--- _id: '11546' abstract: - lang: eng text: Local adaptation leads to differences between populations within a species. In many systems, similar environmental contrasts occur repeatedly, sometimes driving parallel phenotypic evolution. Understanding the genomic basis of local adaptation and parallel evolution is a major goal of evolutionary genomics. It is now known that by preventing the break-up of favourable combinations of alleles across multiple loci, genetic architectures that reduce recombination, like chromosomal inversions, can make an important contribution to local adaptation. However, little is known about whether inversions also contribute disproportionately to parallel evolution. Our aim here is to highlight this knowledge gap, to showcase existing studies, and to illustrate the differences between genomic architectures with and without inversions using simple models. We predict that by generating stronger effective selection, inversions can sometimes speed up the parallel adaptive process or enable parallel adaptation where it would be impossible otherwise, but this is highly dependent on the spatial setting. We highlight that further empirical work is needed, in particular to cover a broader taxonomic range and to understand the relative importance of inversions compared to genomic regions without inversions. acknowledgement: We thank the editor and two anonymous reviewers for their helpful and interesting comments on this manuscript. article_number: '20210203' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger full_name: Butlin, Roger last_name: Butlin - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: 'Westram AM, Faria R, Johannesson K, Butlin R, Barton NH. Inversions and parallel evolution. Philosophical Transactions of the Royal Society B: Biological Sciences. 2022;377(1856). doi:10.1098/rstb.2021.0203' apa: 'Westram, A. M., Faria, R., Johannesson, K., Butlin, R., & Barton, N. H. (2022). Inversions and parallel evolution. Philosophical Transactions of the Royal Society B: Biological Sciences. Royal Society of London. https://doi.org/10.1098/rstb.2021.0203' chicago: 'Westram, Anja M, Rui Faria, Kerstin Johannesson, Roger Butlin, and Nicholas H Barton. “Inversions and Parallel Evolution.” Philosophical Transactions of the Royal Society B: Biological Sciences. Royal Society of London, 2022. https://doi.org/10.1098/rstb.2021.0203.' ieee: 'A. M. Westram, R. Faria, K. Johannesson, R. Butlin, and N. H. Barton, “Inversions and parallel evolution,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 377, no. 1856. Royal Society of London, 2022.' ista: 'Westram AM, Faria R, Johannesson K, Butlin R, Barton NH. 2022. Inversions and parallel evolution. Philosophical Transactions of the Royal Society B: Biological Sciences. 377(1856), 20210203.' mla: 'Westram, Anja M., et al. “Inversions and Parallel Evolution.” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 377, no. 1856, 20210203, Royal Society of London, 2022, doi:10.1098/rstb.2021.0203.' short: 'A.M. Westram, R. Faria, K. Johannesson, R. Butlin, N.H. Barton, Philosophical Transactions of the Royal Society B: Biological Sciences 377 (2022).' date_created: 2022-07-08T11:41:56Z date_published: 2022-08-01T00:00:00Z date_updated: 2023-08-03T11:55:42Z day: '01' ddc: - '570' department: - _id: BeVi - _id: NiBa doi: 10.1098/rstb.2021.0203 external_id: isi: - '000812317300005' file: - access_level: open_access checksum: 49f69428f3dcf5ce3ff281f7d199e9df content_type: application/pdf creator: dernst date_created: 2023-02-02T08:20:29Z date_updated: 2023-02-02T08:20:29Z file_id: '12479' file_name: 2022_PhilosophicalTransactionsB_Westram.pdf file_size: 920304 relation: main_file success: 1 file_date_updated: 2023-02-02T08:20:29Z has_accepted_license: '1' intvolume: ' 377' isi: 1 issue: '1856' keyword: - General Agricultural and Biological Sciences - General Biochemistry - Genetics and Molecular Biology language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 05959E1C-7A3F-11EA-A408-12923DDC885E grant_number: P32166 name: The maintenance of alternative adaptive peaks in snapdragons publication: 'Philosophical Transactions of the Royal Society B: Biological Sciences' publication_identifier: eissn: - 1471-2970 issn: - 0962-8436 publication_status: published publisher: Royal Society of London quality_controlled: '1' scopus_import: '1' status: public title: Inversions and parallel evolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 377 year: '2022' ... --- _id: '10787' abstract: - lang: eng text: "A species distributed across diverse environments may adapt to local conditions. We ask how quickly such a species changes its range in response to changed conditions. Szép et al. (Szép E, Sachdeva H, Barton NH. 2021 Polygenic local adaptation in metapopulations: a stochastic eco-evolutionary model. Evolution75, 1030–1045 (doi:10.1111/evo.14210)) used the infinite island model to find the stationary distribution of allele frequencies and deme sizes. We extend this to find how a metapopulation responds to changes in carrying capacity, selection strength, or migration rate when deme sizes are fixed. We further develop a ‘fixed-state’ approximation. Under this approximation, polymorphism is only possible for a narrow range of habitat proportions when selection is weak compared to drift, but for a much wider range otherwise. When rates of selection or migration relative to drift change in a single deme of the metapopulation, the population takes a time of order m−1 to reach the new equilibrium. However, even with many loci, there can be substantial fluctuations in net adaptation, because at each locus, alleles randomly get lost or fixed. Thus, in a finite metapopulation, variation may gradually be lost by chance, even if it would persist in an infinite metapopulation. When conditions change across the whole metapopulation, there can be rapid change, which is predicted well by the fixed-state approximation. This work helps towards an understanding of how metapopulations extend their range across diverse environments.\r\nThis article is part of the theme issue ‘Species’ ranges in the face of changing environments (Part II)’." acknowledgement: This research was partly funded by the Austrian Science Fund (FWF) [FWF P-32896B]. article_processing_charge: No article_type: original author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Oluwafunmilola O full_name: Olusanya, Oluwafunmilola O id: 41AD96DC-F248-11E8-B48F-1D18A9856A87 last_name: Olusanya orcid: 0000-0003-1971-8314 citation: ama: 'Barton NH, Olusanya OO. The response of a metapopulation to a changing environment. Philosophical Transactions of the Royal Society B: Biological Sciences. 2022;377(1848). doi:10.1098/rstb.2021.0009' apa: 'Barton, N. H., & Olusanya, O. O. (2022). The response of a metapopulation to a changing environment. Philosophical Transactions of the Royal Society B: Biological Sciences. The Royal Society. https://doi.org/10.1098/rstb.2021.0009' chicago: 'Barton, Nicholas H, and Oluwafunmilola O Olusanya. “The Response of a Metapopulation to a Changing Environment.” Philosophical Transactions of the Royal Society B: Biological Sciences. The Royal Society, 2022. https://doi.org/10.1098/rstb.2021.0009.' ieee: 'N. H. Barton and O. O. Olusanya, “The response of a metapopulation to a changing environment,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 377, no. 1848. The Royal Society, 2022.' ista: 'Barton NH, Olusanya OO. 2022. The response of a metapopulation to a changing environment. Philosophical Transactions of the Royal Society B: Biological Sciences. 377(1848).' mla: 'Barton, Nicholas H., and Oluwafunmilola O. Olusanya. “The Response of a Metapopulation to a Changing Environment.” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 377, no. 1848, The Royal Society, 2022, doi:10.1098/rstb.2021.0009.' short: 'N.H. Barton, O.O. Olusanya, Philosophical Transactions of the Royal Society B: Biological Sciences 377 (2022).' date_created: 2022-02-21T16:08:10Z date_published: 2022-04-11T00:00:00Z date_updated: 2024-01-26T12:00:53Z day: '11' ddc: - '570' department: - _id: GradSch - _id: NiBa doi: 10.1098/rstb.2021.0009 external_id: isi: - '000758140300001' pmid: - '35184588' file: - access_level: open_access checksum: 3b0243738f01bf3c07e0d7e8dc64f71d content_type: application/pdf creator: dernst date_created: 2022-08-02T06:14:32Z date_updated: 2022-08-02T06:14:32Z file_id: '11719' file_name: 2022_PhilosophicalTransactionsRSB_Barton.pdf file_size: 1349672 relation: main_file success: 1 file_date_updated: 2022-08-02T06:14:32Z has_accepted_license: '1' intvolume: ' 377' isi: 1 issue: '1848' keyword: - General Agricultural and Biological Sciences - General Biochemistry - Genetics and Molecular Biology language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: c08d3278-5a5b-11eb-8a69-fdb09b55f4b8 grant_number: P32896 name: Causes and consequences of population fragmentation publication: 'Philosophical Transactions