TY - JOUR
AB - We consider the following setting: suppose that we are given a manifold M in Rd with positive reach. Moreover assume that we have an embedded simplical complex A without boundary, whose vertex set lies on the manifold, is sufficiently dense and such that all simplices in A have sufficient quality. We prove that if, locally, interiors of the projection of the simplices onto the tangent space do not intersect, then A is a triangulation of the manifold, that is, they are homeomorphic.
AU - Boissonnat, Jean-Daniel
AU - Dyer, Ramsay
AU - Ghosh, Arijit
AU - Lieutier, Andre
AU - Wintraecken, Mathijs
ID - 8248
JF - Discrete and Computational Geometry
SN - 0179-5376
TI - Local conditions for triangulating submanifolds of Euclidean space
ER -
TY - JOUR
AB - We investigate a sheaf-theoretic interpretation of stratification learning from geometric and topological perspectives. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1355–1370, ACM, New York, 2012), and the cohomology stratification algorithm given in Nanda (Found. Comput. Math. 20(2), 195–222, 2020). Additionally, we give examples of stratifications based on the geometric techniques of Breiding et al. (Rev. Mat. Complut. 31(3), 545–593, 2018), illustrating how the sheaf-theoretic approach can be used to study stratifications from both topological and geometric perspectives. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms.
AU - Brown, Adam
AU - Wang, Bei
ID - 7905
JF - Discrete and Computational Geometry
SN - 0179-5376
TI - Sheaf-theoretic stratification learning from geometric and topological perspectives
ER -
TY - JOUR
AB - We quantise Whitney’s construction to prove the existence of a triangulation for any C^2 manifold, so that we get an algorithm with explicit bounds. We also give a new elementary proof, which is completely geometric.
AU - Boissonnat, Jean-Daniel
AU - Kachanovich, Siargey
AU - Wintraecken, Mathijs
ID - 8940
JF - Discrete & Computational Geometry
KW - Theoretical Computer Science
KW - Computational Theory and Mathematics
KW - Geometry and Topology
KW - Discrete Mathematics and Combinatorics
SN - 0179-5376
TI - Triangulating submanifolds: An elementary and quantified version of Whitney’s method
ER -
TY - JOUR
AB - Given a triangulation of a point set in the plane, a flip deletes an edge e whose removal leaves a convex quadrilateral, and replaces e by the opposite diagonal of the quadrilateral. It is well known that any triangulation of a point set can be reconfigured to any other triangulation by some sequence of flips. We explore this question in the setting where each edge of a triangulation has a label, and a flip transfers the label of the removed edge to the new edge. It is not true that every labelled triangulation of a point set can be reconfigured to every other labelled triangulation via a sequence of flips, but we characterize when this is possible. There is an obvious necessary condition: for each label l, if edge e has label l in the first triangulation and edge f has label l in the second triangulation, then there must be some sequence of flips that moves label l from e to f, ignoring all other labels. Bose, Lubiw, Pathak and Verdonschot formulated the Orbit Conjecture, which states that this necessary condition is also sufficient, i.e. that all labels can be simultaneously mapped to their destination if and only if each label individually can be mapped to its destination. We prove this conjecture. Furthermore, we give a polynomial-time algorithm (with 𝑂(𝑛8) being a crude bound on the run-time) to find a sequence of flips to reconfigure one labelled triangulation to another, if such a sequence exists, and we prove an upper bound of 𝑂(𝑛7) on the length of the flip sequence. Our proof uses the topological result that the sets of pairwise non-crossing edges on a planar point set form a simplicial complex that is homeomorphic to a high-dimensional ball (this follows from a result of Orden and Santos; we give a different proof based on a shelling argument). The dual cell complex of this simplicial ball, called the flip complex, has the usual flip graph as its 1-skeleton. We use properties of the 2-skeleton of the flip complex to prove the Orbit Conjecture.
AU - Lubiw, Anna
AU - Masárová, Zuzana
AU - Wagner, Uli
ID - 5986
IS - 4
JF - Discrete & Computational Geometry
SN - 0179-5376
TI - A proof of the orbit conjecture for flipping edge-labelled triangulations
VL - 61
ER -