@article{12830, abstract = {Interstitial fluid (IF) accumulation between embryonic cells is thought to be important for embryo patterning and morphogenesis. Here, we identify a positive mechanical feedback loop between cell migration and IF relocalization and find that it promotes embryonic axis formation during zebrafish gastrulation. We show that anterior axial mesendoderm (prechordal plate [ppl]) cells, moving in between the yolk cell and deep cell tissue to extend the embryonic axis, compress the overlying deep cell layer, thereby causing IF to flow from the deep cell layer to the boundary between the yolk cell and the deep cell layer, directly ahead of the advancing ppl. This IF relocalization, in turn, facilitates ppl cell protrusion formation and migration by opening up the space into which the ppl moves and, thereby, the ability of the ppl to trigger IF relocalization by pushing against the overlying deep cell layer. Thus, embryonic axis formation relies on a hydraulic feedback loop between cell migration and IF relocalization.}, author = {Huljev, Karla and Shamipour, Shayan and Nunes Pinheiro, Diana C and Preusser, Friedrich and Steccari, Irene and Sommer, Christoph M and Naik, Suyash and Heisenberg, Carl-Philipp J}, issn = {1878-1551}, journal = {Developmental Cell}, number = {7}, pages = {582--596.e7}, publisher = {Elsevier}, title = {{A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish}}, doi = {10.1016/j.devcel.2023.02.016}, volume = {58}, year = {2023}, } @article{14039, abstract = {Membranes are essential for life. They act as semi-permeable boundaries that define cells and organelles. In addition, their surfaces actively participate in biochemical reaction networks, where they confine proteins, align reaction partners, and directly control enzymatic activities. Membrane-localized reactions shape cellular membranes, define the identity of organelles, compartmentalize biochemical processes, and can even be the source of signaling gradients that originate at the plasma membrane and reach into the cytoplasm and nucleus. The membrane surface is, therefore, an essential platform upon which myriad cellular processes are scaffolded. In this review, we summarize our current understanding of the biophysics and biochemistry of membrane-localized reactions with particular focus on insights derived from reconstituted and cellular systems. We discuss how the interplay of cellular factors results in their self-organization, condensation, assembly, and activity, and the emergent properties derived from them.}, author = {Leonard, Thomas A. and Loose, Martin and Martens, Sascha}, issn = {1878-1551}, journal = {Developmental Cell}, number = {15}, pages = {1315--1332}, publisher = {Elsevier}, title = {{The membrane surface as a platform that organizes cellular and biochemical processes}}, doi = {10.1016/j.devcel.2023.06.001}, volume = {58}, year = {2023}, } @article{14781, abstract = {Germ granules, condensates of phase-separated RNA and protein, are organelles that are essential for germline development in different organisms. The patterning of the granules and their relevance for germ cell fate are not fully understood. Combining three-dimensional in vivo structural and functional analyses, we study the dynamic spatial organization of molecules within zebrafish germ granules. We find that the localization of RNA molecules to the periphery of the granules, where ribosomes are localized, depends on translational activity at this location. In addition, we find that the vertebrate-specific Dead end (Dnd1) protein is essential for nanos3 RNA localization at the condensates’ periphery. Accordingly, in the absence of Dnd1, or when translation is inhibited, nanos3 RNA translocates into the granule interior, away from the ribosomes, a process that is correlated with the loss of germ cell fate. These findings highlight the relevance of sub-granule compartmentalization for post-transcriptional control and its importance for preserving germ cell totipotency.