, E.B. Hannezo, M. Loose, Nature Physics 19 (2023) 1916–1926. date_created: 2023-07-27T14:44:45Z date_published: 2023-12-01T00:00:00Z date_updated: 2024-02-21T12:19:08Z day: '01' ddc: - '530' department: - _id: JoDa - _id: EdHa - _id: MaLo - _id: GradSch doi: 10.1038/s41567-023-02218-w ec_funded: 1 external_id: pmid: - '38075437' file: - access_level: open_access checksum: bc7673ca07d37309013a86166577b2f7 content_type: application/pdf creator: dernst date_created: 2024-01-30T14:28:30Z date_updated: 2024-01-30T14:28:30Z file_id: '14916' file_name: 2023_NaturePhysics_Dunajova.pdf file_size: 22471673 relation: main_file success: 1 file_date_updated: 2024-01-30T14:28:30Z has_accepted_license: '1' intvolume: ' 19' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 1916-1926 pmid: 1 project: - _id: 2595697A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '679239' name: Self-Organization of the Bacterial Cell - _id: fc38323b-9c52-11eb-aca3-ff8afb4a011d grant_number: P34607 name: "Understanding bacterial cell division by in vitro\r\nreconstitution" - _id: 34d75525-11ca-11ed-8bc3-89b6307fee9d grant_number: '26360' name: Motile active matter models of migrating cells and chiral filaments publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '13116' relation: research_data status: public scopus_import: '1' status: public title: Chiral and nematic phases of flexible active filaments tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2023' ... --- _id: '10589' abstract: - lang: eng text: Superconducting devices ubiquitously have an excess of broken Cooper pairs, which can hamper their performance. It is widely believed that external radiation is responsible but a study now suggests there must be an additional, unknown source. article_processing_charge: No article_type: letter_note author: - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 citation: ama: Higginbotham AP. A secret source. Nature Physics. 2022;18:126. doi:10.1038/s41567-021-01459-x apa: Higginbotham, A. P. (2022). A secret source. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-021-01459-x chicago: Higginbotham, Andrew P. “A Secret Source.” Nature Physics. Springer Nature, 2022. https://doi.org/10.1038/s41567-021-01459-x. ieee: A. P. Higginbotham, “A secret source,” Nature Physics, vol. 18. Springer Nature, p. 126, 2022. ista: Higginbotham AP. 2022. A secret source. Nature Physics. 18, 126. mla: Higginbotham, Andrew P. “A Secret Source.” Nature Physics, vol. 18, Springer Nature, 2022, p. 126, doi:10.1038/s41567-021-01459-x. short: A.P. Higginbotham, Nature Physics 18 (2022) 126. date_created: 2022-01-02T23:01:35Z date_published: 2022-02-01T00:00:00Z date_updated: 2023-08-02T13:43:11Z day: '01' department: - _id: AnHi doi: 10.1038/s41567-021-01459-x external_id: isi: - '000733431000007' intvolume: ' 18' isi: 1 keyword: - superconducting devices - superconducting properties and materials language: - iso: eng month: '02' oa_version: None page: '126' publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: A secret source type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 18 year: '2022' ... --- _id: '12209' abstract: - lang: eng text: Embryo development requires biochemical signalling to generate patterns of cell fates and active mechanical forces to drive tissue shape changes. However, how these processes are coordinated, and how tissue patterning is preserved despite the cellular flows occurring during morphogenesis, remains poorly understood. Gastrulation is a crucial embryonic stage that involves both patterning and internalization of the mesendoderm germ layer tissue. Here we show that, in zebrafish embryos, a gradient in Nodal signalling orchestrates pattern-preserving internalization movements by triggering a motility-driven unjamming transition. In addition to its role as a morphogen determining embryo patterning, graded Nodal signalling mechanically subdivides the mesendoderm into a small fraction of highly protrusive leader cells, able to autonomously internalize via local unjamming, and less protrusive followers, which need to be pulled inwards by the leaders. The Nodal gradient further enforces a code of preferential adhesion coupling leaders to their immediate followers, resulting in a collective and ordered mode of internalization that preserves mesendoderm patterning. Integrating this dual mechanical role of Nodal signalling into minimal active particle simulations quantitatively predicts both physiological and experimentally perturbed internalization movements. This provides a quantitative framework for how a morphogen-encoded unjamming transition can bidirectionally couple tissue mechanics with patterning during complex three-dimensional morphogenesis. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: "We thank K. Sampath, A. Pauli and Y. Bellaїche for feedback on the manuscript. We also thank the members of the Heisenberg group, in particular A. Schauer and F. Nur Arslan, for help, technical advice and discussions, and the Bioimaging and Life Science facilities at IST\r\nAustria for continuous support. We thank C. Flandoli for the artwork in the figures. This work was supported by postdoctoral fellowships from EMBO (LTF-850-2017) and HFSP (LT000429/2018-L2) to D.P. and the European Union (European Research Council starting grant 851288 to É.H. and European Research Council advanced grant 742573 to C.-P.H.)." article_processing_charge: No article_type: original author: - first_name: Diana C full_name: Nunes Pinheiro, Diana C id: 2E839F16-F248-11E8-B48F-1D18A9856A87 last_name: Nunes Pinheiro orcid: 0000-0003-4333-7503 - first_name: Roland full_name: Kardos, Roland id: 4039350E-F248-11E8-B48F-1D18A9856A87 last_name: Kardos - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Nunes Pinheiro DC, Kardos R, Hannezo EB, Heisenberg C-PJ. Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming. Nature Physics. 2022;18(12):1482-1493. doi:10.1038/s41567-022-01787-6 apa: Nunes Pinheiro, D. C., Kardos, R., Hannezo, E. B., & Heisenberg, C.-P. J. (2022). Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-022-01787-6 chicago: Nunes Pinheiro, Diana C, Roland Kardos, Edouard B Hannezo, and Carl-Philipp J Heisenberg. “Morphogen Gradient Orchestrates Pattern-Preserving Tissue Morphogenesis via Motility-Driven Unjamming.” Nature Physics. Springer Nature, 2022. https://doi.org/10.1038/s41567-022-01787-6. ieee: D. C. Nunes Pinheiro, R. Kardos, E. B. Hannezo, and C.-P. J. Heisenberg, “Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming,” Nature Physics, vol. 18, no. 12. Springer Nature, pp. 1482–1493, 2022. ista: Nunes Pinheiro DC, Kardos R, Hannezo EB, Heisenberg C-PJ. 2022. Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming. Nature Physics. 