TY - CONF AB - Scaling blockchain protocols to perform on par with the expected needs of Web3.0 has been proven to be a challenging task with almost a decade of research. In the forefront of the current solution is the idea of separating the execution of the updates encoded in a block from the ordering of blocks. In order to achieve this, a new class of protocols called rollups has emerged. Rollups have as input a total ordering of valid and invalid transactions and as output a new valid state-transition. If we study rollups from a distributed computing perspective, we uncover that rollups take as input the output of a Byzantine Atomic Broadcast (BAB) protocol and convert it to a State Machine Replication (SMR) protocol. BAB and SMR, however, are considered equivalent as far as distributed computing is concerned and a solution to one can easily be retrofitted to solve the other simply by adding/removing an execution step before the validation of the input. This “easy” step of retrofitting an atomic broadcast solution to implement an SMR has, however, been overlooked in practice. In this paper, we formalize the problem and show that after BAB is solved, traditional impossibility results for consensus no longer apply towards an SMR. Leveraging this we propose a distributed execution protocol that allows reduced execution and storage cost per executor (O(log2n/n)) without relaxing the network assumptions of the underlying BAB protocol and providing censorship-resistance. Finally, we propose efficient non-interactive light client constructions that leverage our efficient execution protocols and do not require any synchrony assumptions or expensive ZK-proofs. AU - Stefo, Christos AU - Xiang, Zhuolun AU - Kokoris Kogias, Eleftherios ID - 14735 SN - 1611-3349 T2 - 27th International Conference on Financial Cryptography and Data Security TI - Executing and proving over dirty ledgers VL - 13950 ER - TY - CONF AB - We propose a new non-orthogonal basis to express the 3D Euclidean space in terms of a regular grid. Every grid point, each represented by integer 3-coordinates, corresponds to rhombic dodecahedron centroid. Rhombic dodecahedron is a space filling polyhedron which represents the close packing of spheres in 3D space and the Voronoi structures of the face centered cubic (FCC) lattice. In order to illustrate the interest of the new coordinate system, we propose the characterization of 3D digital plane with its topological features, such as the interrelation between the thickness of the digital plane and the separability constraint we aim to obtain. A characterization of a 3D digital sphere with relevant topological features is proposed as well with the help of a 48 symmetry that comes with the new coordinate system. AU - Biswas, Ranita AU - Largeteau-Skapin, Gaëlle AU - Zrour, Rita AU - Andres, Eric ID - 6163 SN - 0302-9743 T2 - 21st IAPR International Conference on Discrete Geometry for Computer Imagery TI - Rhombic dodecahedron grid—coordinate system and 3D digital object definitions VL - 11414 ER - TY - CHAP AB - Randomness is an essential part of any secure cryptosystem, but many constructions rely on distributions that are not uniform. This is particularly true for lattice based cryptosystems, which more often than not make use of discrete Gaussian distributions over the integers. For practical purposes it is crucial to evaluate the impact that approximation errors have on the security of a scheme to provide the best possible trade-off between security and performance. Recent years have seen surprising results allowing to use relatively low precision while maintaining high levels of security. A key insight in these results is that sampling a distribution with low relative error can provide very strong security guarantees. Since floating point numbers provide guarantees on the relative approximation error, they seem a suitable tool in this setting, but it is not obvious which sampling algorithms can actually profit from them. While previous works have shown that inversion sampling can be adapted to provide a low relative error (Pöppelmann et al., CHES 2014; Prest, ASIACRYPT 2017), other works have called into question if this is possible for other sampling techniques (Zheng et al., Eprint report 2018/309). In this work, we consider all sampling algorithms that are popular in the cryptographic setting and analyze the relationship of floating point precision and the resulting relative error. We show that all of the algorithms either natively achieve a low relative error or can be adapted to