}, author = {Westerich, Kim Joana and Tarbashevich, Katsiaryna and Schick, Jan and Gupta, Antra and Zhu, Mingzhao and Hull, Kenneth and Romo, Daniel and Zeuschner, Dagmar and Goudarzi, Mohammad and Gross-Thebing, Theresa and Raz, Erez}, issn = {1534-5807}, journal = {Developmental Cell}, keywords = {Developmental Biology, Cell Biology, General Biochemistry, Genetics and Molecular Biology, Molecular Biology}, number = {17}, pages = {1578--1592.e5}, publisher = {Elsevier}, title = {{Spatial organization and function of RNA molecules within phase-separated condensates in zebrafish are controlled by Dnd1}}, doi = {10.1016/j.devcel.2023.06.009}, volume = {58}, year = {2023}, } @article{10714, abstract = {Ribosomal defects perturb stem cell differentiation, causing diseases called ribosomopathies. How ribosome levels control stem cell differentiation is not fully known. Here, we discovered three RNA helicases are required for ribosome biogenesis and for Drosophila oogenesis. Loss of these helicases, which we named Aramis, Athos and Porthos, lead to aberrant stabilization of p53, cell cycle arrest and stalled GSC differentiation. Unexpectedly, Aramis is required for efficient translation of a cohort of mRNAs containing a 5’-Terminal-Oligo-Pyrimidine (TOP)-motif, including mRNAs that encode ribosomal proteins and a conserved p53 inhibitor, Novel Nucleolar protein 1 (Non1). The TOP-motif co-regulates the translation of growth-related mRNAs in mammals. As in mammals, the La-related protein co-regulates the translation of TOP-motif containing RNAs during Drosophila oogenesis. Thus, a previously unappreciated TOP-motif in Drosophila responds to reduced ribosome biogenesis to co-regulate the translation of ribosomal proteins and a p53 repressor, thus coupling ribosome biogenesis to GSC differentiation.}, author = {Martin, Elliot T. and Blatt, Patrick and Ngyuen, Elaine and Lahr, Roni and Selvam, Sangeetha and Yoon, Hyun Ah M. and Pocchiari, Tyler and Emtenani, Shamsi and Siekhaus, Daria E and Berman, Andrea and Fuchs, Gabriele and Rangan, Prashanth}, issn = {1878-1551}, journal = {Developmental Cell}, number = {7}, pages = {883--900.e10}, publisher = {Elsevier}, title = {{A translation control module coordinates germline stem cell differentiation with ribosome biogenesis during Drosophila oogenesis}}, doi = {10.1016/j.devcel.2022.03.005}, volume = {57}, year = {2022}, } @article{12238, abstract = {Upon the initiation of collective cell migration, the cells at the free edge are specified as leader cells; however, the mechanism underlying the leader cell specification remains elusive. Here, we show that lamellipodial extension after the release from mechanical confinement causes sustained extracellular signal-regulated kinase (ERK) activation and underlies the leader cell specification. Live-imaging of Madin-Darby canine kidney (MDCK) cells and mouse epidermis through the use of Förster resonance energy transfer (FRET)-based biosensors showed that leader cells exhibit sustained ERK activation in a hepatocyte growth factor (HGF)-dependent manner. Meanwhile, follower cells exhibit oscillatory ERK activation waves in an epidermal growth factor (EGF) signaling-dependent manner. Lamellipodial extension at the free edge increases the cellular sensitivity to HGF. The HGF-dependent ERK activation, in turn, promotes lamellipodial extension, thereby forming a positive feedback loop between cell extension and ERK activation and specifying the cells at the free edge as the leader cells. Our findings show that the integration of physical and biochemical cues underlies the leader cell specification during collective cell migration.