18(12), 1482–1493. mla: Nunes Pinheiro, Diana C., et al. “Morphogen Gradient Orchestrates Pattern-Preserving Tissue Morphogenesis via Motility-Driven Unjamming.” Nature Physics, vol. 18, no. 12, Springer Nature, 2022, pp. 1482–93, doi:10.1038/s41567-022-01787-6. short: D.C. Nunes Pinheiro, R. Kardos, E.B. Hannezo, C.-P.J. Heisenberg, Nature Physics 18 (2022) 1482–1493. date_created: 2023-01-16T09:45:19Z date_published: 2022-12-01T00:00:00Z date_updated: 2023-08-04T09:15:58Z day: '01' ddc: - '570' department: - _id: CaHe - _id: EdHa doi: 10.1038/s41567-022-01787-6 ec_funded: 1 external_id: isi: - '000871319900002' file: - access_level: open_access checksum: c86a8e8d80d1bfc46d56a01e88a2526a content_type: application/pdf creator: dernst date_created: 2023-01-27T07:32:01Z date_updated: 2023-01-27T07:32:01Z file_id: '12412' file_name: 2022_NaturePhysics_Pinheiro.pdf file_size: 36703569 relation: main_file success: 1 file_date_updated: 2023-01-27T07:32:01Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: '12' keyword: - General Physics and Astronomy language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 1482-1493 project: - _id: 26520D1E-B435-11E9-9278-68D0E5697425 grant_number: ALTF 850-2017 name: Coordination of mesendoderm cell fate specification and internalization during zebrafish gastrulation - _id: 26520D1E-B435-11E9-9278-68D0E5697425 grant_number: ALTF 850-2017 name: Coordination of mesendoderm cell fate specification and internalization during zebrafish gastrulation - _id: 05943252-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '851288' name: Design Principles of Branching Morphogenesis - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 18 year: '2022' ... --- _id: '10617' abstract: - lang: eng text: When a flat band is partially filled with electrons, strong Coulomb interactions between them may lead to the emergence of topological gapped states with quantized Hall conductivity. Such emergent topological states have been found in partially filled Landau levels1 and Hofstadter bands2,3; however, in both cases, a large magnetic field is required to produce the underlying flat band. The recent observation of quantum anomalous Hall effects in narrow-band moiré materials4,5,6,7 has led to the theoretical prediction that such phases could be realized at zero magnetic field8,9,10,11,12. Here we report the observation of insulators with Chern number C = 1 in the zero-magnetic-field limit at half-integer filling of the moiré superlattice unit cell in twisted monolayer–bilayer graphene7,13,14,15. Chern insulators in a half-filled band suggest the spontaneous doubling of the superlattice unit cell2,3,16, and our calculations find a ground state of the topological charge density wave at half-filling of the underlying band. The discovery of these topological phases at fractional superlattice filling enables the further pursuit of zero-magnetic-field phases that have fractional statistics that exist either as elementary excitations or bound to lattice dislocations. acknowledgement: We are grateful to J. Zhu for fruitful discussions. A.F.Y. acknowledges support from the Office of Naval Research under award N00014-20-1-2609, and the Gordon and Betty Moore Foundation under award GBMF9471. M.P.Z. acknowledges support from the ARO under MURI W911NF-16-1-0361. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, via grant no. JPMXP0112101001; JSPS KAKENHI grant no. JP20H00354; and the CREST(JPMJCR15F3), JST. A.V. was supported by a Simons Investigator Award. P.L. was supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program. article_processing_charge: No article_type: original author: - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Y. full_name: Zhang, Y. last_name: Zhang - first_name: M. A. full_name: Kumar, M. A. last_name: Kumar - first_name: T. full_name: Soejima, T. last_name: Soejima - first_name: P. full_name: Ledwith, P. last_name: Ledwith - first_name: K. full_name: Watanabe, K. last_name: Watanabe - first_name: T. full_name: Taniguchi, T. last_name: Taniguchi - first_name: A. full_name: Vishwanath, A. last_name: Vishwanath - first_name: M. P. full_name: Zaletel, M. P. last_name: Zaletel - first_name: A. F. full_name: Young, A. F. last_name: Young citation: ama: Polshyn H, Zhang Y, Kumar MA, et al. Topological charge density waves at half-integer filling of a moiré superlattice. Nature Physics. 2021. doi:10.1038/s41567-021-01418-6 apa: Polshyn, H., Zhang, Y., Kumar, M. A., Soejima, T., Ledwith, P., Watanabe, K., … Young, A. F. (2021). Topological charge density waves at half-integer filling of a moiré superlattice. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-021-01418-6 chicago: Polshyn, Hryhoriy, Y. Zhang, M. A. Kumar, T. Soejima, P. Ledwith, K. Watanabe, T. Taniguchi, A. Vishwanath, M. P. Zaletel, and A. F. Young. “Topological Charge Density Waves at Half-Integer Filling of a Moiré Superlattice.” Nature Physics. Springer Nature, 2021. https://doi.org/10.1038/s41567-021-01418-6. ieee: H. Polshyn et al., “Topological charge density waves at half-integer filling of a moiré superlattice,” Nature Physics. Springer Nature, 2021. ista: Polshyn H, Zhang Y, Kumar MA, Soejima T, Ledwith P, Watanabe K, Taniguchi T, Vishwanath A, Zaletel MP, Young AF. 2021. Topological charge density waves at half-integer filling of a moiré superlattice. Nature Physics. mla: Polshyn, Hryhoriy, et al. “Topological Charge Density Waves at Half-Integer Filling of a Moiré Superlattice.” Nature Physics, Springer Nature, 2021, doi:10.1038/s41567-021-01418-6. short: H. Polshyn, Y. Zhang, M.A. Kumar, T. Soejima, P. Ledwith, K. Watanabe, T. Taniguchi, A. Vishwanath, M.P. Zaletel, A.F. Young, Nature Physics (2021). date_created: 2022-01-13T12:30:47Z date_published: 2021-12-09T00:00:00Z date_updated: 2022-01-13T14:11:31Z day: '09' doi: 10.1038/s41567-021-01418-6 extern: '1' external_id: arxiv: - '2104.01178' keyword: - general physics - astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2104.01178 month: '12' oa: 1 oa_version: Preprint publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Topological charge density waves at half-integer filling of a moiré superlattice type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '10365' abstract: - lang: eng text: The early development of many organisms involves the folding of cell monolayers, but this behaviour is difficult to reproduce in vitro; therefore, both mechanistic causes and effects of local curvature remain unclear. Here we study epithelial cell monolayers on corrugated hydrogels engineered into wavy patterns, examining how concave and convex curvatures affect cellular and nuclear shape. We find that substrate curvature affects monolayer thickness, which is larger in valleys than crests. We show that this feature generically arises in a vertex model, leading to the hypothesis that cells may sense curvature by modifying the thickness of the tissue. We find that local curvature also affects nuclear morphology and positioning, which we explain by extending the vertex model to take into account membrane–nucleus interactions, encoding thickness modulation in changes to nuclear deformation and position. We propose that curvature governs the spatial distribution of yes-associated proteins via nuclear shape and density changes. We show that curvature also induces significant variations in lamins, chromatin condensation and cell proliferation rate in folded epithelial tissues. Together, this work identifies active cell mechanics and nuclear mechanoadaptation as the key players of the mechanistic regulation of epithelia to substrate curvature. acknowledgement: S.G. acknowledges funding from FEDER Prostem Research Project no. 1510614 (Wallonia DG06), F.R.S.