do so. AU - Walter, Michael ED - Buchmann, J ED - Nitaj, A ED - Rachidi, T ID - 6726 SN - 0302-9743 T2 - Progress in Cryptology – AFRICACRYPT 2019 TI - Sampling the integers with low relative error VL - 11627 ER - TY - CHAP AB - We illustrate the ingredients of the state-of-the-art of model-based approach for the formal design and verification of cyber-physical systems. To capture the interaction between a discrete controller and its continuously evolving environment, we use the formal models of timed and hybrid automata. We explain the steps of modeling and verification in the tools Uppaal and SpaceEx using a case study based on a dual-chamber implantable pacemaker monitoring a human heart. We show how to design a model as a composition of components, how to construct models at varying levels of detail, how to establish that one model is an abstraction of another, how to specify correctness requirements using temporal logic, and how to verify that a model satisfies a logical requirement. AU - Alur, Rajeev AU - Giacobbe, Mirco AU - Henzinger, Thomas A AU - Larsen, Kim G. AU - Mikučionis, Marius ED - Steffen, Bernhard ED - Woeginger, Gerhard ID - 7453 SN - 1611-3349 T2 - Computing and Software Science TI - Continuous-time models for system design and analysis VL - 10000 ER - TY - CONF AB - Sharding, or partitioning the system’s state so that different subsets of participants handle it, is a proven approach to building distributed systems whose total capacity scales horizontally with the number of participants. Many distributed ledgers have adopted this approach to increase their performance, however, they focus on the permissionless setting that assumes the existence of a strong adversary. In this paper, we deploy channels for permissioned blockchains. Our first contribution is to adapt sharding on asset-management applications for the permissioned setting, while preserving liveness and safety even on transactions spanning across-channels. Our second contribution is to leverage channels as a confidentiality boundary, enabling different organizations and consortia to preserve their privacy within their channels and still be part of a bigger collaborative ecosystem. To make our system concrete we map it on top of Hyperledger Fabric. AU - Androulaki, Elli AU - Cachin, Christian AU - De Caro, Angelo AU - Kokoris Kogias, Eleftherios ID - 8298 SN - 0302-9743 T2 - Computer Security TI - Channels: Horizontal scaling and confidentiality on permissioned blockchains VL - 11098 ER - TY - CONF AB - We consider the problems of maintaining approximate maximum matching and minimum vertex cover in a dynamic graph. Starting with the seminal work of Onak and Rubinfeld [STOC 2010], this problem has received significant attention in recent years. Very recently, extending the framework of Baswana, Gupta and Sen [FOCS 2011], Solomon [FOCS 2016] gave a randomized 2-approximation dynamic algorithm for this problem that has amortized update time of O(1) with high probability. We consider the natural open question of derandomizing this result. We present a new deterministic fully dynamic algorithm that maintains a O(1)-approximate minimum vertex cover and maximum fractional matching, with an amortized update time of O(1). Previously, the best deterministic algorithm for this problem was due to Bhattacharya, Henzinger and Italiano [SODA 2015]; it had an approximation ratio of (2+ϵ) and an amortized update time of O(logn/ϵ2). Our result can be generalized to give a fully dynamic O(f3)-approximation algorithm with O(f2) amortized update time for the hypergraph vertex cover and fractional matching problems, where every hyperedge has at most f vertices. AU - Bhattacharya, Sayan AU - Chakrabarty, Deeparnab AU - Henzinger, Monika H ID - 12571 SN - 0302-9743 T2 - 19th International Conference on Integer Programming and Combinatorial Optimization TI - Deterministic fully dynamic approximate vertex cover and fractional matching in O(1) amortized update time VL - 10328 ER - TY - CHAP AB - Different distance metrics produce Voronoi diagrams with different properties. It is a well-known that on the (real) 2D plane or even on any 3D plane, a Voronoi diagram (VD) based on the Euclidean distance metric produces convex Voronoi regions. In this paper, we first show that this metric produces a persistent VD on the 2D digital plane, as it comprises digitally convex Voronoi regions and hence correctly approximates the corresponding VD on the 2D real plane. Next, we show that on a 3D digital plane D, the Euclidean metric spanning over its