@article{12922, abstract = {The influence of structural modifications on the catalytic activity of carbon materials is poorly understood. A collection of carbonaceous materials with different pore networks and high nitrogen content was characterized and used to catalyze four reactions to deduce structure–activity relationships. The CO2 cycloaddition and Knoevenagel reaction depend on Lewis basic sites (electron-rich nitrogen species). The absence of large conjugated carbon domains resulting from the introduction of large amounts of nitrogen in the carbon network is responsible for poor redox activity, as observed through the catalytic reduction of nitrobenzene with hydrazine and the catalytic oxidation of 3,3′,5,5′-tetramethylbenzidine using hydroperoxide. The material with the highest activity towards Lewis acid catalysis (in the hydrolysis of (dimethoxymethyl)benzene to benzaldehyde) is the most effective for small molecule activation and presents the highest concentration of electron-poor nitrogen species.}, author = {Lepre, Enrico and Rat, Sylvain and Cavedon, Cristian and Seeberger, Peter H. and Pieber, Bartholomäus and Antonietti, Markus and López‐Salas, Nieves}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, keywords = {General Chemistry, Catalysis}, number = {2}, publisher = {Wiley}, title = {{Catalytic properties of high nitrogen content carbonaceous materials}}, doi = {10.1002/anie.202211663}, volume = {62}, year = {2023}, } @misc{14861, abstract = {Cover Page}, author = {Becker, Lea Marie and Berbon, Mélanie and Vallet, Alicia and Grelard, Axelle and Morvan, Estelle and Bardiaux, Benjamin and Lichtenecker, Roman and Ernst, Matthias and Loquet, Antoine and Schanda, Paul}, booktitle = {Angewandte Chemie International Edition}, issn = {1521-3773}, keywords = {General Chemistry, Catalysis}, number = {19}, publisher = {Wiley}, title = {{Cover Picture: The rigid core and flexible surface of amyloid fibrils probed by Magic‐Angle‐Spinning NMR spectroscopy of aromatic residues}}, doi = {10.1002/anie.202304138}, volume = {62}, year = {2023}, } @article{14687, abstract = {The short history of research on Li-O2 batteries has seen a remarkable number of mechanistic U-turns over the years. From the initial use of carbonate electrolytes, that were then found to be entirely unsuitable, to the belief that (su)peroxide was solely responsible for degradation, before the more reactive singlet oxygen was found to form, to the hypothesis that capacity depends on a competing surface/solution mechanism before a practically exclusive solution mechanism was identified. Herein, we argue for an ever-fresh look at the reported data without bias towards supposedly established explanations. We explain how the latest findings on rate and capacity limits, as well as the origin of side reactions, are connected via the disproportionation (DISP) step in the (dis)charge mechanism. Therefrom, directions emerge for the design of electrolytes and mediators on how to suppress side reactions and to enable high rate and high reversible capacity.}, author = {Jethwa, Rajesh B and Mondal, Soumyadip and Pant, Bhargavi and Freunberger, Stefan Alexander}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, keywords = {General Chemistry, Catalysis}, publisher = {Wiley}, title = {{To DISP or not? The far‐reaching reaction mechanisms underpinning Lithium‐air batteries}}, doi = {10.1002/anie.202316476}, year = {2023}, } @article{12675, abstract = {Aromatic side chains are important reporters of the plasticity of proteins, and often form important contacts in protein--protein interactions. By studying a pair of structurally homologous cross-β amyloid fibrils, HET-s and HELLF, with a specific isotope-labeling approach and magic-angle-spinning (MAS) NMR, we have characterized the dynamic behavior of Phe and Tyr aromatic rings to show that the hydrophobic amyloid core is rigid, without any sign of "breathing motions" over hundreds of milliseconds at least. Aromatic residues exposed at the fibril surface have a rigid ring axis but undergo ring flips, on a variety of time scales from ns to µs. Our approach provides direct insight into hydrophobic-core motions, enabling a better evaluation of the conformational heterogeneity generated from a NMR structural ensemble of such amyloid cross-β architecture.}, author = {Becker, Lea Marie and Berbon, Mélanie and Vallet, Alicia and Grelard, Axelle and Morvan, Estelle and Bardiaux, Benjamin and Lichtenecker, Roman and Ernst, Matthias and Loquet, Antoine and Schanda, Paul}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, keywords = {General Chemistry, Catalysis}, number = {19}, publisher = {Wiley}, title = {{The rigid core and flexible surface of amyloid fibrils probed by Magic‐Angle Spinning NMR of aromatic residues}}, doi = {10.1002/anie.202219314}, volume = {62}, year = {2023}, } @article{11955, abstract = {Covalent organic frameworks (COFs) are structurally tuneable, porous and crystalline polymers constructed through the covalent attachment of small organic building blocks as elementary units. Using the myriad of such building blocks, a broad spectrum of functionalities has been applied for COF syntheses for broad applications, including heterogeneous catalysis. Herein, we report the synthesis of a new family of porous and crystalline COFs using a novel acridine linker and benzene-1,3,5-tricarbaldehyde derivatives bearing a variable number of hydroxy groups. With the broad absorption in the visible light region, the COFs were applied as photocatalysts in metallaphotocatalytic C−N cross-coupling. The fully β-ketoenamine linked COF showed the highest activity, due to the increased charge separation upon irradiation. The COF showed good to excellent yields for several aryl bromides, good recyclability and even catalyzed the organic transformation in presence of green light as energy source.