-FNRS Epiforce Research Project no. T.0092.21 and Interreg MAT(T)ISSE project, which is financially supported by Interreg France-Wallonie-Vlaanderen (Fonds Européen de Développement Régional, FEDER-ERDF). This project was supported by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme grant agreement 851288 (to E.H.), and by the Austrian Science Fund (FWF) (P 31639; to E.H.). L.R.M. acknowledges funding from the Agence National de la Recherche (ANR), as part of the ‘Investments d’Avenir’ Programme (I-SITE ULNE/ANR-16-IDEX-0004 ULNE). This work benefited from ANR-10-EQPX-04-01 and FEDER 12001407 grants to F.L. W.D.V. is supported by the Research Foundation Flanders (FWO 1516619N, FWO GOO5819N, FWO I003420N, FWO IRI I000321N) and is member of the Research Excellence Consortium µNEURO at the University of Antwerp. M.L. is financially supported by FRIA (F.R.S.-FNRS). M.S. is a Senior Research Associate of the Fund for Scientific Research (F.R.S.-FNRS) and acknowledges EOS grant no. 30650939 (PRECISION). Sketches in Figs. 1a and 5e and Extended Data Fig. 9 were drawn by C. Levicek. article_processing_charge: No article_type: original author: - first_name: Marine full_name: Luciano, Marine last_name: Luciano - first_name: Shi-lei full_name: Xue, Shi-lei id: 31D2C804-F248-11E8-B48F-1D18A9856A87 last_name: Xue - first_name: Winnok H. full_name: De Vos, Winnok H. last_name: De Vos - first_name: Lorena full_name: Redondo-Morata, Lorena last_name: Redondo-Morata - first_name: Mathieu full_name: Surin, Mathieu last_name: Surin - first_name: Frank full_name: Lafont, Frank last_name: Lafont - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Sylvain full_name: Gabriele, Sylvain last_name: Gabriele citation: ama: Luciano M, Xue S, De Vos WH, et al. Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation. Nature Physics. 2021;17(12):1382–1390. doi:10.1038/s41567-021-01374-1 apa: Luciano, M., Xue, S., De Vos, W. H., Redondo-Morata, L., Surin, M., Lafont, F., … Gabriele, S. (2021). Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-021-01374-1 chicago: Luciano, Marine, Shi-lei Xue, Winnok H. De Vos, Lorena Redondo-Morata, Mathieu Surin, Frank Lafont, Edouard B Hannezo, and Sylvain Gabriele. “Cell Monolayers Sense Curvature by Exploiting Active Mechanics and Nuclear Mechanoadaptation.” Nature Physics. Springer Nature, 2021. https://doi.org/10.1038/s41567-021-01374-1. ieee: M. Luciano et al., “Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation,” Nature Physics, vol. 17, no. 12. Springer Nature, pp. 1382–1390, 2021. ista: Luciano M, Xue S, De Vos WH, Redondo-Morata L, Surin M, Lafont F, Hannezo EB, Gabriele S. 2021. Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation. Nature Physics. 17(12), 1382–1390. mla: Luciano, Marine, et al. “Cell Monolayers Sense Curvature by Exploiting Active Mechanics and Nuclear Mechanoadaptation.” Nature Physics, vol. 17, no. 12, Springer Nature, 2021, pp. 1382–1390, doi:10.1038/s41567-021-01374-1. short: M. Luciano, S. Xue, W.H. De Vos, L. Redondo-Morata, M. Surin, F. Lafont, E.B. Hannezo, S. Gabriele, Nature Physics 17 (2021) 1382–1390. date_created: 2021-11-28T23:01:29Z date_published: 2021-11-18T00:00:00Z date_updated: 2023-10-16T06:31:54Z day: '18' ddc: - '530' department: - _id: EdHa doi: 10.1038/s41567-021-01374-1 ec_funded: 1 external_id: isi: - '000720204300004' file: - access_level: open_access checksum: 5d6d76750a71d7cb632bb15417c38ef7 content_type: application/pdf creator: channezo date_created: 2023-10-11T09:31:43Z date_updated: 2023-10-11T09:31:43Z file_id: '14420' file_name: 50145_4_merged_1630498627.pdf file_size: 40285498 relation: main_file success: 1 file_date_updated: 2023-10-11T09:31:43Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '12' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version page: 1382–1390 project: - _id: 05943252-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '851288' name: Design Principles of Branching Morphogenesis - _id: 268294B6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31639 name: Active mechano-chemical description of the cell cytoskeleton publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Webpage relation: press_release url: https://ist.ac.at/en/news/how-cells-feel-curvature/ scopus_import: '1' status: public title: Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2021' ... --- _id: '10701' abstract: - lang: eng text: Partially filled Landau levels host competing electronic orders. For example, electron solids may prevail close to integer filling of the Landau levels before giving way to fractional quantum Hall liquids at higher carrier density1,2. Here, we report the observation of an electron solid with non-collinear spin texture in monolayer graphene, consistent with solidification of skyrmions3—topological spin textures characterized by quantized electrical charge4,5. We probe the spin texture of the solids using a modified Corbino geometry that allows ferromagnetic magnons to be launched and detected6,7. We find that magnon transport is highly efficient when one Landau level is filled (ν=1), consistent with quantum Hall ferromagnetic spin polarization. However, even minimal doping immediately quenches the magnon signal while leaving the vanishing low-temperature charge conductivity unchanged. Our results can be understood by the formation of a solid of charged skyrmions near ν=1, whose non-collinear spin texture leads to rapid magnon decay. Data near fractional fillings show evidence of several fractional skyrmion solids, suggesting that graphene hosts a highly tunable landscape of coupled spin and charge orders. acknowledgement: We acknowledge discussions with B. Halperin, C. Huang, A. Macdonald and M. Zalatel. Experimental work at UCSB was supported by the Army Research Office under awards nos. MURI W911NF-16-1-0361 and W911NF-16-1-0482. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT (Japan) and CREST (JPMJCR15F3), JST. A.F.Y. acknowledges the support of the David and Lucile Packard Foundation and and Alfred. P. Sloan Foundation. article_processing_charge: No article_type: original author: - first_name: Haoxin full_name: Zhou, Haoxin last_name: Zhou - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Takashi full_name: Taniguchi, Takashi last_name: Taniguchi - first_name: Kenji full_name: Watanabe, Kenji last_name: Watanabe - first_name: Andrea F. full_name: Young, Andrea F. last_name: Young citation: ama: Zhou H, Polshyn H, Taniguchi T, Watanabe K, Young AF. Skyrmion solids in monolayer graphene. Nature Physics. 2020;16(2):154-158. doi:10.1038/s41567-019-0729-8 apa: Zhou, H., Polshyn, H., Taniguchi, T., Watanabe, K., & Young, A. F. (2020). Skyrmion solids in monolayer graphene. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-019-0729-8 chicago: Zhou, Haoxin, Hryhoriy Polshyn, Takashi Taniguchi, Kenji Watanabe, and Andrea F. Young. “Skyrmion Solids in Monolayer Graphene.” Nature Physics. Springer Nature, 2020. https://doi.org/10.1038/s41567-019-0729-8. ieee: H. Zhou, H. Polshyn, T. Taniguchi, K. Watanabe, and A. F. Young, “Skyrmion solids in monolayer graphene,” Nature Physics, vol. 16, no. 2. Springer Nature, pp. 154–158, 2020. ista: Zhou H, Polshyn H, Taniguchi T, Watanabe K, Young AF. 2020. Skyrmion solids in monolayer graphene. Nature Physics. 16(2), 154–158. mla: Zhou, Haoxin, et al. “Skyrmion Solids in Monolayer Graphene.” Nature Physics, vol. 16, no. 2, Springer Nature, 2020, pp. 154–58, doi:10.1038/s41567-019-0729-8. short: H. Zhou, H. Polshyn, T. Taniguchi, K. Watanabe, A.F. Young, Nature Physics 16 (2020) 154–158. date_created: 2022-01-28T12:04:09Z date_published: 2020-02-01T00:00:00Z date_updated: 2022-01-31T07:10:07Z day: '01' doi: 10.1038/s41567-019-0729-8 extern: '1' external_id: arxiv: - '1904.11485' intvolume: ' 16' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1904.11485 month: '02' oa: 1 oa_version: Preprint page: 154-158 publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Skyrmion solids in monolayer graphene type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 16 year: '2020' ... --- _id: '6976' abstract: - lang: eng text: Origami is rapidly transforming the design of robots1,2, deployable structures3,4,5,6 and metamaterials7,8,9,10,11,12,13,14. However, as foldability requires a large number of complex compatibility conditions that are difficult to satisfy, the design of crease patterns is limited to heuristics and computer optimization. Here we introduce a systematic strategy that enables intuitive and effective design of complex crease patterns that are guaranteed to fold. First, we exploit symmetries to construct 140 distinct foldable motifs, and represent these as jigsaw puzzle pieces. We then show that when these pieces are fitted together they encode foldable crease patterns. This maps origami design to solving combinatorial problems, which allows us to systematically create, count and classify a vast number of crease patterns. We show that all of these crease patterns are pluripotent—capable of folding into multiple shapes—and solve exactly for the number of possible shapes for each pattern. Finally, we employ our framework to rationally design a crease pattern that folds into two independently defined target shapes, and fabricate such pluripotent origami. Our results provide physicists, mathematicians and engineers with a powerful new design strategy. article_processing_charge: No article_type: letter_note author: - first_name: Peter full_name: Dieleman, Peter last_name: Dieleman - first_name: Niek full_name: Vasmel, Niek last_name: Vasmel - first_name: Scott R full_name: Waitukaitis, Scott R id: 3A1FFC16-F248-11E8-B48F-1D18A9856A87 last_name: Waitukaitis orcid: 0000-0002-2299-3176 - first_name: Martin full_name: van Hecke, Martin last_name: van Hecke citation: ama: Dieleman P, Vasmel N, Waitukaitis SR, van Hecke M. Jigsaw puzzle design of pluripotent origami. Nature Physics. 2020;16(1):63–68. doi:10.1038/s41567-019-0677-3 apa: Dieleman, P., Vasmel, N., Waitukaitis, S. R., & van Hecke, M. (2020). Jigsaw puzzle design of pluripotent origami. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-019-0677-3 chicago: Dieleman, Peter, Niek Vasmel, Scott R Waitukaitis, and Martin van Hecke. “Jigsaw Puzzle Design of Pluripotent Origami.” Nature Physics. Springer Nature, 2020. https://doi.org/10.1038/s41567-019-0677-3. ieee: P. Dieleman, N. Vasmel, S. R. Waitukaitis, and M. van Hecke, “Jigsaw puzzle design of pluripotent origami,” Nature Physics, vol. 16, no. 1. Springer Nature, pp. 63–68, 2020. ista: Dieleman P, Vasmel N, Waitukaitis SR, van Hecke M. 2020. Jigsaw puzzle design of pluripotent origami. Nature Physics. 16(1), 63–68. mla: Dieleman, Peter, et al. “Jigsaw Puzzle Design of Pluripotent Origami.” Nature Physics, vol. 16, no. 1, Springer Nature, 2020, pp. 63–68, doi:10.1038/s41567-019-0677-3. short: P. Dieleman, N. Vasmel, S.R. Waitukaitis, M. van Hecke, Nature Physics 16 (2020) 63–68. date_created: 2019-10-31T07:51:44Z date_published: 2020-01-01T00:00:00Z date_updated: 2021-01-12T08:11:16Z day: '01' doi: 10.1038/s41567-019-0677-3 extern: '1' intvolume: ' 16' issue: '1' language: - iso: eng month: '01' oa_version: None page: 63–68 publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Jigsaw puzzle design of pluripotent origami type: journal_article user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 16 year: '2020' ... --- _id: '13999' abstract: - lang: eng text: Attosecond chronoscopy has revealed small but measurable delays in photoionization, characterized by the ejection of an electron on absorption of a single photon. Ionization-delay measurements in atomic targets provide a wealth of information about the timing of the photoelectric effect, resonances, electron correlations and transport. However, extending this approach to molecules presents challenges, such as identifying the correct ionization channels and the effect of the anisotropic molecular landscape on the measured delays. Here, we measure ionization delays from ethyl iodide around a giant dipole resonance. By using the theoretical value for the iodine atom as a reference, we disentangle the contribution from the functional ethyl group, which is responsible for the characteristic chemical reactivity of a molecule. We find a substantial additional delay caused by the presence of a functional group, which encodes the effect of the molecular potential on the departing electron. Such information is inaccessible to the conventional approach of measuring photoionization cross-sections. The