voxel set does not guarantee a digital VD which is persistent with the real-space VD. As a solution, we introduce a novel concept of functional-plane-convexity, which is ensured by the Euclidean metric spanning over the pedal set of D. Necessary proofs and some visual result have been provided to adjudge the merit and usefulness of the proposed concept. AU - Biswas, Ranita AU - Bhowmick, Partha ID - 5803 SN - 0302-9743 T2 - Combinatorial image analysis TI - Construction of persistent Voronoi diagram on 3D digital plane VL - 10256 ER - TY - CONF AB - Although the concept of functional plane for naive plane is studied and reported in the literature in great detail, no similar study is yet found for naive sphere. This article exposes the first study in this line, opening up further prospects of analyzing the topological properties of sphere in the discrete space. We show that each quadraginta octant Q of a naive sphere forms a bijection with its projected pixel set on a unique coordinate plane, which thereby serves as the functional plane of Q, and hence gives rise to merely mono-jumps during back projection. The other two coordinate planes serve as para-functional and dia-functional planes for Q, as the former is ‘mono-jumping’ but not bijective, whereas the latter holds neither of the two. Owing to this, the quadraginta octants form symmetry groups and subgroups with equivalent jump conditions. We also show a potential application in generating a special class of discrete 3D circles based on back projection and jump bridging by Steiner voxels. A circle in this class possesses 4-symmetry, uniqueness, and bounded distance from the underlying real sphere and real plane. AU - Biswas, Ranita AU - Bhowmick, Partha ID - 5806 SN - 0302-9743 T2 - Discrete Geometry for Computer Imagery TI - On functionality of quadraginta octants of naive sphere with application to circle drawing VL - 9647 ER - TY - CONF AB - A discrete spherical geodesic path between two voxels s and t lying on a discrete sphere is a/the 1-connected shortest path from s to t, comprising voxels of the discrete sphere intersected by the real plane passing through s, t, and the center of the sphere. We show that the set of sphere voxels intersected by the aforesaid real plane always contains a 1-connected cycle passing through s and t, and each voxel in this set lies within an isothetic distance of 32 from the concerned plane. Hence, to compute the path, the algorithm starts from s, and iteratively computes each voxel p of the path from the predecessor of p. A novel number-theoretic property and the 48-symmetry of discrete sphere are used for searching the 1-connected voxels comprising the path. The algorithm is output-sensitive, having its time and space complexities both linear in the length of the path. It can be extended for constructing 1-connected discrete 3D circles of arbitrary orientations, specified by a few appropriate input parameters. Experimental results and related analysis demonstrate its efficiency and versatility. AU - Biswas, Ranita AU - Bhowmick, Partha ID - 5810 SN - 0302-9743 TI - On Finding Spherical Geodesic Paths and Circles in ℤ3 VL - 8668 ER - TY - CONF AB - We study the problem of maintaining a breadth-first spanning tree (BFS tree) in partially dynamic distributed networks modeling a sequence of either failures or additions of communication links (but not both). We show (1 + ε)-approximation algorithms whose amortized time (over some number of link changes) is sublinear in D, the maximum diameter of the network. This breaks the Θ(D) time bound of recomputing “from scratch”. Our technique also leads to a (1 + ε)-approximate incremental algorithm for single-source shortest paths (SSSP) in the sequential (usual RAM) model. Prior to our work, the state of the art was the classic exact algorithm of [9] that is optimal under some assumptions [27]. Our result is the first to show that, in the incremental setting, this bound can be beaten in certain cases if a small approximation is allowed. AU - Henzinger, Monika H AU - Krinninger, Sebastian AU - Nanongkai, Danupon ID - 11793 SN - 1611-3349 T2 - 40th International Colloquium on Automata, Languages, and Programming TI - Sublinear-time maintenance of breadth-first spanning tree in partially dynamic networks VL - 7966 ER - TY - CONF AB - The focus of classic mechanism design has been on truthful direct-revelation mechanisms. In the context of combinatorial auctions the truthful direct-revelation mechanism that maximizes social welfare is the VCG mechanism. For many