}, author = {Hino, Naoya and Matsuda, Kimiya and Jikko, Yuya and Maryu, Gembu and Sakai, Katsuya and Imamura, Ryu and Tsukiji, Shinya and Aoki, Kazuhiro and Terai, Kenta and Hirashima, Tsuyoshi and Trepat, Xavier and Matsuda, Michiyuki}, issn = {1534-5807}, journal = {Developmental Cell}, keywords = {Developmental Biology, Cell Biology, General Biochemistry, Genetics and Molecular Biology, Molecular Biology}, number = {19}, pages = {2290--2304.e7}, publisher = {Elsevier}, title = {{A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration}}, doi = {10.1016/j.devcel.2022.09.003}, volume = {57}, year = {2022}, } @article{12120, abstract = {Plant root architecture flexibly adapts to changing nitrate (NO3−) availability in the soil; however, the underlying molecular mechanism of this adaptive development remains under-studied. To explore the regulation of NO3−-mediated root growth, we screened for low-nitrate-resistant mutant (lonr) and identified mutants that were defective in the NAC transcription factor NAC075 (lonr1) as being less sensitive to low NO3− in terms of primary root growth. We show that NAC075 is a mobile transcription factor relocating from the root stele tissues to the endodermis based on NO3− availability. Under low-NO3− availability, the kinase CBL-interacting protein kinase 1 (CIPK1) is activated, and it phosphorylates NAC075, restricting its movement from the stele, which leads to the transcriptional regulation of downstream target WRKY53, consequently leading to adapted root architecture. Our work thus identifies an adaptive mechanism involving translocation of transcription factor based on nutrient availability and leading to cell-specific reprogramming of plant root growth.}, author = {Xiao, Huixin and Hu, Yumei and Wang, Yaping and Cheng, Jinkui and Wang, Jinyi and Chen, Guojingwei and Li, Qian and Wang, Shuwei and Wang, Yalu and Wang, Shao-Shuai and Wang, Yi and Xuan, Wei and Li, Zhen and Guo, Yan and Gong, Zhizhong and Friml, Jiří and Zhang, Jing}, issn = {1534-5807}, journal = {Developmental Cell}, keywords = {Developmental Biology, Cell Biology, General Biochemistry, Genetics and Molecular Biology, Molecular Biology}, number = {23}, pages = {2638--2651.e6}, publisher = {Elsevier}, title = {{Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth}}, doi = {10.1016/j.devcel.2022.11.006}, volume = {57}, year = {2022}, } @article{10703, abstract = {When crawling through the body, leukocytes often traverse tissues that are densely packed with extracellular matrix and other cells, and this raises the question: How do leukocytes overcome compressive mechanical loads? Here, we show that the actin cortex of leukocytes is mechanoresponsive and that this responsiveness requires neither force sensing via the nucleus nor adhesive interactions with a substrate. Upon global compression of the cell body as well as local indentation of the plasma membrane, Wiskott-Aldrich syndrome protein (WASp) assembles into dot-like structures, providing activation platforms for Arp2/3 nucleated actin patches. These patches locally push against the external load, which can be obstructing collagen fibers or other cells, and thereby create space to facilitate forward locomotion. We show in vitro and in vivo that this WASp function is rate limiting for ameboid leukocyte migration in dense but not in loose environments and is required for trafficking through diverse tissues such as skin and lymph nodes.}, author = {Gaertner, Florian and Reis-Rodrigues, Patricia and De Vries, Ingrid and Hons, Miroslav and Aguilera, Juan and Riedl, Michael and Leithner, Alexander F and Tasciyan, Saren and Kopf, Aglaja and Merrin, Jack and Zheden, Vanessa and Kaufmann, Walter and Hauschild, Robert and Sixt, Michael K}, issn = {1878-1551}, journal = {Developmental Cell}, number = {1}, pages = {47--62.e9}, publisher = {Cell Press ; Elsevier}, title = {{WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues}}, doi = {10.1016/j.devcel.2021.11.024}, volume = {57}, year = {2022}, } @article{11052, abstract = {In order to combat molecular damage, most cellular proteins undergo rapid turnover. We have previously identified large nuclear protein assemblies that can persist for years in post-mitotic tissues and are subject to age-related decline. Here, we report that mitochondria can be long lived in the mouse brain and reveal that specific mitochondrial proteins have half-lives longer than the average proteome. These