}, author = {Traxler, Michael and Gisbertz, Sebastian and Pachfule, Pradip and Schmidt, Johannes and Roeser, Jérôme and Reischauer, Susanne and Rabeah, Jabor and Pieber, Bartholomäus and Thomas, Arne}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, number = {21}, publisher = {Wiley}, title = {{Acridine‐functionalized covalent organic frameworks (COFs) as photocatalysts for metallaphotocatalytic C−N cross‐coupling}}, doi = {10.1002/anie.202117738}, volume = {61}, year = {2022}, } @article{12924, abstract = {We demonstrate that several visible-light-mediated carbon−heteroatom cross-coupling reactions can be carried out using a photoactive NiII precatalyst that forms in situ from a nickel salt and a bipyridine ligand decorated with two carbazole groups (Ni(Czbpy)Cl2). The activation of this precatalyst towards cross-coupling reactions follows a hitherto undisclosed mechanism that is different from previously reported light-responsive nickel complexes that undergo metal-to-ligand charge transfer. Theoretical and spectroscopic investigations revealed that irradiation of Ni(Czbpy)Cl2 with visible light causes an initial intraligand charge transfer event that triggers productive catalysis. Ligand polymerization affords a porous, recyclable organic polymer for heterogeneous nickel catalysis of cross-coupling reactions. The heterogeneous catalyst shows stable performance in a packed-bed flow reactor during a week of continuous operation.}, author = {Cavedon, Cristian and Gisbertz, Sebastian and Reischauer, Susanne and Vogl, Sarah and Sperlich, Eric and Burke, John H. and Wallick, Rachel F. and Schrottke, Stefanie and Hsu, Wei‐Hsin and Anghileri, Lucia and Pfeifer, Yannik and Richter, Noah and Teutloff, Christian and Müller‐Werkmeister, Henrike and Cambié, Dario and Seeberger, Peter H. and Vura‐Weis, Josh and van der Veen, Renske M. and Thomas, Arne and Pieber, Bartholomäus}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, keywords = {General Chemistry, Catalysis}, number = {46}, publisher = {Wiley}, title = {{Intraligand charge transfer enables visible‐light‐mediated Nickel‐catalyzed cross-coupling reactions}}, doi = {10.1002/anie.202211433}, volume = {61}, year = {2022}, } @article{11451, abstract = {The precursor conversion chemistry and surface chemistry of Cu3N and Cu3PdN nanocrystals are unknown or contested. Here, we first obtain phase-pure, colloidally stable nanocubes. Second, we elucidate the pathway by which copper(II) nitrate and oleylamine form Cu3N. We find that oleylamine is both a reductant and a nitrogen source. Oleylamine is oxidized by nitrate to a primary aldimine, which reacts further with excess oleylamine to a secondary aldimine, eliminating ammonia. Ammonia reacts with CuI to form Cu3N. Third, we investigated the surface chemistry and find a mixed ligand shell of aliphatic amines and carboxylates (formed in situ). While the carboxylates appear tightly bound, the amines are easily desorbed from the surface. Finally, we show that doping with palladium decreases the band gap and the material becomes semi-metallic. These results bring insight into the chemistry of metal nitrides and might help the development of other metal nitride nanocrystals.}, author = {Parvizian, Mahsa and Duràn Balsa, Alejandra and Pokratath, Rohan and Kalha, Curran and Lee, Seungho and Van Den Eynden, Dietger and Ibáñez, Maria and Regoutz, Anna and De Roo, Jonathan}, issn = {1521-3773}, journal = {Angewandte Chemie - International Edition}, number = {31}, publisher = {Wiley}, title = {{The chemistry of Cu₃N and Cu₃PdN nanocrystals}}, doi = {10.1002/anie.202207013}, volume = {61}, year = {2022}, } @article{11705, abstract = {The broad implementation of thermoelectricity requires high-performance and low-cost materials. One possibility is employing surfactant-free solution synthesis to produce nanopowders. We propose the strategy of functionalizing “naked” particles’ surface by inorganic molecules to control the nanostructure and, consequently, thermoelectric performance. In particular, we use bismuth thiolates to functionalize surfactant-free SnTe particles’ surfaces. Upon thermal processing, bismuth thiolates decomposition renders SnTe-Bi2S3 nanocomposites with synergistic functions: 1) carrier concentration optimization by Bi doping; 2) Seebeck coefficient enhancement and bipolar effect suppression by energy filtering; and 3) lattice thermal conductivity reduction by small grain domains, grain boundaries and nanostructuration. Overall, the SnTe-Bi2S3 nanocomposites exhibit peak z T up to 1.3 at 873 K and an average z T of ≈0.6 at 300–873 K, which is among the highest reported for solution-processed SnTe.