TY - JOUR AB - In the Ca1−x La x FeAs2 (1 1 2) family of pnictide superconductors, we have investigated a highly overdoped composition (x  =  0.56), prepared by a high-pressure, high-temperature synthesis. Magnetic measurements show an antiferromagnetic transition at T N  =  120 K, well above the one at lower doping (0.15  <  x  <  0.27). Below the onset of long-range magnetic order at T N, the electrical resistivity is strongly reduced and is dominated by electron–electron interactions, as evident from its temperature dependence. The Seebeck coefficient shows a clear metallic behavior as in narrow band conductors. The temperature dependence of the Hall coefficient and the violation of Kohler's rule agree with the multiband character of the material. No superconductivity was observed down to 1.8 K. The success of the high-pressure synthesis encourages further investigations of the so far only partially explored phase diagram in this family of Iron-based high temperature superconductors. AU - Martino, Edoardo AU - Bachmann, Maja D AU - Rossi, Lidia AU - Modic, Kimberly A AU - Zivkovic, Ivica AU - Rønnow, Henrik M AU - Moll, Philip J W AU - Akrap, Ana AU - Forró, László AU - Katrych, Sergiy ID - 7056 IS - 48 JF - Journal of Physics: Condensed Matter SN - 0953-8984 TI - Persistent antiferromagnetic order in heavily overdoped Ca1−x La x FeAs2 VL - 31 ER - TY - JOUR AB - Iron is a ubiquitous impurity in metamict (radiation-damaged and partially amorphized) materials such as titanite (CaSiTiO5). Using 57Fe Mössbauer spectroscopy we find that iron in metamict titanite is partitioned between amorphous and crystalline regions based on valence. Trivalent iron exists in the crystalline titanite matrix whereas divalent iron exists almost exclusively in radiation-amorphized regions. We find that the relative abundances of the oxidation states correlate with the volume fraction of amorphous and crystalline regions. Our data also show that oxidation of iron proceeds along with the recrystallization of the amorphized regions. Recrystallization is confirmed to occur over the range 700 °C < T < 925 °C, and no further structural changes are observed at higher temperatures. It is surprising that our Mössbauer measurements show divalent iron to be surrounded by titanite with a high degree of short-range structural order in the amorphized regions. This observation is fundamentally different from other metamict materials such as zircon (ZrSiO4), where amorphized regions show no short-range order. AU - Salje, E K H AU - Safarik, D J AU - Taylor, R D AU - Pasternak, M P AU - Modic, Kimberly A AU - Groat, L A AU - Lashley, J C ID - 7076 IS - 10 JF - Journal of Physics: Condensed Matter SN - 0953-8984 TI - Determination of iron sites and the amount of amorphization in radiation-damaged titanite (CaSiTiO5) VL - 23 ER -