mitochondrial long-lived proteins (mitoLLPs) are core components of the electron transport chain (ETC) and display increased longevity in respiratory supercomplexes. We find that COX7C, a mitoLLP that forms a stable contact site between complexes I and IV, is required for complex IV and supercomplex assembly. Remarkably, even upon depletion of COX7C transcripts, ETC function is maintained for days, effectively uncoupling mitochondrial function from ongoing transcription of its mitoLLPs. Our results suggest that modulating protein longevity within the ETC is critical for mitochondrial proteome maintenance and the robustness of mitochondrial function.}, author = {Krishna, Shefali and Arrojo e Drigo, Rafael and Capitanio, Juliana S. and Ramachandra, Ranjan and Ellisman, Mark and HETZER, Martin W}, issn = {1534-5807}, journal = {Developmental Cell}, keywords = {Developmental Biology, Cell Biology, General Biochemistry, Genetics and Molecular Biology, Molecular Biology}, number = {21}, pages = {P2952--2965.e9}, publisher = {Elsevier}, title = {{Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain}}, doi = {10.1016/j.devcel.2021.10.008}, volume = {56}, year = {2021}, } @article{11968, abstract = {Membrane phospholipids typically contain fatty acids (FAs) of 16 and 18 carbon atoms. This particular chain length is evolutionarily highly conserved and presumably provides maximum stability and dynamic properties to biological membranes in response to nutritional or environmental cues. Here, we show that the relative proportion of C16 versus C18 FAs is regulated by the activity of acetyl-CoA carboxylase (Acc1), the first and rate-limiting enzyme of FA de novo synthesis. Acc1 activity is attenuated by AMPK/Snf1-dependent phosphorylation, which is required to maintain an appropriate acyl-chain length distribution. Moreover, we find that the transcriptional repressor Opi1 preferentially binds to C16 over C18 phosphatidic acid (PA) species: thus, C16-chain containing PA sequesters Opi1 more effectively to the ER, enabling AMPK/Snf1 control of PA acyl-chain length to determine the degree of derepression of Opi1 target genes. These findings reveal an unexpected regulatory link between the major energy-sensing kinase, membrane lipid composition, and transcription.}, author = {Hofbauer, Harald F. and Schopf, Florian H. and Schleifer, Hannes and Knittelfelder, Oskar L. and Pieber, Bartholomäus and Rechberger, Gerald N. and Wolinski, Heimo and Gaspar, Maria L. and Kappe, C. Oliver and Stadlmann, Johannes and Mechtler, Karl and Zenz, Alexandra and Lohner, Karl and Tehlivets, Oksana and Henry, Susan A. and Kohlwein, Sepp D.}, issn = {1878-1551}, journal = {Developmental Cell}, number = {6}, pages = {P729--739}, publisher = {Elsevier}, title = {{Regulation of gene expression through a transcriptional repressor that senses acyl-chain length in membrane phospholipids}}, doi = {10.1016/j.devcel.2014.04.025}, volume = {29}, year = {2014}, } @article{9520, abstract = {Plants undergo alternation of generation in which reproductive cells develop in the plant body ("sporophytic generation") and then differentiate into a multicellular gamete-forming "gametophytic generation." Different populations of helper cells assist in this transgenerational journey, with somatic tissues supporting early development and single nurse cells supporting gametogenesis. New data reveal a two-way relationship between early reproductive cells and their helpers involving complex epigenetic and signaling networks determining cell number and fate. Later, the egg cell plays a central role in specifying accessory cells, whereas in both gametophytes, companion cells contribute non-cell-autonomously to the epigenetic landscape of the gamete genomes.