}, author = {Chang, Cheng and Liu, Yu and Lee, Seungho and Spadaro, Maria and Koskela, Kristopher M. and Kleinhanns, Tobias and Costanzo, Tommaso and Arbiol, Jordi and Brutchey, Richard L. and Ibáñez, Maria}, issn = {1521-3773}, journal = {Angewandte Chemie - International Edition}, number = {35}, publisher = {Wiley}, title = {{Surface functionalization of surfactant-free particles: A strategy to tailor the properties of nanocomposites for enhanced thermoelectric performance}}, doi = {10.1002/anie.202207002}, volume = {61}, year = {2022}, } @article{12228, abstract = {The question of how RNA, as the principal carrier of genetic information evolved is fundamentally important for our understanding of the origin of life. The RNA molecule is far too complex to have formed in one evolutionary step, suggesting that ancestral proto-RNAs (first ancestor of RNA) may have existed, which evolved over time into the RNA of today. Here we show that isoxazole nucleosides, which are quickly formed from hydroxylamine, cyanoacetylene, urea and ribose, are plausible precursors for RNA. The isoxazole nucleoside can rearrange within an RNA-strand to give cytidine, which leads to an increase of pairing stability. If the proto-RNA contains a canonical seed-nucleoside with defined stereochemistry, the seed-nucleoside can control the configuration of the anomeric center that forms during the in-RNA transformation. The results demonstrate that RNA could have emerged from evolutionarily primitive precursor isoxazole ribosides after strand formation.}, author = {Xu, Felix and Crisp, Antony and Schinkel, Thea and Dubini, Romeo C. A. and Hübner, Sarah and Becker, Sidney and Schelter, Florian and Rovo, Petra and Carell, Thomas}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, keywords = {General Chemistry, Catalysis}, number = {45}, publisher = {Wiley}, title = {{Isoxazole nucleosides as building blocks for a plausible proto‐RNA}}, doi = {10.1002/anie.202211945}, volume = {61}, year = {2022}, } @article{11956, abstract = {Controlling the selectivity of a chemical reaction with external stimuli is common in thermal processes, but rare in visible-light photocatalysis. Here we show that the redox potential of a carbon nitride photocatalyst (CN-OA-m) can be tuned by changing the irradiation wavelength to generate electron holes with different oxidation potentials. This tuning was the key to realizing photo-chemo-enzymatic cascades that give either the (S)- or the (R)-enantiomer of phenylethanol. In combination with an unspecific peroxygenase from Agrocybe aegerita, green light irradiation of CN-OA-m led to the enantioselective hydroxylation of ethylbenzene to (R)-1-phenylethanol (99 % ee). In contrast, blue light irradiation triggered the photocatalytic oxidation of ethylbenzene to acetophenone, which in turn was enantioselectively reduced with an alcohol dehydrogenase from Rhodococcus ruber to form (S)-1-phenylethanol (93 % ee).}, author = {Schmermund, Luca and Reischauer, Susanne and Bierbaumer, Sarah and Winkler, Christoph K. and Diaz‐Rodriguez, Alba and Edwards, Lee J. and Kara, Selin and Mielke, Tamara and Cartwright, Jared and Grogan, Gideon and Pieber, Bartholomäus and Kroutil, Wolfgang}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, number = {13}, pages = {6965--6969}, publisher = {Wiley}, title = {{Chromoselective photocatalysis enables stereocomplementary biocatalytic pathways}}, doi = {10.1002/anie.202100164}, volume = {60}, year = {2021}, } @article{13358, abstract = {DNA nanotechnology offers a versatile toolbox for precise spatial and temporal manipulation of matter on the nanoscale. However, rendering DNA-based systems responsive to light has remained challenging. Herein, we describe the remote manipulation of native (non-photoresponsive) chiral plasmonic molecules (CPMs) using light. Our strategy is based on the use of a photoresponsive medium comprising a merocyanine-based photoacid. Upon exposure to visible light, the medium decreases its pH, inducing the formation of DNA triplex links, leading to a spatial reconfiguration of the CPMs. The process can be reversed simply by turning the light off and it can be repeated for multiple cycles. The degree of the overall chirality change in an ensemble of CPMs depends on the CPM fraction undergoing reconfiguration, which, remarkably, depends on and can be tuned by the intensity of incident light. Such a dynamic, remotely controlled system could aid in further advancing DNA-based devices and nanomaterials.