--- _id: '15012' abstract: - lang: eng text: We solve a problem of Dujmović and Wood (2007) by showing that a complete convex geometric graph on n vertices cannot be decomposed into fewer than n-1 star-forests, each consisting of noncrossing edges. This bound is clearly tight. We also discuss similar questions for abstract graphs. acknowledgement: János Pach’s Research partially supported by European Research Council (ERC), grant “GeoScape” No. 882971 and by the Hungarian Science Foundation (NKFIH), grant K-131529. Work by Morteza Saghafian is partially supported by the European Research Council (ERC), grant No. 788183, and by the Wittgenstein Prize, Austrian Science Fund (FWF), grant No. Z 342-N31. alternative_title: - LNCS article_processing_charge: No author: - first_name: János full_name: Pach, János id: E62E3130-B088-11EA-B919-BF823C25FEA4 last_name: Pach - first_name: Morteza full_name: Saghafian, Morteza id: f86f7148-b140-11ec-9577-95435b8df824 last_name: Saghafian - first_name: Patrick full_name: Schnider, Patrick last_name: Schnider citation: ama: 'Pach J, Saghafian M, Schnider P. Decomposition of geometric graphs into star-forests. In: 31st International Symposium on Graph Drawing and Network Visualization. Vol 14465. Springer Nature; 2024:339-346. doi:10.1007/978-3-031-49272-3_23' apa: 'Pach, J., Saghafian, M., & Schnider, P. (2024). Decomposition of geometric graphs into star-forests. In 31st International Symposium on Graph Drawing and Network Visualization (Vol. 14465, pp. 339–346). Isola delle Femmine, Palermo, Italy: Springer Nature. https://doi.org/10.1007/978-3-031-49272-3_23' chicago: Pach, János, Morteza Saghafian, and Patrick Schnider. “Decomposition of Geometric Graphs into Star-Forests.” In 31st International Symposium on Graph Drawing and Network Visualization, 14465:339–46. Springer Nature, 2024. https://doi.org/10.1007/978-3-031-49272-3_23. ieee: J. Pach, M. Saghafian, and P. Schnider, “Decomposition of geometric graphs into star-forests,” in 31st International Symposium on Graph Drawing and Network Visualization, Isola delle Femmine, Palermo, Italy, 2024, vol. 14465, pp. 339–346. ista: 'Pach J, Saghafian M, Schnider P. 2024. Decomposition of geometric graphs into star-forests. 31st International Symposium on Graph Drawing and Network Visualization. GD: Graph Drawing and Network Visualization, LNCS, vol. 14465, 339–346.' mla: Pach, János, et al. “Decomposition of Geometric Graphs into Star-Forests.” 31st International Symposium on Graph Drawing and Network Visualization, vol. 14465, Springer Nature, 2024, pp. 339–46, doi:10.1007/978-3-031-49272-3_23. short: J. Pach, M. Saghafian, P. Schnider, in:, 31st International Symposium on Graph Drawing and Network Visualization, Springer Nature, 2024, pp. 339–346. conference: end_date: 2023-09-22 location: Isola delle Femmine, Palermo, Italy name: 'GD: Graph Drawing and Network Visualization' start_date: 2023-09-20 date_created: 2024-02-18T23:01:03Z date_published: 2024-01-01T00:00:00Z date_updated: 2024-02-20T09:13:07Z day: '01' department: - _id: HeEd doi: 10.1007/978-3-031-49272-3_23 ec_funded: 1 external_id: arxiv: - '2306.13201' intvolume: ' 14465' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2306.13201 month: '01' oa: 1 oa_version: Preprint page: 339-346 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize publication: 31st International Symposium on Graph Drawing and Network Visualization publication_identifier: eissn: - '16113349' isbn: - '9783031492716' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Decomposition of geometric graphs into star-forests type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14465 year: '2024' ... --- _id: '10774' abstract: - lang: eng text: We study the problem of specifying sequential information-flow properties of systems. Information-flow properties are hyperproperties, as they compare different traces of a system. Sequential information-flow properties can express changes, over time, in the information-flow constraints. For example, information-flow constraints during an initialization phase of a system may be different from information-flow constraints that are required during the operation phase. We formalize several variants of interpreting sequential information-flow