valuation spaces computing the allocation and payments of the VCG mechanism, however, is a computationally hard problem. We thus study the performance of the VCG mechanism when bidders are forced to choose bids from a subspace of the valuation space for which the VCG outcome can be computed efficiently. We prove improved upper bounds on the welfare loss for restrictions to additive bids and upper and lower bounds for restrictions to non-additive bids. These bounds show that the welfare loss increases in expressiveness. All our bounds apply to equilibrium concepts that can be computed in polynomial time as well as to learning outcomes. AU - Dütting, Paul AU - Henzinger, Monika H AU - Starnberger, Martin ID - 11791 SN - 1611-3349 T2 - 9th International Conference on Web and Internet Economics TI - Valuation compressions in VCG-based combinatorial auctions VL - 8289 ER - TY - CONF AB - We study the problem of maximizing a monotone submodular function with viability constraints. This problem originates from computational biology, where we are given a phylogenetic tree over a set of species and a directed graph, the so-called food web, encoding viability constraints between these species. These food webs usually have constant depth. The goal is to select a subset of k species that satisfies the viability constraints and has maximal phylogenetic diversity. As this problem is known to be NP-hard, we investigate approximation algorithm. We present the first constant factor approximation algorithm if the depth is constant. Its approximation ratio is (1−1𝑒√). This algorithm not only applies to phylogenetic trees with viability constraints but for arbitrary monotone submodular set functions with viability constraints. Second, we show that there is no (1 − 1/e + ε)-approximation algorithm for our problem setting (even for additive functions) and that there is no approximation algorithm for a slight extension of this setting. AU - Dvořák, Wolfgang AU - Henzinger, Monika H AU - Williamson, David P. ID - 11792 SN - 1611-3349 T2 - 21st Annual European Symposium on Algorithms TI - Maximizing a submodular function with viability constraints VL - 8125 ER - TY - CONF AB - We study individual rational, Pareto optimal, and incentive compatible mechanisms for auctions with heterogeneous items and budget limits. For multi-dimensional valuations we show that there can be no deterministic mechanism with these properties for divisible items. We use this to show that there can also be no randomized mechanism that achieves this for either divisible or indivisible items. For single-dimensional valuations we show that there can be no deterministic mechanism with these properties for indivisible items, but that there is a randomized mechanism that achieves this for either divisible or indivisible items. The impossibility results hold for public budgets, while the mechanism allows private budgets, which is in both cases the harder variant to show. While all positive results are polynomial-time algorithms, all negative results hold independent of complexity considerations. AU - Dütting, Paul AU - Henzinger, Monika H AU - Starnberger, Martin ID - 11794 SN - 1611-3349 T2 - 8th International Workshop on Internet and Network Economics TI - Auctions with heterogeneous items and budget limits VL - 7695 ER - TY - CONF AB - Multi-dimensional mean-payoff and energy games provide the mathematical foundation for the quantitative study of reactive systems, and play a central role in the emerging quantitative theory of verification and synthesis. In this work, we study the strategy synthesis problem for games with such multi-dimensional objectives along with a parity condition, a canonical way to express ω-regular conditions. While in general, the winning strategies in such games may require infinite memory, for synthesis the most relevant problem is the construction of a finite-memory winning strategy (if one exists). Our main contributions are as follows. First, we show a tight exponential bound (matching upper and lower bounds) on the memory required for finite-memory winning strategies in both multi-dimensional mean-payoff and energy games along with parity objectives. This significantly improves the triple exponential upper bound for multi energy games (without parity) that could be derived from results in literature for games on VASS (vector addition systems with states). Second, we present an optimal symbolic and incremental algorithm to compute a finite-memory winning strategy (if one exists) in such games. Finally, we give a complete characterization of when finite memory of strategies can be traded off for randomness. In particular, we show that for one-dimension mean-payoff parity games, randomized memoryless strategies are as powerful as their pure finite-memory counterparts. AU - Chatterjee, Krishnendu AU - Randour, Mickael AU - Raskin, Jean-François ED - Koutny, Maciej ED - Ulidowski, Irek ID - 10904 SN - 0302-9743 T2 - CONCUR 2012 - Concurrency Theory TI - Strategy synthesis for multi-dimensional quantitative objectives VL - 7454 ER - TY - CONF AB - The design of truthful auctions that approximate the optimal expected revenue is a central problem in algorithmic mechanism design. 