}, author = {Ryssy, Joonas and Natarajan, Ashwin K. and Wang, Jinhua and Lehtonen, Arttu J. and Nguyen, Minh‐Kha and Klajn, Rafal and Kuzyk, Anton}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, keywords = {General Chemistry, Catalysis}, number = {11}, pages = {5859--5863}, publisher = {Wiley}, title = {{Light‐responsive dynamic DNA‐origami‐based plasmonic assemblies}}, doi = {10.1002/anie.202014963}, volume = {60}, year = {2021}, } @article{7847, abstract = {Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities nearing 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Here, we reveal two distinct reduction potentials for the chemical environments of 'free' and 'bound' water and that both contribute to SEI formation. Free-water is reduced ~1V above bound water in a hydrogen evolution reaction (HER) and responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability. }, author = {Bouchal, Roza and Li, Zhujie and Bongu, Chandra and Le Vot, Steven and Berthelot, Romain and Rotenberg, Benjamin and Favier, Fréderic and Freunberger, Stefan Alexander and Salanne, Mathieu and Fontaine, Olivier}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, number = {37}, pages = {15913--1591}, publisher = {Wiley}, title = {{Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte}}, doi = {10.1002/anie.202005378}, volume = {59}, year = {2020}, } @article{8329, abstract = {We show the synthesis of a redox‐active quinone, 2‐methoxy‐1,4‐hydroquinone (MHQ), from a bio‐based feedstock and its suitability as electrolyte in aqueous redox flow batteries. We identified semiquinone intermediates at insufficiently low pH and quinoid radicals as responsible for decomposition of MHQ under electrochemical conditions. Both can be avoided and/or stabilized, respectively, using H 3 PO 4 electrolyte, allowing for reversible cycling in a redox flow battery for hundreds of cycles.}, author = {Schlemmer, Werner and Nothdurft, Philipp and Petzold, Alina and Frühwirt, Philipp and Schmallegger, Max and Gescheidt-Demner, Georg and Fischer, Roland and Freunberger, Stefan Alexander and Kern, Wolfgang and Spirk, Stefan}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, number = {51}, pages = {22943--22946}, publisher = {Wiley}, title = {{2‐methoxyhydroquinone from vanillin for aqueous redox‐flow batteries}}, doi = {10.1002/anie.202008253}, volume = {59}, year = {2020}, } @article{11957, abstract = {Cross-coupling reactions mediated by dual nickel/photocatalysis are synthetically attractive but rely mainly on expensive, non-recyclable noble-metal complexes as photocatalysts. Heterogeneous semiconductors, which are commonly used for artificial photosynthesis and wastewater treatment, are a sustainable alternative. Graphitic carbon nitrides, a class of metal-free polymers that can be easily prepared from bulk chemicals, are heterogeneous semiconductors with high potential for photocatalytic organic transformations. Here, we demonstrate that graphitic carbon nitrides in combination with nickel catalysis can induce selective C−O cross-couplings of carboxylic acids with aryl halides, yielding the respective aryl esters in excellent yield and selectivity. The heterogeneous organic photocatalyst exhibits a broad substrate scope, is able to harvest green light, and can be recycled multiple times. In situ FTIR was used to track the reaction progress to study this transformation at different irradiation wavelengths and reaction scales.}, author = {Pieber, Bartholomäus and Malik, Jamal A. and Cavedon, Cristian and Gisbertz, Sebastian and Savateev, Aleksandr and Cruz, Daniel and Heil, Tobias and Zhang, Guigang and Seeberger, Peter H.}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, number = {28}, pages = {9575--9580}, publisher = {Wiley}, title = {{Semi‐heterogeneous dual nickel/photocatalysis using carbon nitrides: Esterification of carboxylic acids with aryl halides}}, doi = {10.1002/anie.201902785}, volume = {58}, year = {2019}, } @article{7276, abstract = {Singlet oxygen (1O2) causes a major fraction of the parasitic chemistry during the cycling of non‐aqueous alkali metal‐O2 batteries and also contributes to interfacial reactivity of transition‐metal oxide intercalation compounds. We introduce DABCOnium, the mono alkylated form of 1,4‐diazabicyclo[2.2.2]octane (DABCO), as an efficient 1O2 quencher with an unusually high oxidative stability of ca. 4.2 V vs. Li/Li+. Previous quenchers are strongly Lewis basic amines with too low oxidative stability. DABCOnium is an ionic liquid, non‐volatile, highly soluble in the electrolyte, stable against superoxide and peroxide, and compatible with lithium metal. The electrochemical stability covers the required range for metal–O2 batteries and greatly reduces 1O2 related parasitic chemistry as demonstrated for the Li–O2 cell.