results establish ionization-delay measurements as a valuable tool in investigating the electronic properties of molecules. article_processing_charge: No article_type: original author: - first_name: Shubhadeep full_name: Biswas, Shubhadeep last_name: Biswas - first_name: Benjamin full_name: Förg, Benjamin last_name: Förg - first_name: Lisa full_name: Ortmann, Lisa last_name: Ortmann - first_name: Johannes full_name: Schötz, Johannes last_name: Schötz - first_name: Wolfgang full_name: Schweinberger, Wolfgang last_name: Schweinberger - first_name: Tomáš full_name: Zimmermann, Tomáš last_name: Zimmermann - first_name: Liangwen full_name: Pi, Liangwen last_name: Pi - first_name: Denitsa Rangelova full_name: Baykusheva, Denitsa Rangelova id: 71b4d059-2a03-11ee-914d-dfa3beed6530 last_name: Baykusheva - first_name: Hafiz A. full_name: Masood, Hafiz A. last_name: Masood - first_name: Ioannis full_name: Liontos, Ioannis last_name: Liontos - first_name: Amgad M. full_name: Kamal, Amgad M. last_name: Kamal - first_name: Nora G. full_name: Kling, Nora G. last_name: Kling - first_name: Abdullah F. full_name: Alharbi, Abdullah F. last_name: Alharbi - first_name: Meshaal full_name: Alharbi, Meshaal last_name: Alharbi - first_name: Abdallah M. full_name: Azzeer, Abdallah M. last_name: Azzeer - first_name: Gregor full_name: Hartmann, Gregor last_name: Hartmann - first_name: Hans J. full_name: Wörner, Hans J. last_name: Wörner - first_name: Alexandra S. full_name: Landsman, Alexandra S. last_name: Landsman - first_name: Matthias F. full_name: Kling, Matthias F. last_name: Kling citation: ama: Biswas S, Förg B, Ortmann L, et al. Probing molecular environment through photoemission delays. Nature Physics. 2020;16(7):778-783. doi:10.1038/s41567-020-0887-8 apa: Biswas, S., Förg, B., Ortmann, L., Schötz, J., Schweinberger, W., Zimmermann, T., … Kling, M. F. (2020). Probing molecular environment through photoemission delays. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-020-0887-8 chicago: Biswas, Shubhadeep, Benjamin Förg, Lisa Ortmann, Johannes Schötz, Wolfgang Schweinberger, Tomáš Zimmermann, Liangwen Pi, et al. “Probing Molecular Environment through Photoemission Delays.” Nature Physics. Springer Nature, 2020. https://doi.org/10.1038/s41567-020-0887-8. ieee: S. Biswas et al., “Probing molecular environment through photoemission delays,” Nature Physics, vol. 16, no. 7. Springer Nature, pp. 778–783, 2020. ista: Biswas S, Förg B, Ortmann L, Schötz J, Schweinberger W, Zimmermann T, Pi L, Baykusheva DR, Masood HA, Liontos I, Kamal AM, Kling NG, Alharbi AF, Alharbi M, Azzeer AM, Hartmann G, Wörner HJ, Landsman AS, Kling MF. 2020. Probing molecular environment through photoemission delays. Nature Physics. 16(7), 778–783. mla: Biswas, Shubhadeep, et al. “Probing Molecular Environment through Photoemission Delays.” Nature Physics, vol. 16, no. 7, Springer Nature, 2020, pp. 778–83, doi:10.1038/s41567-020-0887-8. short: S. Biswas, B. Förg, L. Ortmann, J. Schötz, W. Schweinberger, T. Zimmermann, L. Pi, D.R. Baykusheva, H.A. Masood, I. Liontos, A.M. Kamal, N.G. Kling, A.F. Alharbi, M. Alharbi, A.M. Azzeer, G. Hartmann, H.J. Wörner, A.S. Landsman, M.F. Kling, Nature Physics 16 (2020) 778–783. date_created: 2023-08-09T13:10:07Z date_published: 2020-07-01T00:00:00Z date_updated: 2023-08-22T07:38:04Z day: '01' doi: 10.1038/s41567-020-0887-8 extern: '1' intvolume: ' 16' issue: '7' keyword: - General Physics and Astronomy language: - iso: eng month: '07' oa_version: None page: 778-783 publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Probing molecular environment through photoemission delays type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2020' ... --- _id: '10621' abstract: - lang: eng text: Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ ≈ 1.1°, the low-energy electronic structure of twisted bilayer graphene features isolated bands with a flat dispersion1,2. Recent experiments have observed a variety of low-temperature phases that appear to be driven by electron interactions, including insulating states, superconductivity and magnetism3,4,5,6. Here we report electrical transport measurements up to room temperature for twist angles varying between 0.75° and 2°. We find that the resistivity, ρ, scales linearly with temperature, T, over a wide range of T before falling again owing to interband activation. The T-linear response is much larger than observed in monolayer graphene for all measured devices, and in particular increases by more than three orders of magnitude in the range where the flat band exists. Our results point to the dominant role of electron–phonon scattering in twisted bilayer graphene, with possible implications for the origin of the observed superconductivity. acknowledgement: The authors thank S. Das Sarma and F. Wu for sharing their unpublished theoretical results, and acknowledge further discussions with L. Balents and T. Senthil. Work at both Columbia and UCSB was funded by the Army Research Office under award W911NF-17-1-0323. Sample device design and fabrication was partially supported by DoE Pro-QM EFRC (DE-SC0019443). A.F.Y. and C.R.D. separately acknowledge the support of the David and Lucile Packard Foundation. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and the CREST (JPMJCR15F3), JST. A portion of this work was carried out at the KITP, Santa Barbara, supported by the National Science Foundation under grant number NSF PHY-1748958. article_processing_charge: No article_type: original author: - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Matthew full_name: Yankowitz, Matthew last_name: Yankowitz - first_name: Shaowen full_name: Chen, Shaowen last_name: Chen - first_name: Yuxuan full_name: Zhang, Yuxuan last_name: Zhang - first_name: K. full_name: Watanabe, K. last_name: Watanabe - first_name: T. full_name: Taniguchi, T. last_name: Taniguchi - first_name: Cory R. full_name: Dean, Cory R. last_name: Dean - first_name: Andrea F. full_name: Young, Andrea F. last_name: Young citation: ama: Polshyn H, Yankowitz M, Chen S, et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nature Physics. 2019;15(10):1011-1016. doi:10.1038/s41567-019-0596-3 apa: Polshyn, H., Yankowitz, M., Chen, S., Zhang, Y., Watanabe, K., Taniguchi, T., … Young, A. F. (2019). Large linear-in-temperature resistivity in twisted bilayer graphene. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-019-0596-3 chicago: Polshyn, Hryhoriy, Matthew Yankowitz, Shaowen Chen, Yuxuan Zhang, K. Watanabe, T. Taniguchi, Cory R. Dean, and Andrea F. Young. “Large Linear-in-Temperature Resistivity in Twisted Bilayer Graphene.” Nature Physics. Springer Nature, 2019. https://doi.org/10.1038/s41567-019-0596-3. ieee: H. Polshyn et al., “Large linear-in-temperature resistivity in twisted bilayer graphene,” Nature Physics, vol. 15, no. 10. Springer Nature, pp. 1011–1016, 2019. ista: Polshyn H, Yankowitz M, Chen S, Zhang Y, Watanabe K, Taniguchi T, Dean CR, Young AF. 2019. Large linear-in-temperature resistivity in twisted bilayer graphene. Nature Physics. 