@article{9629, abstract = {Intestinal organoids derived from single cells undergo complex crypt–villus patterning and morphogenesis. However, the nature and coordination of the underlying forces remains poorly characterized. Here, using light-sheet microscopy and large-scale imaging quantification, we demonstrate that crypt formation coincides with a stark reduction in lumen volume. We develop a 3D biophysical model to computationally screen different mechanical scenarios of crypt morphogenesis. Combining this with live-imaging data and multiple mechanical perturbations, we show that actomyosin-driven crypt apical contraction and villus basal tension work synergistically with lumen volume reduction to drive crypt morphogenesis, and demonstrate the existence of a critical point in differential tensions above which crypt morphology becomes robust to volume changes. Finally, we identified a sodium/glucose cotransporter that is specific to differentiated enterocytes that modulates lumen volume reduction through cell swelling in the villus region. Together, our study uncovers the cellular basis of how cell fate modulates osmotic and actomyosin forces to coordinate robust morphogenesis.}, author = {Yang, Qiutan and Xue, Shi-lei and Chan, Chii Jou and Rempfler, Markus and Vischi, Dario and Maurer-Gutierrez, Francisca and Hiiragi, Takashi and Hannezo, Edouard B and Liberali, Prisca}, issn = {1476-4679}, journal = {Nature Cell Biology}, pages = {733–744}, publisher = {Springer Nature}, title = {{Cell fate coordinates mechano-osmotic forces in intestinal crypt formation}}, doi = {10.1038/s41556-021-00700-2}, volume = {23}, year = {2021}, } @article{7476, abstract = {The sebaceous gland (SG) is an essential component of the skin, and SG dysfunction is debilitating1,2. Yet, the cellular bases for its origin, development and subsequent maintenance remain poorly understood. Here, we apply large-scale quantitative fate mapping to define the patterns of cell fate behaviour during SG development and maintenance. We show that the SG develops from a defined number of lineage-restricted progenitors that undergo a programme of independent and stochastic cell fate decisions. Following an expansion phase, equipotent progenitors transition into a phase of homeostatic turnover, which is correlated with changes in the mechanical properties of the stroma and spatial restrictions on gland size. Expression of the oncogene KrasG12D results in a release from these constraints and unbridled gland expansion. Quantitative clonal fate analysis reveals that, during this phase, the primary effect of the Kras oncogene is to drive a constant fate bias with little effect on cell division rates. These findings provide insight into the developmental programme of the SG, as well as the mechanisms that drive tumour progression and gland dysfunction.}, author = {Andersen, Marianne Stemann and Hannezo, Edouard B and Ulyanchenko, Svetlana and Estrach, Soline and Antoku, Yasuko and Pisano, Sabrina and Boonekamp, Kim E. and Sendrup, Sarah and Maimets, Martti and Pedersen, Marianne Terndrup and Johansen, Jens V. and Clement, Ditte L. and Feral, Chloe C. and Simons, Benjamin D. and Jensen, Kim B.}, issn = {1465-7392}, journal = {Nature Cell Biology}, number = {8}, pages = {924--932}, publisher = {Springer Nature}, title = {{Tracing the cellular dynamics of sebaceous gland development in normal and perturbed states}}, doi = {10.1038/s41556-019-0362-x}, volume = {21}, year = {2019}, } @article{7105, abstract = {Cell migration is hypothesized to involve a cycle of behaviours beginning with leading edge extension. However, recent evidence suggests that the leading edge may be dispensable for migration, raising the question of what actually controls cell directionality. Here, we exploit the embryonic migration of Drosophila macrophages to bridge the different temporal scales of the behaviours controlling motility. This approach reveals that edge fluctuations during random motility are not persistent and are weakly correlated with motion. In contrast, flow of the actin network behind the leading edge is highly persistent. Quantification of actin flow structure during migration reveals a stable organization and asymmetry in the cell-wide flowfield that strongly correlates with cell directionality. This organization is regulated by a gradient of actin network compression and destruction, which is controlled by myosin contraction and cofilin-mediated disassembly. It is this stable actin-flow polarity, which integrates rapid fluctuations of the leading edge, that controls inherent cellular persistence.