of the Royal Society B: Biological Sciences' publication_identifier: eissn: - 1471-2970 issn: - 0962-8436 publication_status: published publisher: The Royal Society quality_controlled: '1' related_material: record: - id: '14711' relation: dissertation_contains status: public scopus_import: '1' status: public title: The response of a metapopulation to a changing environment tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 377 year: '2022' ... --- _id: '10658' abstract: - lang: eng text: We analyse how migration from a large mainland influences genetic load and population numbers on an island, in a scenario where fitness-affecting variants are unconditionally deleterious, and where numbers decline with increasing load. Our analysis shows that migration can have qualitatively different effects, depending on the total mutation target and fitness effects of deleterious variants. In particular, we find that populations exhibit a genetic Allee effect across a wide range of parameter combinations, when variants are partially recessive, cycling between low-load (large-population) and high-load (sink) states. Increased migration reduces load in the sink state (by increasing heterozygosity) but further inflates load in the large-population state (by hindering purging). We identify various critical parameter thresholds at which one or other stable state collapses, and discuss how these thresholds are influenced by the genetic versus demographic effects of migration. Our analysis is based on a ‘semi-deterministic’ analysis, which accounts for genetic drift but neglects demographic stochasticity. We also compare against simulations which account for both demographic stochasticity and drift. Our results clarify the importance of gene flow as a key determinant of extinction risk in peripheral populations, even in the absence of ecological gradients. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (part I)’. acknowledgement: This research was partly funded by the Austrian Science Fund (FWF) (grant no. P-32896B). article_number: '20210010' article_processing_charge: No article_type: original author: - first_name: Himani full_name: Sachdeva, Himani last_name: Sachdeva - first_name: Oluwafunmilola O full_name: Olusanya, Oluwafunmilola O id: 41AD96DC-F248-11E8-B48F-1D18A9856A87 last_name: Olusanya orcid: 0000-0003-1971-8314 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: 'Sachdeva H, Olusanya OO, Barton NH. Genetic load and extinction in peripheral populations: The roles of migration, drift and demographic stochasticity. Philosophical Transactions of the Royal Society B. 2022;377(1846). doi:10.1098/rstb.2021.0010' apa: 'Sachdeva, H., Olusanya, O. O., & Barton, N. H. (2022). Genetic load and extinction in peripheral populations: The roles of migration, drift and demographic stochasticity. Philosophical Transactions of the Royal Society B. The Royal Society. https://doi.org/10.1098/rstb.2021.0010' chicago: 'Sachdeva, Himani, Oluwafunmilola O Olusanya, and Nicholas H Barton. “Genetic Load and Extinction in Peripheral Populations: The Roles of Migration, Drift and Demographic Stochasticity.” Philosophical Transactions of the Royal Society B. The Royal Society, 2022. https://doi.org/10.1098/rstb.2021.0010.' ieee: 'H. Sachdeva, O. O. Olusanya, and N. H. Barton, “Genetic load and extinction in peripheral populations: The roles of migration, drift and demographic stochasticity,” Philosophical Transactions of the Royal Society B, vol. 377, no. 1846. The Royal Society, 2022.' ista: 'Sachdeva H, Olusanya OO, Barton NH. 2022. Genetic load and extinction in peripheral populations: The roles of migration, drift and demographic stochasticity. Philosophical Transactions of the Royal Society B. 377(1846), 20210010.' mla: 'Sachdeva, Himani, et al. “Genetic Load and Extinction in Peripheral Populations: The Roles of Migration, Drift and Demographic Stochasticity.” Philosophical Transactions of the Royal Society B, vol. 377, no. 1846, 20210010, The Royal Society, 2022, doi:10.1098/rstb.2021.0010.' short: H. Sachdeva, O.O. Olusanya, N.H. Barton, Philosophical Transactions of the Royal Society B 377 (2022). date_created: 2022-01-24T10:34:53Z date_published: 2022-01-24T00:00:00Z date_updated: 2024-01-26T12:00:53Z day: '24' ddc: - '576' department: - _id: GradSch - _id: NiBa doi: 10.1098/rstb.2021.0010 external_id: isi: - '000745854300008' pmid: - '35067097' file: - access_level: open_access checksum: 04ca9e2f0e344d680b947f2457df8d0a content_type: application/pdf creator: oolusany date_created: 2022-01-24T10:34:45Z date_updated: 2022-01-24T10:34:45Z file_id: '10659' file_name: rstb.2021.0010.pdf file_size: 1845792 relation: main_file file_date_updated: 2022-01-24T10:34:45Z has_accepted_license: '1' intvolume: ' 377' isi: 1 issue: '1846' language: - iso: eng month: '01' oa: 1 oa_version: Published Version pmid: 1 project: - _id: c08d3278-5a5b-11eb-8a69-fdb09b55f4b8 grant_number: P32896 name: Causes and consequences of population fragmentation publication: Philosophical Transactions of the Royal Society B publication_identifier: eissn: - 1471-2970 issn: - 0962-8436 publication_status: published publisher: The Royal Society quality_controlled: '1' related_material: link: - relation: earlier_version url: https://doi.org/10.1101/2021.08.05.455207 record: - id: '14711' relation: dissertation_contains status: public status: public title: 'Genetic load and extinction in peripheral populations: The roles of migration, drift and demographic stochasticity' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 377 year: '2022' ... --- _id: '8112' article_number: '20190530' article_processing_charge: No article_type: letter_note author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: 'Barton NH. On the completion of speciation. Philosophical Transactions of the Royal Society Series B: Biological Sciences. 2020;375(1806). doi:10.1098/rstb.2019.0530' apa: 'Barton, N. H. (2020). On the completion of speciation. Philosophical Transactions of the Royal Society. Series B: Biological Sciences. The Royal Society. https://doi.org/10.1098/rstb.2019.0530' chicago: 'Barton, Nicholas H. “On the Completion of Speciation.” Philosophical Transactions of the Royal Society. Series B: Biological Sciences. The Royal Society, 2020. https://doi.org/10.1098/rstb.2019.0530.' ieee: 'N. H. Barton, “On the completion of speciation,” Philosophical Transactions of the Royal Society. Series B: Biological Sciences, vol. 375, no. 1806. The Royal Society, 2020.' ista: 'Barton NH. 2020. On the completion of speciation. Philosophical Transactions of the Royal Society. Series B: Biological Sciences. 375(1806), 20190530.' mla: 'Barton, Nicholas H. “On the Completion of Speciation.” Philosophical Transactions of the Royal Society. Series B: Biological Sciences, vol. 375, no. 1806, 20190530, The Royal Society, 2020, doi:10.1098/rstb.2019.0530.' short: 'N.H. Barton, Philosophical Transactions of the Royal Society. Series B: Biological Sciences 375 (2020).' date_created: 2020-07-13T03:41:39Z date_published: 2020-07-12T00:00:00Z date_updated: 2023-08-22T07:53:52Z day: '12' department: - _id: NiBa doi: 10.1098/rstb.2019.0530 external_id: isi: - '000552662100002' pmid: - '32654647' intvolume: ' 375' isi: 1 issue: '1806' language: - iso: eng month: '07' oa_version: None pmid: 1 publication: 'Philosophical Transactions of the Royal Society. Series B: Biological Sciences' publication_identifier: eissn: - 1471-2970 issn: - 0962-8436 publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: '1' status: public title: On the completion of speciation type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 375 year: '2020' ... --- _id: '8168' abstract: - lang: eng text: Speciation, that is, the evolution of reproductive barriers eventually leading to complete isolation, is a crucial process generating biodiversity. Recent work has contributed much to our understanding of how reproductive barriers begin to evolve, and how they are maintained in the face of gene flow. However, little is known about the transition from partial to strong reproductive isolation (RI) and the completion of speciation. We argue that the evolution of strong RI is likely to involve different processes, or new interactions among processes, compared with the evolution of the first reproductive barriers. Transition to strong RI may be brought about by changing external conditions, for example, following secondary contact. However, the increasing levels of RI themselves create opportunities for new barriers to evolve and, and interaction or coupling among barriers. These changing processes may depend on genomic architecture and leave detectable signals in the genome. We outline outstanding questions and suggest more theoretical and empirical work, considering both patterns and processes associated with strong RI, is needed to understand how speciation is completed. article_number: '20190528' article_processing_charge: No article_type: original author: - first_name: Jonna full_name: Kulmuni, Jonna last_name: Kulmuni - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin - first_name: Kay full_name: Lucek, Kay last_name: Lucek - first_name: Vincent full_name: Savolainen, Vincent last_name: Savolainen - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 citation: ama: 'Kulmuni J, Butlin RK, Lucek K, Savolainen V, Westram AM. Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers. Philosophical Transactions of the Royal Society Series B: Biological sciences. 2020;375(1806). doi:10.1098/rstb.2019.0528' apa: 'Kulmuni, J., Butlin, R. K., Lucek, K., Savolainen, V., & Westram, A. M. (2020). Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers. Philosophical Transactions of the Royal Society. Series B: Biological Sciences. The Royal Society. https://doi.org/10.1098/rstb.2019.0528' chicago: 'Kulmuni, Jonna, Roger K. Butlin, Kay Lucek, Vincent Savolainen, and Anja M Westram. “Towards the Completion of Speciation: The Evolution of Reproductive Isolation beyond the First Barriers.” Philosophical Transactions of the Royal Society. Series B: Biological Sciences. The Royal Society, 2020. https://doi.org/10.1098/rstb.2019.0528.' ieee: 'J. Kulmuni, R. K. Butlin, K. Lucek, V. Savolainen, and A. M. Westram, “Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers,” Philosophical Transactions of the Royal Society. Series B: Biological sciences, vol. 375, no. 1806. The Royal Society, 2020.' ista: 'Kulmuni J, Butlin RK, Lucek K, Savolainen V, Westram AM. 2020. Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers. Philosophical Transactions of the Royal Society. Series B: Biological sciences. 375(1806), 20190528.' mla: 'Kulmuni, Jonna, et al. “Towards the Completion of Speciation: The Evolution of Reproductive Isolation beyond the First Barriers.” Philosophical Transactions of the Royal Society. Series B: Biological Sciences, vol. 375, no. 1806, 20190528, The Royal Society, 2020, doi:10.1098/rstb.2019.0528.' short: 'J. Kulmuni, R.K. Butlin, K. Lucek, V. Savolainen, A.M. Westram, Philosophical Transactions of the Royal Society. Series B: Biological Sciences 375 (2020).' date_created: 2020-07-26T22:01:01Z date_published: 2020-07-12T00:00:00Z date_updated: 2023-08-22T08:21:31Z day: '12' department: - _id: NiBa doi: 10.1098/rstb.2019.0528 ec_funded: 1 external_id: isi: - '000552662100001' pmid: - '32654637' intvolume: ' 375' isi: 1 issue: '1806' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1098/rstb.2019.0528 month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 265B41B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '797747' name: Theoretical and empirical approaches to understanding Parallel Adaptation publication: 'Philosophical Transactions of the Royal Society. Series B: Biological sciences' publication_identifier: eissn: - 1471-2970 issn: - 0962-8436 publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: '1' status: public title: 'Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 375 year: '2020' ... --- _id: '1830' abstract: - lang: eng text: To prevent epidemics, insect societies have evolved collective disease defences that are highly effective at curing exposed individuals and limiting disease transmission to healthy group members. Grooming is an important sanitary behaviour—either performed towards oneself (self-grooming) or towards others (allogrooming)—to remove infectious agents from the body surface of exposed individuals, but at the risk of disease contraction by the groomer. We use garden ants (Lasius neglectus) and the fungal pathogen Metarhizium as a model system to study how pathogen presence affects self-grooming and allogrooming between exposed and healthy individuals. We develop an epidemiological SIS model to explore how experimentally observed grooming patterns affect disease spread within the colony, thereby providing a direct link between the expression and direction of sanitary behaviours, and their effects on colony-level epidemiology. We find that fungus-exposed ants increase self-grooming, while simultaneously decreasing allogrooming. This behavioural modulation seems universally adaptive and is predicted to contain disease spread in a great variety of host–pathogen systems. In contrast, allogrooming directed towards pathogen-exposed individuals might both increase and decrease disease risk. Our model reveals that the effect of allogrooming depends on the balance between pathogen infectiousness and efficiency of social host defences, which