15(10), 1011–1016. mla: Polshyn, Hryhoriy, et al. “Large Linear-in-Temperature Resistivity in Twisted Bilayer Graphene.” Nature Physics, vol. 15, no. 10, Springer Nature, 2019, pp. 1011–16, doi:10.1038/s41567-019-0596-3. short: H. Polshyn, M. Yankowitz, S. Chen, Y. Zhang, K. Watanabe, T. Taniguchi, C.R. Dean, A.F. Young, Nature Physics 15 (2019) 1011–1016. date_created: 2022-01-13T15:00:58Z date_published: 2019-08-05T00:00:00Z date_updated: 2022-01-20T09:33:38Z day: '05' doi: 10.1038/s41567-019-0596-3 extern: '1' external_id: arxiv: - '1902.00763' intvolume: ' 15' issue: '10' keyword: - general physics and astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1902.00763 month: '08' oa: 1 oa_version: Preprint page: 1011-1016 publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Large linear-in-temperature resistivity in twisted bilayer graphene type: journal_article user_id: ea97e931-d5af-11eb-85d4-e6957dddbf17 volume: 15 year: '2019' ... --- _id: '10620' abstract: - lang: eng text: Partially filled Landau levels host competing electronic orders. For example, electron solids may prevail close to integer filling of the Landau levels before giving way to fractional quantum Hall liquids at higher carrier density1,2. Here, we report the observation of an electron solid with non-collinear spin texture in monolayer graphene, consistent with solidification of skyrmions3—topological spin textures characterized by quantized electrical charge4,5. We probe the spin texture of the solids using a modified Corbino geometry that allows ferromagnetic magnons to be launched and detected6,7. We find that magnon transport is highly efficient when one Landau level is filled (ν=1), consistent with quantum Hall ferromagnetic spin polarization. However, even minimal doping immediately quenches the magnon signal while leaving the vanishing low-temperature charge conductivity unchanged. Our results can be understood by the formation of a solid of charged skyrmions near ν=1, whose non-collinear spin texture leads to rapid magnon decay. Data near fractional fillings show evidence of several fractional skyrmion solids, suggesting that graphene hosts a highly tunable landscape of coupled spin and charge orders. acknowledgement: We acknowledge discussions with B. Halperin, C. Huang, A. Macdonald and M. Zalatel. Experimental work at UCSB was supported by the Army Research Office under awards nos. MURI W911NF-16-1-0361 and W911NF-16-1-0482. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT (Japan) and CREST (JPMJCR15F3), JST. A.F.Y. acknowledges the support of the David and Lucile Packard Foundation and and Alfred. P. Sloan Foundation. article_processing_charge: No article_type: original author: - first_name: H. full_name: Zhou, H. last_name: Zhou - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: T. full_name: Taniguchi, T. last_name: Taniguchi - first_name: K. full_name: Watanabe, K. last_name: Watanabe - first_name: A. F. full_name: Young, A. F. last_name: Young citation: ama: Zhou H, Polshyn H, Taniguchi T, Watanabe K, Young AF. Solids of quantum Hall skyrmions in graphene. Nature Physics. 2019;16(2):154-158. doi:10.1038/s41567-019-0729-8 apa: Zhou, H., Polshyn, H., Taniguchi, T., Watanabe, K., & Young, A. F. (2019). Solids of quantum Hall skyrmions in graphene. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-019-0729-8 chicago: Zhou, H., Hryhoriy Polshyn, T. Taniguchi, K. Watanabe, and A. F. Young. “Solids of Quantum Hall Skyrmions in Graphene.” Nature Physics. Springer Nature, 2019. https://doi.org/10.1038/s41567-019-0729-8. ieee: H. Zhou, H. Polshyn, T. Taniguchi, K. Watanabe, and A. F. Young, “Solids of quantum Hall skyrmions in graphene,” Nature Physics, vol. 16, no. 2. Springer Nature, pp. 154–158, 2019. ista: Zhou H, Polshyn H, Taniguchi T, Watanabe K, Young AF. 2019. Solids of quantum Hall skyrmions in graphene. Nature Physics. 16(2), 154–158. mla: Zhou, H., et al. “Solids of Quantum Hall Skyrmions in Graphene.” Nature Physics, vol. 16, no. 2, Springer Nature, 2019, pp. 154–58, doi:10.1038/s41567-019-0729-8. short: H. Zhou, H. Polshyn, T. Taniguchi, K. Watanabe, A.F. Young, Nature Physics 16 (2019) 154–158. date_created: 2022-01-13T14:45:16Z date_published: 2019-12-16T00:00:00Z date_updated: 2022-01-13T15:34:44Z day: '16' doi: 10.1038/s41567-019-0729-8 extern: '1' intvolume: ' 16' issue: '2' keyword: - General Physics and Astronomy language: - iso: eng month: '12' oa_version: None page: 154-158 publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Solids of quantum Hall skyrmions in graphene type: journal_article user_id: ea97e931-d5af-11eb-85d4-e6957dddbf17 volume: 16 year: '2019' ... --- _id: '6368' abstract: - lang: eng text: An optical network of superconducting quantum bits (qubits) is an appealing platform for quantum communication and distributed quantum computing, but developing a quantum-compatible link between the microwave and optical domains remains an outstanding challenge. Operating at T < 100 mK temperatures, as required for quantum electrical circuits, we demonstrate a mechanically mediated microwave–optical converter with 47% conversion efficiency, and use a classical feed-forward protocol to reduce added noise to 38 photons. The feed-forward protocol harnesses our discovery that noise emitted from the two converter output ports is strongly correlated because both outputs record thermal motion of the same mechanical mode. We also discuss a quantum feed-forward protocol that, given high system efficiencies, would allow quantum information to be transferred even when thermal phonons enter the mechanical element faster than the electro-optic conversion rate. author: - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 - first_name: P. S. full_name: Burns, P. S. last_name: Burns - first_name: M. D. full_name: Urmey, M. D. last_name: Urmey - first_name: R. W. full_name: Peterson, R. W. last_name: Peterson - first_name: N. S. full_name: Kampel, N. S. last_name: Kampel - first_name: B. M. full_name: Brubaker, B. M. last_name: Brubaker - first_name: G. full_name: Smith, G. last_name: Smith - first_name: K. W. full_name: Lehnert, K. W. last_name: Lehnert - first_name: C. A. full_name: Regal, C. A. last_name: Regal citation: ama: Higginbotham AP, Burns PS, Urmey MD, et al. Harnessing electro-optic correlations in an efficient mechanical converter. Nature Physics. 