}, author = {Petit, Yann K. and Leypold, Christian and Mahne, Nika and Mourad, Eléonore and Schafzahl, Lukas and Slugovc, Christian and Borisov, Sergey M. and Freunberger, Stefan Alexander}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {20}, pages = {6535--6539}, publisher = {Wiley}, title = {{DABCOnium: An efficient and high-voltage stable singlet oxygen quencher for metal-O2 cells}}, doi = {10.1002/anie.201901869}, volume = {58}, year = {2019}, } @article{11958, abstract = {Solid reagents, leaching catalysts, and heterogeneous photocatalysts are commonly employed in batch processes but are ill-suited for continuous-flow chemistry. Heterogeneous catalysts for thermal reactions are typically used in packed-bed reactors, which cannot be penetrated by light and thus are not suitable for photocatalytic reactions involving solids. We demonstrate that serial micro-batch reactors (SMBRs) allow for the continuous utilization of solid materials together with liquids and gases in flow. This technology was utilized to develop selective and efficient fluorination reactions using a modified graphitic carbon nitride heterogeneous catalyst instead of costly homogeneous metal polypyridyl complexes. The merger of this inexpensive, recyclable catalyst and the SMBR approach enables sustainable and scalable photocatalysis.}, author = {Pieber, Bartholomäus and Shalom, Menny and Antonietti, Markus and Seeberger, Peter H. and Gilmore, Kerry}, issn = { 1521-3773}, journal = {Angewandte Chemie International Edition}, number = {31}, pages = {9976--9979}, publisher = {Wiley}, title = {{Continuous heterogeneous photocatalysis in serial micro-batch reactors}}, doi = {10.1002/anie.201712568}, volume = {57}, year = {2018}, } @article{7277, abstract = {Solid alkali metal carbonates are universal passivation layer components of intercalation battery materials and common side products in metal‐O2 batteries, and are believed to form and decompose reversibly in metal‐O2/CO2 cells. In these cathodes, Li2CO3 decomposes to CO2 when exposed to potentials above 3.8 V vs. Li/Li+. However, O2 evolution, as would be expected according to the decomposition reaction 2 Li2CO3→4 Li++4 e−+2 CO2+O2, is not detected. O atoms are thus unaccounted for, which was previously ascribed to unidentified parasitic reactions. Here, we show that highly reactive singlet oxygen (1O2) forms upon oxidizing Li2CO3 in an aprotic electrolyte and therefore does not evolve as O2. These results have substantial implications for the long‐term cyclability of batteries: they underpin the importance of avoiding 1O2 in metal‐O2 batteries, question the possibility of a reversible metal‐O2/CO2 battery based on a carbonate discharge product, and help explain the interfacial reactivity of transition‐metal cathodes with residual Li2CO3.}, author = {Mahne, Nika and Renfrew, Sara E. and McCloskey, Bryan D. and Freunberger, Stefan Alexander}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {19}, pages = {5529--5533}, publisher = {Wiley}, title = {{Electrochemical oxidation of Lithium Carbonate generates singlet oxygen}}, doi = {10.1002/anie.201802277}, volume = {57}, year = {2018}, } @article{13377, abstract = {Confining organic molecules to the surfaces of inorganic nanoparticles can induce intermolecular interactions between them, which can affect the composition of the mixed self-assembled monolayers obtained by co-adsorption from solution of two different molecules. Two thiolated ligands (a dialkylviologen and a zwitterionic sulfobetaine) that can interact with each other electrostatically were coadsorbed onto gold nanoparticles. The nanoparticles favor a narrow range of ratios of these two molecules that is largely independent of the molar ratio in solution. Changing the solution molar ratio of the two ligands by a factor of 5 000 affects the on-nanoparticle ratio of these ligands by only threefold. This behavior is reminiscent of the formation of insoluble inorganic salts (such as AgCl), which similarly compensate positive and negative charges upon crystallizing. Our results pave the way towards developing well-defined hybrid organic–inorganic nanostructures.}, author = {Chu, Zonglin and Han, Yanxiao and Král, Petr and Klajn, Rafal}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, keywords = {General Chemistry, Catalysis}, number = {24}, pages = {7023--7027}, publisher = {Wiley}, title = {{“Precipitation on nanoparticles”: Attractive intermolecular interactions stabilize specific ligand ratios on the surfaces of nanoparticles}}, doi = {10.1002/anie.201800673}, volume = {57}, year = {2018}, } @article{5982, abstract = {In the present work, we detail a fast and simple solution-based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation-driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower-like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three-fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65.}, author = {Zhang, Yu and Liu, Yu and Lim, Khak Ho and Xing, Congcong and Li, Mengyao and Zhang, Ting and Tang, Pengyi and Arbiol, Jordi and Llorca, Jordi and Ng, Ka Ming and Ibáñez, Maria and Guardia, Pablo and Prato, Mirko and Cadavid, Doris and Cabot, Andreu}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {52}, pages = {17063--17068}, publisher = {Wiley}, title = {{Tin diselenide molecular precursor for solution-processable thermoelectric materials}}, doi = {10.1002/anie.201809847}, volume = {57}, year = {2018}, } @article{7289, abstract = {Aprotic sodium–O2 batteries require the reversible formation/dissolution of sodium superoxide (NaO2) on cycling. Poor cycle life has been associated with parasitic chemistry caused by the reactivity of electrolyte and electrode with NaO2, a strong nucleophile and base. Its reactivity can, however, not consistently explain the side reactions and irreversibility. Herein we show that singlet oxygen (1O2) forms at all stages of cycling and that it is a main driver for parasitic chemistry. It was detected in‐ and ex‐situ via a 1O2 trap that selectively and rapidly forms a stable adduct with 1O2. The 1O2 formation mechanism involves proton‐mediated superoxide disproportionation on discharge, rest, and charge below ca. 3.3 V, and direct electrochemical 1O2 evolution above ca. 3.3 V. Trace water, which is needed for high capacities also drives parasitic chemistry. Controlling the highly reactive singlet oxygen is thus crucial for achieving highly reversible cell operation.