constraints, which arise from different assumptions about what can be observed of the system. For this purpose, we introduce a first-order logic, called Hypertrace Logic, with both trace and time quantifiers for specifying linear-time hyperproperties. We prove that HyperLTL, which corresponds to a fragment of Hypertrace Logic with restricted quantifier prefixes, cannot specify the majority of the studied variants of sequential information flow, including all variants in which the transition between sequential phases (such as initialization and operation) happens asynchronously. Our results rely on new equivalences between sets of traces that cannot be distinguished by certain classes of formulas from Hypertrace Logic. This presents a new approach to proving inexpressiveness results for HyperLTL. acknowledgement: This work was funded in part by the Wittgenstein Award Z211-N23 of the Austrian Science Fund (FWF) and by the FWF project W1255-N23. alternative_title: - LNCS article_processing_charge: No author: - first_name: Ezio full_name: Bartocci, Ezio last_name: Bartocci - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Dejan full_name: Nickovic, Dejan id: 41BCEE5C-F248-11E8-B48F-1D18A9856A87 last_name: Nickovic - first_name: Ana Oliveira full_name: Da Costa, Ana Oliveira last_name: Da Costa citation: ama: 'Bartocci E, Ferrere T, Henzinger TA, Nickovic D, Da Costa AO. Flavors of sequential information flow. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 13182. Springer Nature; 2022:1-19. doi:10.1007/978-3-030-94583-1_1' apa: 'Bartocci, E., Ferrere, T., Henzinger, T. A., Nickovic, D., & Da Costa, A. O. (2022). Flavors of sequential information flow. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 13182, pp. 1–19). Philadelphia, PA, United States: Springer Nature. https://doi.org/10.1007/978-3-030-94583-1_1' chicago: Bartocci, Ezio, Thomas Ferrere, Thomas A Henzinger, Dejan Nickovic, and Ana Oliveira Da Costa. “Flavors of Sequential Information Flow.” In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13182:1–19. Springer Nature, 2022. https://doi.org/10.1007/978-3-030-94583-1_1. ieee: E. Bartocci, T. Ferrere, T. A. Henzinger, D. Nickovic, and A. O. Da Costa, “Flavors of sequential information flow,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Philadelphia, PA, United States, 2022, vol. 13182, pp. 1–19. ista: 'Bartocci E, Ferrere T, Henzinger TA, Nickovic D, Da Costa AO. 2022. Flavors of sequential information flow. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). VMCAI: Verifcation, Model Checking, and Abstract Interpretation, LNCS, vol. 13182, 1–19.' mla: Bartocci, Ezio, et al. “Flavors of Sequential Information Flow.” Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13182, Springer Nature, 2022, pp. 1–19, doi:10.1007/978-3-030-94583-1_1. short: E. Bartocci, T. Ferrere, T.A. Henzinger, D. Nickovic, A.O. Da Costa, in:, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Nature, 2022, pp. 1–19. conference: end_date: 2022-01-18 location: Philadelphia, PA, United States name: 'VMCAI: Verifcation, Model Checking, and Abstract Interpretation' start_date: 2022-01-16 date_created: 2022-02-20T23:01:34Z date_published: 2022-01-14T00:00:00Z date_updated: 2022-08-05T09:02:56Z day: '14' department: - _id: ToHe doi: 10.1007/978-3-030-94583-1_1 external_id: arxiv: - '2105.02013' intvolume: ' 13182' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2105.02013' month: '01' oa: 1 oa_version: Preprint page: 1-19 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) publication_identifier: eissn: - '16113349' isbn: - '9783030945824' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Flavors of sequential information flow type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13182 year: '2022' ... --- _id: '9296' abstract: - lang: eng text: ' matching is compatible to two or more labeled point sets of size n with labels {1,…,n} if its straight-line drawing on each of these point sets is crossing-free. We study the maximum number of edges in a matching compatible to two or more labeled point sets in general position in the plane. We show that for any two labeled convex sets of n points there exists a compatible matching with ⌊2n−−√⌋ edges. More generally, for any ℓ labeled point sets we construct