30 years after Myerson’s characterization of Bayesian optimal auctions in single-parameter domains [8], characterizing but also providing efficient mechanisms for multi-parameter domains still remains a very important unsolved problem. Our work improves upon recent results in this area, introducing new techniques for tackling the problem, while also combining and extending recently introduced tools. In particular we give the first approximation algorithms for Bayesian auctions with multiple heterogeneous items when bidders have additive valuations, budget constraints and general matroid feasibility constraints. AU - Henzinger, Monika H AU - Vidali, Angelina ID - 11796 SN - 1611-3349 T2 - 19th Annual European Symposium on Algorithms TI - Multi-parameter mechanism design under budget and matroid constraints VL - 6942 ER - TY - CONF AB - Inspired by online ad allocation, we study online stochastic packing integer programs from theoretical and practical standpoints. We first present a near-optimal online algorithm for a general class of packing integer programs which model various online resource allocation problems including online variants of routing, ad allocations, generalized assignment, and combinatorial auctions. As our main theoretical result, we prove that a simple dual training-based algorithm achieves a (1 − o(1))-approximation guarantee in the random order stochastic model. This is a significant improvement over logarithmic or constant-factor approximations for the adversarial variants of the same problems (e.g. factor 1−1𝑒 for online ad allocation, and log(m) for online routing). We then focus on the online display ad allocation problem and study the efficiency and fairness of various training-based and online allocation algorithms on data sets collected from real-life display ad allocation system. Our experimental evaluation confirms the effectiveness of training-based algorithms on real data sets, and also indicates an intrinsic trade-off between fairness and efficiency. AU - Feldman, Jon AU - Henzinger, Monika H AU - Korula, Nitish AU - Mirrokni, Vahab S. AU - Stein, Cliff ID - 11797 SN - 1611-3349 T2 - 18th Annual European Symposium on Algorithms TI - Online stochastic packing applied to display ad allocation VL - 6346 ER - TY - CONF AB - Starting with two models fifty years ago, the discrete marriage game [1] and the continuous assignment game [2], the study of stable matchings has evolved into a rich theory with applications in many areas. Most notably, it has lead to a number of truthful mechanisms that have seen a recent rejuvenation in the context of sponsored search. In this paper we survey the history of these problems and provide several links to ongoing research in the field. AU - Dütting, Paul AU - Henzinger, Monika H ID - 11798 SN - 1611-3349 T2 - 7th International Conference on Algorithms and Complexity TI - Mechanisms for the marriage and the assignment game VL - 6078 ER - TY - CHAP AU - Juhás, Gabriel AU - Kazlov, Igor AU - Juhásová, Ana ID - 5940 SN - 0302-9743 T2 - Applications and Theory of Petri Nets TI - Instance Deadlock: A Mystery behind Frozen Programs ER - TY - CONF AB - We study the problem of matching bidders to items where each bidder i has general, strictly monotonic utility functions u i,j (p j ) expressing her utility of being matched to item j at price p j . For this setting we prove that a bidder optimal outcome always exists, even when the utility functions are non-linear and non-continuous. Furthermore, we give an algorithm to find such a solution. Although the running time of this algorithm is exponential in the number of items, it is polynomial in the number of bidders. AU - Dütting, Paul AU - Henzinger, Monika H AU - Weber, Ingmar ID - 11799 SN - 1611-3349 T2 - 5th International Workshop on Internet and Network Economics TI - Bidder optimal assignments for general utilities VL - 5929 ER -