}, author = {Schafzahl, Lukas and Mahne, Nika and Schafzahl, Bettina and Wilkening, Martin and Slugovc, Christian and Borisov, Sergey M. and Freunberger, Stefan Alexander}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {49}, pages = {15728--15732}, publisher = {Wiley}, title = {{Singlet oxygen during cycling of the aprotic sodium-O2 battery}}, doi = {10.1002/anie.201709351}, volume = {56}, year = {2017}, } @article{8451, abstract = {The structure, dynamics, and function of membrane proteins are intimately linked to the properties of the membrane environment in which the proteins are embedded. For structural and biophysical characterization, membrane proteins generally need to be extracted from the membrane and reconstituted in a suitable membrane‐mimicking environment. Ensuring functional and structural integrity in these environments is often a major concern. The styrene/maleic acid co‐polymer has recently been shown to be able to extract lipid/membrane protein patches directly from native membranes to form nanosize discoidal proteolipid particles, also referred to as native nanodiscs. In this work, we show that high‐resolution solid‐state NMR spectra can be obtained from an integral membrane protein in native nanodiscs, as exemplified by the 2×34 kDa bacterial cation diffusion facilitator CzcD.}, author = {Bersch, Beate and Dörr, Jonas M. and Hessel, Audrey and Killian, J. Antoinette and Schanda, Paul}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {9}, pages = {2508--2512}, publisher = {Wiley}, title = {{Proton-detected solid-state NMR spectroscopy of a Zinc diffusion facilitator protein in native nanodiscs}}, doi = {10.1002/anie.201610441}, volume = {56}, year = {2017}, } @article{13393, abstract = {Precise control of the self-assembly of selected components within complex mixtures is a challenging goal whose realization is important for fabricating novel nanomaterials. Herein we show that by decorating the surfaces of metallic nanoparticles with differently substituted azobenzenes, it is possible to modulate the wavelength of light at which the self-assembly of these nanoparticles is induced. Exposing a mixture of two types of nanoparticles, each functionalized with a different azobenzene, to UV or blue light induces the selective self-assembly of only one type of nanoparticles. Irradiation with the other wavelength triggers the disassembly of the aggregates, and the simultaneous self-assembly of nanoparticles of the other type. By placing both types of azobenzenes on the same nanoparticles, we created unique materials (“frustrated” nanoparticles) whose self-assembly is induced irrespective of the wavelength of the incident light.}, author = {Manna, Debasish and Udayabhaskararao, Thumu and Zhao, Hui and Klajn, Rafal}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, keywords = {General Chemistry, Catalysis}, number = {42}, pages = {12394--12397}, publisher = {Wiley}, title = {{Orthogonal light-induced self-assembly of nanoparticles using differently substituted azobenzenes}}, doi = {10.1002/anie.201502419}, volume = {54}, year = {2015}, } @article{8460, abstract = {The function of proteins depends on their ability to sample a variety of states differing in structure and free energy. Deciphering how the various thermally accessible conformations are connected, and understanding their structures and relative energies is crucial in rationalizing protein function. Many biomolecular reactions take place within microseconds to milliseconds, and this timescale is therefore of central functional importance. Here we show that R1ρ relaxation dispersion experiments in magic‐angle‐spinning solid‐state NMR spectroscopy make it possible to investigate the thermodynamics and kinetics of such exchange process, and gain insight into structural features of short‐lived states.