compatible matchings of size Ω(n1/ℓ) . As a corresponding upper bound, we use probabilistic arguments to show that for any ℓ given sets of n points there exists a labeling of each set such that the largest compatible matching has O(n2/(ℓ+1)) edges. Finally, we show that Θ(logn) copies of any set of n points are necessary and sufficient for the existence of a labeling such that any compatible matching consists only of a single edge.' acknowledgement: 'A.A. funded by the Marie Skłodowska-Curie grant agreement No. 754411. Z.M. partially funded by Wittgenstein Prize, Austrian Science Fund (FWF), grant no. Z 342-N31. I.P., D.P., and B.V. partially supported by FWF within the collaborative DACH project Arrangements and Drawings as FWF project I 3340-N35. A.P. supported by a Schrödinger fellowship of the FWF: J-3847-N35. J.T. partially supported by ERC Start grant no. (279307: Graph Games), FWF grant no. P23499-N23 and S11407-N23 (RiSE).' alternative_title: - LNCS article_processing_charge: No author: - first_name: Oswin full_name: Aichholzer, Oswin last_name: Aichholzer - first_name: Alan M full_name: Arroyo Guevara, Alan M id: 3207FDC6-F248-11E8-B48F-1D18A9856A87 last_name: Arroyo Guevara orcid: 0000-0003-2401-8670 - first_name: Zuzana full_name: Masárová, Zuzana id: 45CFE238-F248-11E8-B48F-1D18A9856A87 last_name: Masárová orcid: 0000-0002-6660-1322 - first_name: Irene full_name: Parada, Irene last_name: Parada - first_name: Daniel full_name: Perz, Daniel last_name: Perz - first_name: Alexander full_name: Pilz, Alexander last_name: Pilz - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Birgit full_name: Vogtenhuber, Birgit last_name: Vogtenhuber citation: ama: 'Aichholzer O, Arroyo Guevara AM, Masárová Z, et al. On compatible matchings. In: 15th International Conference on Algorithms and Computation. Vol 12635. Springer Nature; 2021:221-233. doi:10.1007/978-3-030-68211-8_18' apa: 'Aichholzer, O., Arroyo Guevara, A. M., Masárová, Z., Parada, I., Perz, D., Pilz, A., … Vogtenhuber, B. (2021). On compatible matchings. In 15th International Conference on Algorithms and Computation (Vol. 12635, pp. 221–233). Yangon, Myanmar: Springer Nature. https://doi.org/10.1007/978-3-030-68211-8_18' chicago: Aichholzer, Oswin, Alan M Arroyo Guevara, Zuzana Masárová, Irene Parada, Daniel Perz, Alexander Pilz, Josef Tkadlec, and Birgit Vogtenhuber. “On Compatible Matchings.” In 15th International Conference on Algorithms and Computation, 12635:221–33. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-68211-8_18. ieee: O. Aichholzer et al., “On compatible matchings,” in 15th International Conference on Algorithms and Computation, Yangon, Myanmar, 2021, vol. 12635, pp. 221–233. ista: 'Aichholzer O, Arroyo Guevara AM, Masárová Z, Parada I, Perz D, Pilz A, Tkadlec J, Vogtenhuber B. 2021. On compatible matchings. 15th International Conference on Algorithms and Computation. WALCOM: Algorithms and Computation, LNCS, vol. 12635, 221–233.' mla: Aichholzer, Oswin, et al. “On Compatible Matchings.” 15th International Conference on Algorithms and Computation, vol. 12635, Springer Nature, 2021, pp. 221–33, doi:10.1007/978-3-030-68211-8_18. short: O. Aichholzer, A.M. Arroyo Guevara, Z. Masárová, I. Parada, D. Perz, A. Pilz, J. Tkadlec, B. Vogtenhuber, in:, 15th International Conference on Algorithms and Computation, Springer Nature, 2021, pp. 221–233. conference: end_date: 2021-03-02 location: Yangon, Myanmar name: 'WALCOM: Algorithms and Computation' start_date: 2021-02-28 date_created: 2021-03-28T22:01:41Z date_published: 2021-02-16T00:00:00Z date_updated: 2023-02-21T16:33:44Z day: '16' department: - _id: UlWa - _id: HeEd - _id: KrCh doi: 10.1007/978-3-030-68211-8_18 ec_funded: 1 external_id: arxiv: - '2101.03928' intvolume: ' 12635' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2101.03928 month: '02' oa: 1 oa_version: Preprint page: 221-233 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory publication: 15th International Conference on Algorithms and Computation publication_identifier: eissn: - '16113349' isbn: - '9783030682101' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '11938' relation: later_version status: public scopus_import: '1' status: public title: On compatible matchings type: conference