}, author = {Yolland, Lawrence and Burki, Mubarik and Marcotti, Stefania and Luchici, Andrei and Kenny, Fiona N. and Davis, John Robert and Serna-Morales, Eduardo and Müller, Jan and Sixt, Michael K and Davidson, Andrew and Wood, Will and Schumacher, Linus J. and Endres, Robert G. and Miodownik, Mark and Stramer, Brian M.}, issn = {1476-4679}, journal = {Nature Cell Biology}, number = {11}, pages = {1370--1381}, publisher = {Springer Nature}, title = {{Persistent and polarized global actin flow is essential for directionality during cell migration}}, doi = {10.1038/s41556-019-0411-5}, volume = {21}, year = {2019}, } @article{11115, abstract = {The formation of the nuclear envelope (NE) around chromatin is a major membrane-remodelling event that occurs during cell division of metazoa. It is unclear whether the nuclear membrane reforms by the fusion of NE fragments or if it re-emerges from an intact tubular network of the endoplasmic reticulum (ER). Here, we show that NE formation and expansion requires a tubular ER network and occurs efficiently in the presence of the membrane fusion inhibitor GTPγS. Chromatin recruitment of membranes, which is initiated by tubule-end binding, followed by the formation, expansion and sealing of flat membrane sheets, is mediated by DNA-binding proteins residing in the ER. Thus, chromatin plays an active role in reshaping of the ER during NE formation.}, author = {Anderson, Daniel J. and HETZER, Martin W}, issn = {1476-4679}, journal = {Nature Cell Biology}, keywords = {Cell Biology}, number = {10}, pages = {1160--1166}, publisher = {Springer Nature}, title = {{Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum}}, doi = {10.1038/ncb1636}, volume = {9}, year = {2007}, } @article{11123, abstract = {The small GTPase Ran is a key regulator of nucleocytoplasmic transport during interphase. The asymmetric distribution of the GTP-bound form of Ran across the nuclear envelope — that is, large quantities in the nucleus compared with small quantities in the cytoplasm — determines the directionality of many nuclear transport processes. Recent findings that Ran also functions in spindle formation and nuclear envelope assembly during mitosis suggest that Ran has a general role in chromatin-centred processes. Ran functions in these events as a signal for chromosome position.}, author = {HETZER, Martin W and Gruss, Oliver J. and Mattaj, Iain W.}, issn = {1476-4679}, journal = {Nature Cell Biology}, keywords = {Cell Biology}, number = {7}, pages = {E177--E184}, publisher = {Springer Nature}, title = {{The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly}}, doi = {10.1038/ncb0702-e177}, volume = {4}, year = {2002}, } @article{11125, abstract = {Although nuclear envelope (NE) assembly is known to require the GTPase Ran, the membrane fusion machinery involved is uncharacterized. NE assembly involves formation of a reticular network on chromatin, fusion of this network into a closed NE and subsequent expansion. Here we show that p97, an AAA-ATPase previously implicated in fusion of Golgi and transitional endoplasmic reticulum (ER) membranes together with the adaptor p47, has two discrete functions in NE assembly. Formation of a closed NE requires the p97–Ufd1–Npl4 complex, not previously implicated in membrane fusion. Subsequent NE growth involves a p97–p47 complex. This study provides the first insights into the molecular mechanisms and specificity of fusion events involved in NE formation.}, author = {HETZER, Martin W and Meyer, Hemmo H. and Walther, Tobias C. and Bilbao-Cortes, Daniel and Warren, Graham and Mattaj, Iain W.}, issn = {1476-4679}, journal = {Nature Cell Biology}, keywords = {Cell Biology}, number = {12}, pages = {1086--1091}, publisher = {Springer Nature}, title = {{Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly}}, doi = {10.1038/ncb1201-1086}, volume = {3}, year = {2001}, }