are likely to vary across host–pathogen systems. acknowledgement: We thank Meghan L. Vyleta for the genetical fungal strain characterization and Eva Sixt for ant drawings, Matthias Konrad for discussion and Christopher D. Pull, Barbara Casillas-Peréz, Sebastian Novak, as well as three anonymous reviewers and the theme issue editors Peter Kappeler and Charlie Nunn for valuable comments on the manuscript. article_processing_charge: No article_type: original author: - first_name: Fabian full_name: Theis, Fabian last_name: Theis - first_name: Line V full_name: Ugelvig, Line V id: 3DC97C8E-F248-11E8-B48F-1D18A9856A87 last_name: Ugelvig orcid: 0000-0003-1832-8883 - first_name: Carsten full_name: Marr, Carsten last_name: Marr - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Theis F, Ugelvig LV, Marr C, Cremer S. Opposing effects of allogrooming on disease transmission in ant societies. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. 2015;370(1669). doi:10.1098/rstb.2014.0108 apa: Theis, F., Ugelvig, L. V., Marr, C., & Cremer, S. (2015). Opposing effects of allogrooming on disease transmission in ant societies. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Royal Society, The. https://doi.org/10.1098/rstb.2014.0108 chicago: Theis, Fabian, Line V Ugelvig, Carsten Marr, and Sylvia Cremer. “Opposing Effects of Allogrooming on Disease Transmission in Ant Societies.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Royal Society, The, 2015. https://doi.org/10.1098/rstb.2014.0108. ieee: F. Theis, L. V. Ugelvig, C. Marr, and S. Cremer, “Opposing effects of allogrooming on disease transmission in ant societies,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 370, no. 1669. Royal Society, The, 2015. ista: Theis F, Ugelvig LV, Marr C, Cremer S. 2015. Opposing effects of allogrooming on disease transmission in ant societies. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 370(1669). mla: Theis, Fabian, et al. “Opposing Effects of Allogrooming on Disease Transmission in Ant Societies.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 370, no. 1669, Royal Society, The, 2015, doi:10.1098/rstb.2014.0108. short: F. Theis, L.V. Ugelvig, C. Marr, S. Cremer, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 370 (2015). date_created: 2018-12-11T11:54:15Z date_published: 2015-05-26T00:00:00Z date_updated: 2023-02-23T14:06:12Z day: '26' department: - _id: SyCr doi: 10.1098/rstb.2014.0108 ec_funded: 1 external_id: pmid: - '25870394' intvolume: ' 370' issue: '1669' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410374/ month: '05' oa: 1 oa_version: Submitted Version pmid: 1 project: - _id: 25DC711C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '243071' name: 'Social Vaccination in Ant Colonies: from Individual Mechanisms to Society Effects' - _id: 25DDF0F0-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '302004' name: 'Pathogen Detectors Collective disease defence and pathogen detection abilities in ant societies: a chemo-neuro-immunological approach' - _id: 25E0E184-B435-11E9-9278-68D0E5697425 name: Antnet - _id: 25E24DB2-B435-11E9-9278-68D0E5697425 name: Fellowship of Wissenschaftskolleg zu Berlin publication: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences publication_identifier: eissn: - 1471-2970 issn: - 0962-8436 publication_status: published publisher: Royal Society, The publist_id: '5273' quality_controlled: '1' related_material: record: - id: '9721' relation: research_data status: public scopus_import: '1' status: public title: Opposing effects of allogrooming on disease transmission in ant societies type: journal_article user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 370 year: '2015' ... --- _id: '4274' abstract: - lang: eng text: Selection on one or more genes inevitably perturbs other genes, even when those genes have no direct effect on fitness. This article reviews the theory of such genetic hitchhiking, concentrating on effects on neutral loci. Maynard Smith and Haigh introduced the classical case where the perturbation is due to a single favourable mutation. This is contrasted with the apparently distinct effects of inherited variation in fitness due to loosely linked loci. A model of fluctuating selection is analysed which bridges these alternative treatments. When alleles sweep between extreme frequencies at a rate λ, the rate of drift is increased by a factor (1 + E[1/pq]λ/(2(2λ + r))), where the recombination rate r is much smaller than the strength of selection. In