user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 12635 year: '2021' ... --- _id: '9466' abstract: - lang: eng text: In this work, we apply the dynamical systems analysis of Hanrot et al. (CRYPTO’11) to a class of lattice block reduction algorithms that includes (natural variants of) slide reduction and block-Rankin reduction. This implies sharper bounds on the polynomial running times (in the query model) for these algorithms and opens the door to faster practical variants of slide reduction. We give heuristic arguments showing that such variants can indeed speed up slide reduction significantly in practice. This is confirmed by experimental evidence, which also shows that our variants are competitive with state-of-the-art reduction algorithms. acknowledgement: 'This work was initiated in discussions with Léo Ducas, when the author was visiting the Simons Institute for the Theory of Computation during the program “Lattices: Algorithms, Complexity, and Cryptography”. We thank Thomas Espitau for pointing out a bug in a proof in an earlier version of this manuscript.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Michael full_name: Walter, Michael id: 488F98B0-F248-11E8-B48F-1D18A9856A87 last_name: Walter orcid: 0000-0003-3186-2482 citation: ama: 'Walter M. The convergence of slide-type reductions. In: Public-Key Cryptography – PKC 2021. Vol 12710. Springer Nature; 2021:45-67. doi:10.1007/978-3-030-75245-3_3' apa: 'Walter, M. (2021). The convergence of slide-type reductions. In Public-Key Cryptography – PKC 2021 (Vol. 12710, pp. 45–67). Virtual: Springer Nature. https://doi.org/10.1007/978-3-030-75245-3_3' chicago: Walter, Michael. “The Convergence of Slide-Type Reductions.” In Public-Key Cryptography – PKC 2021, 12710:45–67. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-75245-3_3. ieee: M. Walter, “The convergence of slide-type reductions,” in Public-Key Cryptography – PKC 2021, Virtual, 2021, vol. 12710, pp. 45–67. ista: 'Walter M. 2021. The convergence of slide-type reductions. Public-Key Cryptography – PKC 2021. PKC: IACR International Conference on Practice and Theory of Public Key Cryptography, LNCS, vol. 12710, 45–67.' mla: Walter, Michael. “The Convergence of Slide-Type Reductions.” Public-Key Cryptography – PKC 2021, vol. 12710, Springer Nature, 2021, pp. 45–67, doi:10.1007/978-3-030-75245-3_3. short: M. Walter, in:, Public-Key Cryptography – PKC 2021, Springer Nature, 2021, pp. 45–67. conference: end_date: 2021-05-13 location: Virtual name: 'PKC: IACR International Conference on Practice and Theory of Public Key Cryptography' start_date: 2021-05-10 date_created: 2021-06-06T22:01:29Z date_published: 2021-05-01T00:00:00Z date_updated: 2023-02-23T13:58:47Z day: '01' ddc: - '000' department: - _id: KrPi doi: 10.1007/978-3-030-75245-3_3 ec_funded: 1 file: - access_level: open_access checksum: 413e564d645ed93d7318672361d9d470 content_type: application/pdf creator: dernst date_created: 2022-05-27T09:48:31Z date_updated: 2022-05-27T09:48:31Z file_id: '11416' file_name: 2021_PKC_Walter.pdf file_size: 489017 relation: main_file success: 1 file_date_updated: 2022-05-27T09:48:31Z has_accepted_license: '1' intvolume: ' 12710' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 45-67 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: Public-Key Cryptography – PKC 2021 publication_identifier: eissn: - '16113349' isbn: - '9783030752446' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: The convergence of slide-type reductions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12710 year: '2021' ... --- _id: '9826' abstract: - lang: eng text: "Automated contract tracing aims at supporting manual contact tracing during pandemics by alerting users of encounters with infected people. There are currently many proposals for protocols (like the “decentralized” DP-3T and PACT or the “centralized” ROBERT and DESIRE) to be run on mobile phones, where the basic idea is to regularly broadcast (using low energy Bluetooth) some values, and at the same time store (a function of) incoming messages broadcasted by users in their proximity. In the existing proposals one can trigger false positives on a massive scale by an “inverse-Sybil” attack, where a large number of devices (malicious users or hacked phones) pretend to be the same user, such that later, just a single person needs to be diagnosed (and allowed to upload) to trigger an alert for all users who were in proximity to any of this large group of devices.