}, author = {Ma, Peixiang and Haller, Jens D. and Zajakala, Jérémy and Macek, Pavel and Sivertsen, Astrid C. and Willbold, Dieter and Boisbouvier, Jérôme and Schanda, Paul}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {17}, pages = {4312--4317}, publisher = {Wiley}, title = {{Probing transient conformational states of proteins by solid-state R1ρ relaxation-dispersion NMR spectroscopy}}, doi = {10.1002/anie.201311275}, volume = {53}, year = {2014}, } @article{14301, abstract = {DNA has become a prime material for assembling complex three-dimensional objects that promise utility in various areas of application. However, achieving user-defined goals with DNA objects has been hampered by the difficulty to prepare them at arbitrary concentrations and in user-defined solution conditions. Here, we describe a method that solves this problem. The method is based on poly(ethylene glycol)-induced depletion of species with high molecular weight. We demonstrate that our method is applicable to a wide spectrum of DNA shapes and that it achieves excellent recovery yields of target objects up to 97 %, while providing efficient separation from non-integrated DNA strands. DNA objects may be prepared at concentrations up to the limit of solubility, including the possibility for bringing DNA objects into a solid phase. Due to the fidelity and simplicity of our method we anticipate that it will help to catalyze the development of new types of applications that use self-assembled DNA objects.}, author = {Stahl, Evi and Martin, Thomas and Praetorius, Florian M and Dietz, Hendrik}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, number = {47}, pages = {12949--12954}, publisher = {Wiley}, title = {{Facile and scalable preparation of pure and dense DNA origami solutions}}, doi = {10.1002/ange.201405991}, volume = {126}, year = {2014}, } @article{11959, abstract = {No catalyst required! A highly efficient, catalyst-free process to generate diimide in situ from hydrazine monohydrate and molecular oxygen for the selective reduction of alkenes has been developed. The use of a gas–liquid segmented flow system allowed safe operating conditions and dramatically enhanced this atom-economical reaction, resulting in short processing times.}, author = {Pieber, Bartholomäus and Martinez, Sabrina Teixeira and Cantillo, David and Kappe, C. Oliver}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, number = {39}, pages = {10241--10244}, publisher = {Wiley}, title = {{In situ generation of diimide from hydrazine and oxygen: Continuous-flow transfer hydrogenation of olefins}}, doi = {10.1002/anie.201303528}, volume = {52}, year = {2013}, } @article{11960, abstract = {It's not magic! The effects observed in microwave-irradiated chemical transformations can in most cases be rationalized by purely bulk thermal phenomena associated with rapid heating to elevated temperatures. As discussed in this Essay, the existence of so-called nonthermal or specific microwave effects is highly doubtful.}, author = {Kappe, C. Oliver and Pieber, Bartholomäus and Dallinger, Doris}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, number = {4}, pages = {1088--1094}, publisher = {Wiley}, title = {{Microwave effects in organic synthesis: Myth or reality?}}, doi = {10.1002/anie.201204103}, volume = {52}, year = {2013}, } @article{7309, abstract = {Energy‐storage technologies, including electrical double‐layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and “load leveling” of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double‐layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double‐layer capacitors.}, author = {Choi, Nam-Soon and Chen, Zonghai and Freunberger, Stefan Alexander and Ji, Xiulei and Sun, Yang-Kook and Amine, Khalil and Yushin, Gleb and Nazar, Linda F. and Cho, Jaephil and Bruce, Peter G.}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {40}, pages = {9994--10024}, publisher = {Wiley}, title = {{Challenges facing Lithium batteries and electrical double-layer capacitors}}, doi = {10.1002/anie.201201429}, volume = {51}, year = {2012}, } @article{7314, abstract = {The electrolyte is one of the greatest challenges facing the development of the non‐aqueous Li–O2 battery. Although ether‐based electrolytes do from Li2O2 on the first discharge, it is shown by various techniques that they also decompose and that decomposition increases while Li2O2 decreases on cycling (see picture). Thus, these electrolytes are not suitable. }, author = {Freunberger, Stefan Alexander and Chen, Yuhui and Drewett, Nicholas E. and Hardwick, Laurence J. and Bardé, Fanny and Bruce, Peter G.}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {37}, pages = {8609--8613}, publisher = {Wiley}, title = {{The Lithium-Oxygen battery with ether-based electrolytes}}, doi = {10.1002/anie.201102357}, volume = {50}, year = {2011}, } @article{7315, abstract = {Spectroscopic data (see picture) provide direct evidence that in non‐aqueous Li+ electrolyte, O2 is reduced to O2−, which then forms LiO2 on the electrode surface which disproportionates to Li2O2. On charging, Li2O2 decomposes directly, in a one‐step reaction to evolve O2 and does not pass through LiO2 as an intermediate. }, author = {Peng, Zhangquan and Freunberger, Stefan Alexander and Hardwick, Laurence J. and Chen, Yuhui and Giordani, Vincent and Bardé, Fanny and Novák, Petr and Graham, Duncan and Tarascon, Jean-Marie and Bruce, Peter G.}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {28}, pages = {6351--6355}, publisher = {Wiley}, title = {{Oxygen reactions in a non-aqueous Li+ electrolyte}}, doi = {10.1002/anie.201100879}, volume = {50}, year = {2011}, } @article{8464, abstract = {Nonsymmetric motion: Solid‐state NMR measurements of dipolar coupling tensors provide insight into protein dynamics. The hitherto ignored asymmetry of the dipolar coupling tensor contains valuable information about motional asymmetry, which was used in the first direct site‐resolved measurement of such tensors. Important motions such as rotamer jumps can now be directly detected in the solid state.