2018;14(10):1038-1042. doi:10.1038/s41567-018-0210-0 apa: Higginbotham, A. P., Burns, P. S., Urmey, M. D., Peterson, R. W., Kampel, N. S., Brubaker, B. M., … Regal, C. A. (2018). Harnessing electro-optic correlations in an efficient mechanical converter. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-018-0210-0 chicago: Higginbotham, Andrew P, P. S. Burns, M. D. Urmey, R. W. Peterson, N. S. Kampel, B. M. Brubaker, G. Smith, K. W. Lehnert, and C. A. Regal. “Harnessing Electro-Optic Correlations in an Efficient Mechanical Converter.” Nature Physics. Springer Nature, 2018. https://doi.org/10.1038/s41567-018-0210-0. ieee: A. P. Higginbotham et al., “Harnessing electro-optic correlations in an efficient mechanical converter,” Nature Physics, vol. 14, no. 10. Springer Nature, pp. 1038–1042, 2018. ista: Higginbotham AP, Burns PS, Urmey MD, Peterson RW, Kampel NS, Brubaker BM, Smith G, Lehnert KW, Regal CA. 2018. Harnessing electro-optic correlations in an efficient mechanical converter. Nature Physics. 14(10), 1038–1042. mla: Higginbotham, Andrew P., et al. “Harnessing Electro-Optic Correlations in an Efficient Mechanical Converter.” Nature Physics, vol. 14, no. 10, Springer Nature, 2018, pp. 1038–42, doi:10.1038/s41567-018-0210-0. short: A.P. Higginbotham, P.S. Burns, M.D. Urmey, R.W. Peterson, N.S. Kampel, B.M. Brubaker, G. Smith, K.W. Lehnert, C.A. Regal, Nature Physics 14 (2018) 1038–1042. date_created: 2019-05-03T09:17:20Z date_published: 2018-10-01T00:00:00Z date_updated: 2021-01-12T08:07:15Z day: '01' doi: 10.1038/s41567-018-0210-0 extern: '1' external_id: arxiv: - '1712.06535' intvolume: ' 14' issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1712.06535 month: '10' oa: 1 oa_version: Preprint page: 1038-1042 publication: Nature Physics publication_identifier: issn: - 1745-2473 - 1745-2481 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Harnessing electro-optic correlations in an efficient mechanical converter type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2018' ... --- _id: '9062' abstract: - lang: eng text: 'Self-assembly is the autonomous organization of components into patterns or structures: an essential ingredient of biology and a desired route to complex organization1. At equilibrium, the structure is encoded through specific interactions2,3,4,5,6,7,8, at an unfavourable entropic cost for the system. An alternative approach, widely used by nature, uses energy input to bypass the entropy bottleneck and develop features otherwise impossible at equilibrium9. Dissipative building blocks that inject energy locally were made available by recent advances in colloidal science10,11 but have not been used to control self-assembly. Here we show the targeted formation of self-powered microgears from active particles and their autonomous synchronization into dynamical superstructures. We use a photoactive component that consumes fuel, haematite, to devise phototactic microswimmers that form self-spinning microgears following spatiotemporal light patterns. The gears are coupled via their chemical clouds by diffusiophoresis12 and constitute the elementary bricks of synchronized superstructures, which autonomously regulate their dynamics. The results are quantitatively rationalized on the basis of a stochastic description of diffusio-phoretic oscillators dynamically coupled by chemical gradients. Our findings harness non-equilibrium phoretic phenomena to program interactions and direct self-assembly with fidelity and specificity. It lays the groundwork for the autonomous construction of dynamical architectures and functional micro-machinery.' article_processing_charge: No article_type: original author: - first_name: Antoine full_name: Aubret, Antoine last_name: Aubret - first_name: Mena full_name: Youssef, Mena last_name: Youssef - first_name: Stefano full_name: Sacanna, Stefano last_name: Sacanna - first_name: Jérémie A full_name: Palacci, Jérémie A id: 8fb92548-2b22-11eb-b7c1-a3f0d08d7c7d last_name: Palacci orcid: 0000-0002-7253-9465 citation: ama: Aubret A, Youssef M, Sacanna S, Palacci JA. Targeted assembly and synchronization of self-spinning microgears. Nature Physics. 2018;14(11):1114-1118. doi:10.1038/s41567-018-0227-4 apa: Aubret, A., Youssef, M., Sacanna, S., & Palacci, J. A. (2018). Targeted assembly and synchronization of self-spinning microgears. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-018-0227-4 chicago: Aubret, Antoine, Mena Youssef, Stefano Sacanna, and Jérémie A Palacci. “Targeted Assembly and Synchronization of Self-Spinning Microgears.” Nature Physics. Springer Nature, 2018. https://doi.org/10.1038/s41567-018-0227-4. ieee: A. Aubret, M. Youssef, S. Sacanna, and J. A. Palacci, “Targeted assembly and synchronization of self-spinning microgears,” Nature Physics, vol. 14, no. 11. Springer Nature, pp. 1114–1118, 2018. ista: Aubret A, Youssef M, Sacanna S, Palacci JA. 2018. Targeted assembly and synchronization of self-spinning microgears. Nature Physics. 14(11), 1114–1118. mla: Aubret, Antoine, et al. “Targeted Assembly and Synchronization of Self-Spinning Microgears.” Nature Physics, vol. 14, no. 11, Springer Nature, 2018, pp. 1114–18, doi:10.1038/s41567-018-0227-4. short: A. Aubret, M. Youssef, S. Sacanna, J.A. Palacci, Nature Physics 14 (2018) 1114–1118. date_created: 2021-02-02T13:52:49Z date_published: 2018-11-01T00:00:00Z date_updated: 2023-02-23T13:48:02Z day: '01' doi: 10.1038/s41567-018-0227-4 extern: '1' external_id: arxiv: - '1810.01033' intvolume: ' 14' issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1810.01033 month: '11' oa: 1 oa_version: Preprint page: 1114-1118 publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Targeted assembly and synchronization of self-spinning microgears type: journal_article user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 14 year: '2018' ... --- _id: '10378' abstract: - lang: eng text: The ability of biological molecules to replicate themselves is the foundation of life, requiring a complex cellular machinery. However, a range of aberrant processes involve the self-replication of pathological protein structures without any additional assistance. One example is the autocatalytic generation of pathological protein aggregates, including amyloid fibrils, involved in neurodegenerative disorders. Here, we use computer simulations to identify the necessary requirements for the self-replication of fibrillar assemblies of proteins. We establish that a key physical determinant for this process is the affinity of proteins for the surfaces of fibrils. We find that self-replication can take place only in a very narrow regime of inter-protein interactions, implying a high level of sensitivity to system parameters and experimental conditions. We then compare our theoretical predictions with kinetic and biosensor measurements of fibrils formed from the Aβ peptide associated with Alzheimer’s disease. Our results show a quantitative connection between the kinetics of self-replication and the surface coverage of fibrils by monomeric proteins. These findings reveal the fundamental physical requirements for the formation of supra-molecular structures able to replicate themselves, and shed light on mechanisms in play in the proliferation of protein aggregates in nature. acknowledgement: We acknowledge support from the Human Frontier Science Program and Emmanuel College (A.