\r\n\r\nWe propose the first protocols that do not succumb to such attacks assuming the devices involved in the attack do not constantly communicate, which we observe is a necessary assumption. The high level idea of the protocols is to derive the values to be broadcasted by a hash chain, so that two (or more) devices who want to launch an inverse-Sybil attack will not be able to connect their respective chains and thus only one of them will be able to upload. Our protocols also achieve security against replay, belated replay, and one of them even against relay attacks." acknowledgement: Guillermo Pascual-Perez and Michelle Yeo were funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie Grant Agreement No. 665385; the remaining contributors to this project have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (682815 - TOCNeT). alternative_title: - LNCS article_processing_charge: No author: - first_name: Benedikt full_name: Auerbach, Benedikt id: D33D2B18-E445-11E9-ABB7-15F4E5697425 last_name: Auerbach orcid: 0000-0002-7553-6606 - first_name: Suvradip full_name: Chakraborty, Suvradip id: B9CD0494-D033-11E9-B219-A439E6697425 last_name: Chakraborty - first_name: Karen full_name: Klein, Karen id: 3E83A2F8-F248-11E8-B48F-1D18A9856A87 last_name: Klein - first_name: Guillermo full_name: Pascual Perez, Guillermo id: 2D7ABD02-F248-11E8-B48F-1D18A9856A87 last_name: Pascual Perez - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 - first_name: Michael full_name: Walter, Michael id: 488F98B0-F248-11E8-B48F-1D18A9856A87 last_name: Walter orcid: 0000-0003-3186-2482 - first_name: Michelle X full_name: Yeo, Michelle X id: 2D82B818-F248-11E8-B48F-1D18A9856A87 last_name: Yeo citation: ama: 'Auerbach B, Chakraborty S, Klein K, et al. Inverse-Sybil attacks in automated contact tracing. In: Topics in Cryptology – CT-RSA 2021. Vol 12704. Springer Nature; 2021:399-421. doi:10.1007/978-3-030-75539-3_17' apa: 'Auerbach, B., Chakraborty, S., Klein, K., Pascual Perez, G., Pietrzak, K. Z., Walter, M., & Yeo, M. X. (2021). Inverse-Sybil attacks in automated contact tracing. In Topics in Cryptology – CT-RSA 2021 (Vol. 12704, pp. 399–421). Virtual Event: Springer Nature. https://doi.org/10.1007/978-3-030-75539-3_17' chicago: Auerbach, Benedikt, Suvradip Chakraborty, Karen Klein, Guillermo Pascual Perez, Krzysztof Z Pietrzak, Michael Walter, and Michelle X Yeo. “Inverse-Sybil Attacks in Automated Contact Tracing.” In Topics in Cryptology – CT-RSA 2021, 12704:399–421. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-75539-3_17. ieee: B. Auerbach et al., “Inverse-Sybil attacks in automated contact tracing,” in Topics in Cryptology – CT-RSA 2021, Virtual Event, 2021, vol. 12704, pp. 399–421. ista: 'Auerbach B, Chakraborty S, Klein K, Pascual Perez G, Pietrzak KZ, Walter M, Yeo MX. 2021. Inverse-Sybil attacks in automated contact tracing. Topics in Cryptology – CT-RSA 2021. CT-RSA: Cryptographers’ Track at the RSA Conference, LNCS, vol. 12704, 399–421.' mla: Auerbach, Benedikt, et al. “Inverse-Sybil Attacks in Automated Contact Tracing.” Topics in Cryptology – CT-RSA 2021, vol. 12704, Springer Nature, 2021, pp. 399–421, doi:10.1007/978-3-030-75539-3_17. short: B. Auerbach, S. Chakraborty, K. Klein, G. Pascual Perez, K.Z. Pietrzak, M. Walter, M.X. Yeo, in:, Topics in Cryptology – CT-RSA 2021, Springer Nature, 2021, pp. 399–421. conference: end_date: 2021-05-20 location: Virtual Event name: 'CT-RSA: Cryptographers’ Track at the RSA Conference' start_date: 2021-05-17 date_created: 2021-08-08T22:01:30Z date_published: 2021-05-11T00:00:00Z date_updated: 2023-02-23T14:09:56Z day: '11' department: - _id: KrPi - _id: GradSch doi: 10.1007/978-3-030-75539-3_17 ec_funded: 1 intvolume: ' 12704' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2020/670 month: '05' oa: 1 oa_version: Submitted Version page: 399-421 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: Topics in Cryptology – CT-RSA 2021 publication_identifier: eissn: - '16113349' isbn: - '9783030755386' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Inverse-Sybil attacks