}, author = {Feng, Xiaoqi and Zilberman, Daniel and Dickinson, Hugh}, issn = {1878-1551}, journal = {Developmental Cell}, number = {3}, pages = {215--225}, publisher = {Elsevier}, title = {{A conversation across generations: Soma-germ cell crosstalk in plants}}, doi = {10.1016/j.devcel.2013.01.014}, volume = {24}, year = {2013}, } @article{11093, abstract = {Nuclear pore complexes (NPCs) are built from ∼30 different proteins called nucleoporins or Nups. Previous studies have shown that several Nups exhibit cell-type-specific expression and that mutations in NPC components result in tissue-specific diseases. Here we show that a specific change in NPC composition is required for both myogenic and neuronal differentiation. The transmembrane nucleoporin Nup210 is absent in proliferating myoblasts and embryonic stem cells (ESCs) but becomes expressed and incorporated into NPCs during cell differentiation. Preventing Nup210 production by RNAi blocks myogenesis and the differentiation of ESCs into neuroprogenitors. We found that the addition of Nup210 to NPCs does not affect nuclear transport but is required for the induction of genes that are essential for cell differentiation. Our results identify a single change in NPC composition as an essential step in cell differentiation and establish a role for Nup210 in gene expression regulation and cell fate determination.}, author = {D'Angelo, Maximiliano A. and Gomez-Cavazos, J. Sebastian and Mei, Arianna and Lackner, Daniel H. and HETZER, Martin W}, issn = {1534-5807}, journal = {Developmental Cell}, keywords = {Developmental Biology, Cell Biology, General Biochemistry, Genetics and Molecular Biology, Molecular Biology}, number = {2}, pages = {446--458}, publisher = {Elsevier}, title = {{A change in nuclear pore complex composition regulates cell differentiation}}, doi = {10.1016/j.devcel.2011.11.021}, volume = {22}, year = {2012}, } @misc{9522, abstract = {Little is known about chromatin remodeling events immediately after fertilization. A recent report by Autran et al. (2011) in Cell now shows that chromatin regulatory pathways that silence transposable elements are responsible for global delayed activation of gene expression in the early Arabidopsis embryo.}, author = {Zilberman, Daniel}, booktitle = {Developmental Cell}, issn = {1878-1551}, number = {6}, pages = {735--736}, publisher = {Elsevier}, title = {{Balancing parental contributions in plant embryonic gene activation}}, doi = {10.1016/j.devcel.2011.05.018}, volume = {20}, year = {2011}, } @article{11103, abstract = {Over the last decade, the nuclear envelope (NE) has emerged as a key component in the organization and function of the nuclear genome. As many as 100 different proteins are thought to specifically localize to this double membrane that separates the cytoplasm and the nucleoplasm of eukaryotic cells. Selective portals through the NE are formed at sites where the inner and outer nuclear membranes are fused, and the coincident assembly of ∼30 proteins into nuclear pore complexes occurs. These nuclear pore complexes are essential for the control of nucleocytoplasmic exchange. Many of the NE and nuclear pore proteins are thought to play crucial roles in gene regulation and thus are increasingly linked to human diseases.}, author = {HETZER, Martin W and Wente, Susan R.}, issn = {1534-5807}, journal = {Developmental Cell}, keywords = {Developmental Biology, Cell Biology, General Biochemistry, Genetics and Molecular Biology, Molecular Biology}, number = {5}, pages = {606--616}, publisher = {Elsevier}, title = {{Border control at the nucleus: Biogenesis and organization of the nuclear membrane and pore complexes}}, doi = {10.1016/j.devcel.2009.10.007}, volume = {17}, year = {2009}, } @article{4168, abstract = {Recent studies show that signaling through integrin receptors is required for normal cell movements during Xenopus gastrulation. Integrins function in this process by modulating the activity of cadherin adhesion molecules within tissues undergoing convergence and extension movements.}, author = {Montero, Juan and Heisenberg, Carl-Philipp J}, issn = {1878-1551}, journal = {Developmental Cell}, number = {2}, pages = {190 -- 191}, publisher = {Cell Press}, title = {{Adhesive crosstalk in gastrulation}}, doi = {10.1016/S1534-5807(03)00235-1}, volume = {5}, year = {2003}, }