}, author = {Schanda, Paul and Huber, Matthias and Boisbouvier, Jérôme and Meier, Beat H. and Ernst, Matthias}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {46}, pages = {11005--11009}, publisher = {Wiley}, title = {{Solid-state NMR measurements of asymmetric dipolar couplings provide insight into protein side-chain motion}}, doi = {10.1002/anie.201103944}, volume = {50}, year = {2011}, } @article{8474, abstract = {Hydrogen bonds are ubiquitous interactions in proteins, and are important for their folding and functionality. Scalar coupling constants across hydrogen bonds in the protein backbone, some as small as 0.5 Hz, can be directly measured in the solid state by NMR spectroscopy (see figure). The nuclei on both sides of the hydrogen bond can be identified and the size of the coupling constant can be measured accurately.}, author = {Schanda, Paul and Huber, Matthias and Verel, René and Ernst, Matthias and Meier, Beat H.}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, keywords = {General Chemistry, Catalysis}, number = {49}, pages = {9322--9325}, publisher = {Wiley}, title = {{Direct detection of 3hJN' hydrogen-bond scalar couplings in proteins by solid-state NMR spectroscopy}}, doi = {10.1002/anie.200904411}, volume = {48}, year = {2009}, } @article{13417, abstract = {Mission Impossible: Metal nanoparticles (NPs) coated with photoresponsive ligands are used as “inks” for self-erasing “paper” whereby light-induced self-assembly of the NPs is transduced into local color changes (see picture). Depending on the degree of self-assembly, multicolor images can be written using only one type of NP ink. Duration of image erasure is regulated by the surface concentration of photoactive groups and can range from seconds to days.}, author = {Klajn, Rafal and Wesson, Paul J. and Bishop, Kyle J. M. and Grzybowski, Bartosz A.}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, keywords = {General Chemistry, Catalysis}, number = {38}, pages = {7035--7039}, publisher = {Wiley}, title = {{Writing self-erasing images using metastable nanoparticle “inks”}}, doi = {10.1002/anie.200901119}, volume = {48}, year = {2009}, } @article{13421, abstract = {Side-chain poly[2]catenanes at the click of a switch! A bistable side-chain poly[2]catenane has been synthesized and found to form hierarchical self-assembled hollow superstructures of nanoscale dimensions in solution. Molecular electromechanical switching (see picture) of the material is demonstrated, and the ground-state equilibrium thermodynamics and switching kinetics are examined as the initial steps towards processible molecular-based electronic devices and nanoelectromechanical systems.}, author = {Olson, Mark A. and Braunschweig, Adam B. and Fang, Lei and Ikeda, Taichi and Klajn, Rafal and Trabolsi, Ali and Wesson, Paul J. and Benítez, Diego and Mirkin, Chad A. and Grzybowski, Bartosz A. and Stoddart, J. Fraser}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, keywords = {General Chemistry, Catalysis}, number = {10}, pages = {1792--1797}, publisher = {Wiley}, title = {{A bistable poly[2]catenane forms nanosuperstructures}}, doi = {10.1002/anie.200804558}, volume = {48}, year = {2009}, } @article{13424, abstract = {Changing shapes: Metastable spherical aggregates of gold nanoparticles undergo a one-to-one, thermally induced transformation into heterodimers comprising connected plate and spherical domains. By controlling the reaction time, it is possible to isolate a variety of structures differing in the relative sizes of the domains and in the overall optical properties (see picture).}, author = {Klajn, Rafal and Pinchuk, Anatoliy O. and Schatz, George C. and Grzybowski, Bartosz A.}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, keywords = {General Chemistry, Catalysis}, number = {44}, pages = {8363--8367}, publisher = {Wiley}, title = {{Synthesis of heterodimeric sphere–prism nanostructures via metastable gold supraspheres}}, doi = {10.1002/anie.200702570}, volume = {46}, year = {2007}, } @article{13429, abstract = {The fruitful core: Organic syntheses reported in the literature from 1850 to 2004 are analyzed with mathematical tools from network theory and statistical physics. There is a set of substances (the core) from which the majority of other organic compounds can be made (see picture; red: core, blue: periphery, green: islands). Search algorithms are used to identify small optimal sets of maximally useful chemicals.}, author = {Bishop, Kyle J. M. and Klajn, Rafal and Grzybowski, Bartosz A.}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, keywords = {General Chemistry, Catalysis}, number = {32}, pages = {5348--5354}, publisher = {Wiley}, title = {{The core and most useful molecules in organic chemistry}}, doi = {10.1002/anie.200600881}, volume = {45}, year = {2006}, }