Š.), the Leverhulme Trust and Magdalene College (A.K.B.), St John’s College (T.C.T.M.), the Biotechnology and Biological Sciences Research Council (T.P.J.K. and C.M.D.), the Frances and Augustus Newman Foundation (T.P.J.K.), the European Research Council (T.P.J.K., T.C.T.M., S.L. and D.F.), and the Engineering and Physical Sciences Research Council (D.F.). article_processing_charge: No article_type: original author: - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 - first_name: Alexander K. full_name: Buell, Alexander K. last_name: Buell - first_name: Georg full_name: Meisl, Georg last_name: Meisl - first_name: Thomas C. T. full_name: Michaels, Thomas C. T. last_name: Michaels - first_name: Christopher M. full_name: Dobson, Christopher M. last_name: Dobson - first_name: Sara full_name: Linse, Sara last_name: Linse - first_name: Tuomas P. J. full_name: Knowles, Tuomas P. J. last_name: Knowles - first_name: Daan full_name: Frenkel, Daan last_name: Frenkel citation: ama: Šarić A, Buell AK, Meisl G, et al. Physical determinants of the self-replication of protein fibrils. Nature Physics. 2016;12(9):874-880. doi:10.1038/nphys3828 apa: Šarić, A., Buell, A. K., Meisl, G., Michaels, T. C. T., Dobson, C. M., Linse, S., … Frenkel, D. (2016). Physical determinants of the self-replication of protein fibrils. Nature Physics. Springer Nature. https://doi.org/10.1038/nphys3828 chicago: Šarić, Anđela, Alexander K. Buell, Georg Meisl, Thomas C. T. Michaels, Christopher M. Dobson, Sara Linse, Tuomas P. J. Knowles, and Daan Frenkel. “Physical Determinants of the Self-Replication of Protein Fibrils.” Nature Physics. Springer Nature, 2016. https://doi.org/10.1038/nphys3828. ieee: A. Šarić et al., “Physical determinants of the self-replication of protein fibrils,” Nature Physics, vol. 12, no. 9. Springer Nature, pp. 874–880, 2016. ista: Šarić A, Buell AK, Meisl G, Michaels TCT, Dobson CM, Linse S, Knowles TPJ, Frenkel D. 2016. Physical determinants of the self-replication of protein fibrils. Nature Physics. 12(9), 874–880. mla: Šarić, Anđela, et al. “Physical Determinants of the Self-Replication of Protein Fibrils.” Nature Physics, vol. 12, no. 9, Springer Nature, 2016, pp. 874–80, doi:10.1038/nphys3828. short: A. Šarić, A.K. Buell, G. Meisl, T.C.T. Michaels, C.M. Dobson, S. Linse, T.P.J. Knowles, D. Frenkel, Nature Physics 12 (2016) 874–880. date_created: 2021-11-29T10:36:11Z date_published: 2016-07-18T00:00:00Z date_updated: 2021-11-29T11:07:25Z day: '18' doi: 10.1038/nphys3828 extern: '1' external_id: pmid: - '31031819' intvolume: ' 12' issue: '9' keyword: - general physics and astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://discovery.ucl.ac.uk/id/eprint/1517406/ month: '07' oa: 1 oa_version: Preprint page: 874-880 pmid: 1 publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Physical determinants of the self-replication of protein fibrils type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 12 year: '2016' ... --- _id: '7773' abstract: - lang: eng text: 'For more than a century, physicists have described real solids in terms of perturbations about perfect crystalline order1. Such an approach takes us only so far: a glass, another ubiquitous form of rigid matter, cannot be described in any meaningful sense as a defected crystal2. Is there an opposite extreme to a crystal—a solid with complete disorder—that forms an alternative starting point for understanding real materials? Here, we argue that the solid comprising particles with finite-ranged interactions at the jamming transition3,4,5 constitutes such a limit. It has been shown that the physics associated with this transition can be extended to interactions that are long ranged6. We demonstrate that jamming physics is not restricted to amorphous systems, but dominates the behaviour of solids with surprisingly high order. Just as the free-electron and tight-binding models represent two idealized cases from which to understand electronic structure1, we identify two extreme limits of mechanical behaviour. Thus, the physics of jamming can be set side by side with the physics of crystals to provide an organizing structure for understanding the mechanical properties of solids over the entire spectrum of disorder.' article_processing_charge: No article_type: original author: - first_name: Carl Peter full_name: Goodrich, Carl Peter id: EB352CD2-F68A-11E9-89C5-A432E6697425 last_name: Goodrich orcid: 0000-0002-1307-5074 - first_name: Andrea J. full_name: Liu, Andrea J. last_name: Liu - first_name: Sidney R. full_name: Nagel, Sidney R. last_name: Nagel citation: ama: Goodrich CP, Liu AJ, Nagel SR. Solids between the mechanical extremes of order and disorder. Nature Physics. 2014;10(8):578-581. doi:10.1038/nphys3006 apa: Goodrich, C. P., Liu, A. J., & Nagel, S. R. (2014). Solids between the mechanical extremes of order and disorder. Nature Physics. Springer Nature. https://doi.org/10.1038/nphys3006 chicago: Goodrich, Carl Peter, Andrea J. Liu, and Sidney R. Nagel. “Solids between the Mechanical Extremes of Order and Disorder.” Nature Physics. Springer Nature, 2014. https://doi.org/10.1038/nphys3006. ieee: C. P. Goodrich, A. J. Liu, and S. R. Nagel, “Solids between the mechanical extremes of order and disorder,” Nature Physics, vol. 10, no. 8. Springer Nature, pp. 578–581, 2014. ista: Goodrich CP, Liu AJ, Nagel SR. 2014. Solids between the mechanical extremes of order and disorder. Nature Physics. 10(8), 578–581. mla: Goodrich, Carl Peter, et al. “Solids between the Mechanical Extremes of Order and Disorder.” Nature Physics, vol. 10, no. 8, Springer Nature, 2014, pp. 578–81, doi:10.1038/nphys3006. short: C.P. Goodrich, A.J. Liu, S.R. Nagel, Nature Physics 10 (2014) 578–581. date_created: 2020-04-30T11:43:29Z date_published: 2014-07-06T00:00:00Z date_updated: 2021-01-12T08:15:26Z day: '06' doi: 10.1038/nphys3006 extern: '1' intvolume: ' 10' issue: '8' language: - iso: eng month: '07' oa_version: None page: 578-581 publication: Nature Physics publication_identifier: issn: - 1745-2473 - 1745-2481 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Solids between the mechanical extremes of order and disorder type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2014' ...