in automated contact tracing type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12704 year: '2021' ... --- _id: '9825' abstract: - lang: eng text: "The dual attack has long been considered a relevant attack on lattice-based cryptographic schemes relying on the hardness of learning with errors (LWE) and its structured variants. As solving LWE corresponds to finding a nearest point on a lattice, one may naturally wonder how efficient this dual approach is for solving more general closest vector problems, such as the classical closest vector problem (CVP), the variants bounded distance decoding (BDD) and approximate CVP, and preprocessing versions of these problems. While primal, sieving-based solutions to these problems (with preprocessing) were recently studied in a series of works on approximate Voronoi cells [Laa16b, DLdW19, Laa20, DLvW20], for the dual attack no such overview exists, especially for problems with preprocessing. With one of the take-away messages of the approximate Voronoi cell line of work being that primal attacks work well for approximate CVP(P) but scale poorly for BDD(P), one may further wonder if the dual attack suffers the same drawbacks, or if it is perhaps a better solution when trying to solve BDD(P).\r\n\r\nIn this work we provide an overview of cost estimates for dual algorithms for solving these “classical” closest lattice vector problems. Heuristically we expect to solve the search version of average-case CVPP in time and space 20.293\U0001D451+\U0001D45C(\U0001D451) \ in the single-target model. The distinguishing version of average-case CVPP, where we wish to distinguish between random targets and targets planted at distance (say) 0.99⋅\U0001D454\U0001D451 from the lattice, has the same complexity in the single-target model, but can be solved in time and space 20.195\U0001D451+\U0001D45C(\U0001D451) \ in the multi-target setting, when given a large number of targets from either target distribution. This suggests an inequivalence between distinguishing and searching, as we do not expect a similar improvement in the multi-target setting to hold for search-CVPP. We analyze three slightly different decoders, both for distinguishing and searching, and experimentally obtain concrete cost estimates for the dual attack in dimensions 50 to 80, which confirm our heuristic assumptions, and show that the hidden order terms in the asymptotic estimates are quite small.\r\n\r\nOur main take-away message is that the dual attack appears to mirror the approximate Voronoi cell line of work – whereas using approximate Voronoi cells works well for approximate CVP(P) but scales poorly for BDD(P), the dual approach scales well for BDD(P) instances but performs poorly on approximate CVP(P)." acknowledgement: The authors thank Sauvik Bhattacharya, L´eo Ducas, Rachel Player, and Christine van Vredendaal for early discussions on this topic and on preliminary results. The authors further thank the reviewers of CT-RSA 2021 for their valuable feedback. alternative_title: - LNCS article_processing_charge: No author: - first_name: Thijs full_name: Laarhoven, Thijs last_name: Laarhoven - first_name: Michael full_name: Walter, Michael id: 488F98B0-F248-11E8-B48F-1D18A9856A87 last_name: Walter orcid: 0000-0003-3186-2482 citation: ama: 'Laarhoven T, Walter M. Dual lattice attacks for closest vector problems (with preprocessing). In: Topics in Cryptology – CT-RSA 2021. Vol 12704. Springer Nature; 2021:478-502. doi:10.1007/978-3-030-75539-3_20' apa: 'Laarhoven, T., & Walter, M. (2021). Dual lattice attacks for closest vector problems (with preprocessing). In Topics in Cryptology – CT-RSA 2021 (Vol. 12704, pp. 478–502). Virtual Event: Springer Nature. https://doi.org/10.1007/978-3-030-75539-3_20' chicago: Laarhoven, Thijs, and Michael Walter. “Dual Lattice Attacks for Closest Vector Problems (with Preprocessing).” In Topics in Cryptology – CT-RSA 2021, 12704:478–502. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-75539-3_20. ieee: T. Laarhoven and M. Walter, “Dual lattice attacks for closest vector problems (with preprocessing),” in Topics in Cryptology – CT-RSA 2021, Virtual Event, 2021, vol. 12704, pp. 478–502. ista: 'Laarhoven T, Walter M. 2021. Dual lattice attacks for closest vector problems (with preprocessing). Topics in Cryptology – CT-RSA 2021. CT-RSA: Cryptographers’ Track at the RSA Conference, LNCS, vol. 12704, 478–502.' mla: Laarhoven, Thijs, and Michael Walter. “Dual Lattice Attacks for Closest Vector Problems (with Preprocessing).” Topics in Cryptology – CT-RSA 2021, vol. 12704, Springer Nature, 2021, pp. 478–502, doi:10.1007/978-3-030-75539-3_20. short: T. Laarhoven, M. Walter, in:, Topics in Cryptology – CT-RSA 2021, Springer Nature, 2021, pp. 478–502. conference: end_date: 2021-05-20 location: Virtual Event name: 'CT-RSA: Cryptographers’ Track at the RSA Conference' start_date: 2021-05-17 date_created: 2021-08-08T22:01:30Z date_published: 2021-05-11T00:00:00Z date_updated: 2023-02-23T14:09:54Z day: '11' department: - _id: KrPi doi: 10.1007/978-3-030-75539-3_20 intvolume: ' 12704' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2021/557 month: '05' oa: 1 oa_version: Preprint page: 478-502 publication: Topics in Cryptology – CT-RSA 2021 publication_identifier: eissn: - '16113349' isbn: - '9783030755386' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Dual lattice attacks for closest vector problems (with preprocessing) type: conference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 12704 year: '2021' ... --- _id: '9823' abstract: - lang: eng text: "Approximate agreement is one of the few variants of consensus that can be solved in a wait-free manner in asynchronous systems where processes communicate by reading and writing to shared memory. In this work, we consider a natural generalisation of approximate agreement on arbitrary undirected connected graphs. Each process is given a vertex of the graph as input and, if non-faulty, must output a vertex such that\r\nall the outputs are within distance 1 of one another, and\r\n\r\neach output value lies on a shortest path between two input values.\r\n\r\nFrom prior work, it is known that there is no wait-free algorithm among \U0001D45B≥3 processes for this problem on any cycle of length \U0001D450≥4 , by reduction from 2-set agreement (Castañeda et al. 2018).\r\n\r\nIn this work, we investigate the solvability and complexity of this task on general graphs. We give a new, direct proof of the impossibility of approximate agreement on cycles of length \U0001D450≥4 , via a generalisation of Sperner’s Lemma to convex polygons. We also extend the reduction from 2-set agreement to a larger class of graphs, showing that approximate agreement on these graphs is unsolvable. On the positive side, we present a wait-free algorithm for a class of graphs that properly contains the class of chordal graphs." alternative_title: - LNCS article_processing_charge: No author: - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Faith full_name: Ellen, Faith last_name: Ellen - first_name: Joel full_name: Rybicki, Joel id: 334EFD2E-F248-11E8-B48F-1D18A9856A87 last_name: Rybicki orcid: 0000-0002-6432-6646 citation: ama: 'Alistarh D-A, Ellen F, Rybicki J. Wait-free approximate agreement on graphs. In: Structural Information and Communication Complexity. Vol 12810. Springer Nature; 2021:87-105. doi:10.1007/978-3-030-79527-6_6' apa: 'Alistarh, D.-A., Ellen, F., & Rybicki, J. (2021). Wait-free approximate agreement on graphs. In Structural Information and Communication Complexity (Vol. 12810, pp. 87–105). Wrocław, Poland: Springer Nature. https://doi.org/10.1007/978-3-030-79527-6_6' chicago: Alistarh, Dan-Adrian, Faith Ellen, and Joel Rybicki. “Wait-Free Approximate Agreement on Graphs.” In Structural Information and Communication Complexity, 12810:87–105. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-79527-6_6. ieee: D.-A. Alistarh, F. Ellen, and J. Rybicki, “Wait-free approximate agreement on graphs,” in Structural Information and Communication Complexity, Wrocław, Poland, 2021, vol. 12810, pp. 87–105. ista: 'Alistarh D-A, Ellen F, Rybicki J. 2021. Wait-free approximate agreement on graphs. Structural Information and Communication Complexity. SIROCCO: Structural Information and Communication Complexity, LNCS, vol. 12810, 87–105.' mla: Alistarh, Dan-Adrian, et al. “Wait-Free Approximate Agreement on Graphs.” Structural Information and Communication Complexity, vol. 12810, Springer Nature, 2021, pp. 87–105, doi:10.1007/978-3-030-79527-6_6. short: D.