spatially structured populations, the effects of any one substitution are weaker, and only cause a local increase in the frequency of a neutral allele. This increase depends primarily on the rate of recombination relative to selection (r/s), and more weakly, on the neighbourhood size, Nb = 4πρσ2. Spatial subdivision may allow local selective sweeps to occur more frequently than is indicated by the overall rate of molecular evolution. However, it seems unlikely that such sweeps can be sufficiently frequent to increase significantly the drift of neutral alleles. acknowledgement: "I am grateful to B. Charlesworth and M.Slatkin for their helpful comments. This work was supported by the Biotechnology\r\nand Biological Sciences Research Council, the Natural Environment Research Council, and the Darwin Trust of Edinburgh." article_processing_charge: No author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Barton NH. Genetic hitchhiking. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. 2000;355(1403):1553-1562. doi:10.1098/rstb.2000.0716 apa: Barton, N. H. (2000). Genetic hitchhiking. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Royal Society of London. https://doi.org/10.1098/rstb.2000.0716 chicago: Barton, Nicholas H. “Genetic Hitchhiking.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Royal Society of London, 2000. https://doi.org/10.1098/rstb.2000.0716. ieee: N. H. Barton, “Genetic hitchhiking,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 355, no. 1403. Royal Society of London, pp. 1553–1562, 2000. ista: Barton NH. 2000. Genetic hitchhiking. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 355(1403), 1553–1562. mla: Barton, Nicholas H. “Genetic Hitchhiking.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 355, no. 1403, Royal Society of London, 2000, pp. 1553–62, doi:10.1098/rstb.2000.0716. short: N.H. Barton, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 355 (2000) 1553–1562. date_created: 2018-12-11T12:07:59Z date_published: 2000-11-29T00:00:00Z date_updated: 2023-04-19T09:35:31Z day: '29' doi: 10.1098/rstb.2000.0716 extern: '1' external_id: pmid: - '11127900' intvolume: ' 355' issue: '1403' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1692896/ month: '11' oa: 1 oa_version: None page: 1553 - 1562 pmid: 1 publication: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences publication_identifier: issn: - 0962-8436 publication_status: published publisher: Royal Society of London publist_id: '1815' quality_controlled: '1' scopus_import: '1' status: public title: Genetic hitchhiking type: journal_article user_id: ea97e931-d5af-11eb-85d4-e6957dddbf17 volume: 355 year: '2000' ... --- _id: '3634' abstract: - lang: eng text: The evolutionary processes responsible for adaptation and speciation on islands differ in several ways from those on the mainland. Most attention has been given to the random genetic drift that arises when a population is founded from just a few colonizing genomes. Theoretical obstacles to 'founder effect speciation' are discussed, together with recent proposals for avoiding them. It is argued that although certain kinds of epistasis can facilitate the evolution of strong reproductive isolation, this favours divergence by selection as much as by random drift. article_processing_charge: No article_type: original author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: James full_name: Mallet, James last_name: Mallet citation: ama: Barton NH, Mallet J. Natural selection and random genetic drift as causes of evolution on islands. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. 1996;351(1341):785-795. doi:10.1098/rstb.1996.0073 apa: Barton, N. H., & Mallet, J. (1996). Natural selection and random genetic drift as causes of evolution on islands. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Royal Society of London. https://doi.org/10.1098/rstb.1996.0073 chicago: Barton, Nicholas H, and James Mallet. “Natural Selection and Random Genetic Drift as Causes of Evolution on Islands.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Royal Society of London, 1996. https://doi.org/10.1098/rstb.1996.0073. ieee: N. H. Barton and J. Mallet, “Natural selection and random genetic drift as causes of evolution on islands,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 351, no. 1341. Royal Society of London, pp. 785–795, 1996. ista: Barton NH, Mallet J. 1996. Natural selection and random genetic drift as causes of evolution on islands. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 351(1341), 785–795. mla: Barton, Nicholas H., and James Mallet. “Natural Selection and Random Genetic Drift as Causes of Evolution on Islands.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 351, no. 1341, Royal Society of London, 1996, pp. 785–95, doi:10.1098/rstb.1996.0073. short: N.H. Barton, J. Mallet, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 351 (1996) 785–795. date_created: 2018-12-11T12:04:21Z date_published: 1996-06-29T00:00:00Z date_updated: 2022-08-10T12:57:10Z day: '29' doi: 10.1098/rstb.1996.0073 extern: '1' external_id: pmid: - '8693020' intvolume: ' 351' issue: '1341' language: - iso: eng month: '06' oa_version: None page: 785 - 795 pmid: 1 publication: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences publication_identifier: issn: - 0962-8436 publication_status: published publisher: Royal Society of London publist_id: '2749' quality_controlled: '1' scopus_import: '1' status: public title: Natural selection and random genetic drift as causes of evolution on islands type: journal_article user_id: ea97e931-d5af-11eb-85d4-e6957dddbf17 volume: 351 year: '1996' ... --- _id: '3638' abstract: - lang: eng text: 'Any sample of genes traces back to a single common ancestor. Each gene also has other properties: its sequence, its geographic location and the phenotype and fitness of the organism that carries it. With sexual reproduction, different genes have different genealogies, which gives us much more information, but also greatly complicates population genetic analysis. We review the close relation between the distribution of genealogies and the classic theory of identity by descent in spatially structured populations, and develop a simple diffusion approximation to the distribution of coalescence times in a homogeneous two-dimensional habitat. This shows that when neighbourhood size is large (as in most populations) only a small fraction of pairs of genes are closely related, and only this fraction gives information about current rates of gene flow. The increase of spatial dispersion with lineage age is thus a poor estimator of gene flow. The bulk of the genealogy depends on the long-term history of the population; we discuss ways of inferring this history from the concordance between genealogies across loci.' acknowledgement: This work was supported by BBSRC grant GR/H/09928 and by a Scottish Office studentship. We thank A. W. F. Edwards and S. Otto for their helpful comments. article_processing_charge: No article_type: original author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: I full_name: Wilson, I last_name: Wilson citation: ama: Barton NH, Wilson I. Genealogies and geography. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. 1995;349(1327):49-59. doi:10.1098/rstb.1995.0090 apa: Barton, N. H., & Wilson, I. (1995). Genealogies and geography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Royal Society, The. https://doi.org/10.1098/rstb.1995.0090 chicago: Barton, Nicholas H, and I Wilson. “Genealogies and Geography.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Royal Society, The, 1995. https://doi.org/10.1098/rstb.1995.0090. ieee: N. H. Barton and I. Wilson, “Genealogies and geography,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 349, no. 1327. Royal Society, The, pp. 49–59, 1995. ista: Barton NH, Wilson I. 1995. Genealogies and geography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 349(1327), 49–59. mla: Barton, Nicholas H., and I. Wilson. “Genealogies and Geography.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 349, no. 1327, Royal Society, The, 1995, pp. 49–59, doi:10.1098/rstb.1995.0090. short: N.H. Barton, I. Wilson, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 349 (1995) 49–59. date_created: 2018-12-11T12:04:22Z date_published: 1995-07-29T00:00:00Z date_updated: 2022-06-27T08:55:07Z day: '29' doi: 10.1098/rstb.1995.0090 extern: '1' external_id: pmid: - '8748019' intvolume: ' 349' issue: '1327' language: - iso: eng main_file_link: - url: https://royalsocietypublishing.org/doi/10.1098/rstb.1995.0090 month: '07' oa_version: None page: 49 - 59 pmid: 1 publication: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences publication_identifier: issn: - 0962-8436 publication_status: published publisher: Royal Society, The publist_id: '2745' quality_controlled: '1' status: public title: Genealogies and geography type: journal_article user_id: ea97e931-d5af-11eb-85d4-e6957dddbf17 volume: 349 year: '1995' ...