-A. Alistarh, F. Ellen, J. Rybicki, in:, Structural Information and Communication Complexity, Springer Nature, 2021, pp. 87–105. conference: end_date: 2021-07-01 location: Wrocław, Poland name: 'SIROCCO: Structural Information and Communication Complexity' start_date: 2021-06-28 date_created: 2021-08-08T22:01:29Z date_published: 2021-06-20T00:00:00Z date_updated: 2023-02-23T14:09:49Z day: '20' department: - _id: DaAl doi: 10.1007/978-3-030-79527-6_6 external_id: arxiv: - '2103.08949' intvolume: ' 12810' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2103.08949 month: '06' oa: 1 oa_version: Preprint page: 87-105 publication: Structural Information and Communication Complexity publication_identifier: eissn: - '16113349' isbn: - '9783030795269' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Wait-free approximate agreement on graphs type: conference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 12810 year: '2021' ... --- _id: '9824' abstract: - lang: eng text: We define a new compact coordinate system in which each integer triplet addresses a voxel in the BCC grid, and we investigate some of its properties. We propose a characterization of 3D discrete analytical planes with their topological features (in the Cartesian and in the new coordinate system) such as the interrelation between the thickness of the plane and the separability constraint we aim to obtain. acknowledgement: 'This work has been partially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia through the project no. 451-03-68/2020-14/200156: “Innovative scientific and artistic research from the FTS (activity) domain” (LČ), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant no. 788183 (RB), and the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, Austrian Science Fund (FWF), grant no. I 02979-N35 (RB).' alternative_title: - LNCS article_processing_charge: No author: - first_name: Lidija full_name: Čomić, Lidija last_name: Čomić - first_name: Rita full_name: Zrour, Rita last_name: Zrour - first_name: Gaëlle full_name: Largeteau-Skapin, Gaëlle last_name: Largeteau-Skapin - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Eric full_name: Andres, Eric last_name: Andres citation: ama: 'Čomić L, Zrour R, Largeteau-Skapin G, Biswas R, Andres E. Body centered cubic grid - coordinate system and discrete analytical plane definition. In: Discrete Geometry and Mathematical Morphology. Vol 12708. Springer Nature; 2021:152-163. doi:10.1007/978-3-030-76657-3_10' apa: 'Čomić, L., Zrour, R., Largeteau-Skapin, G., Biswas, R., & Andres, E. (2021). Body centered cubic grid - coordinate system and discrete analytical plane definition. In Discrete Geometry and Mathematical Morphology (Vol. 12708, pp. 152–163). Uppsala, Sweden: Springer Nature. https://doi.org/10.1007/978-3-030-76657-3_10' chicago: Čomić, Lidija, Rita Zrour, Gaëlle Largeteau-Skapin, Ranita Biswas, and Eric Andres. “Body Centered Cubic Grid - Coordinate System and Discrete Analytical Plane Definition.” In Discrete Geometry and Mathematical Morphology, 12708:152–63. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-76657-3_10. ieee: L. Čomić, R. Zrour, G. Largeteau-Skapin, R. Biswas, and E. Andres, “Body centered cubic grid - coordinate system and discrete analytical plane definition,” in Discrete Geometry and Mathematical Morphology, Uppsala, Sweden, 2021, vol. 12708, pp. 152–163. ista: 'Čomić L, Zrour R, Largeteau-Skapin G, Biswas R, Andres E. 2021. Body centered cubic grid - coordinate system and discrete analytical plane definition. Discrete Geometry and Mathematical Morphology. DGMM: International Conference on Discrete Geometry and Mathematical Morphology, LNCS, vol. 12708, 152–163.' mla: Čomić, Lidija, et al. “Body Centered Cubic Grid - Coordinate System and Discrete Analytical Plane Definition.” Discrete Geometry and Mathematical Morphology, vol. 12708, Springer Nature, 2021, pp. 152–63, doi:10.1007/978-3-030-76657-3_10. short: L. Čomić, R. Zrour, G. Largeteau-Skapin, R. Biswas, E. Andres, in:, Discrete Geometry and Mathematical Morphology, Springer Nature, 2021, pp. 152–163. conference: end_date: 2021-05-27 location: Uppsala, Sweden name: 'DGMM: International Conference on Discrete Geometry and Mathematical Morphology' start_date: 2021-05-24 date_created: 2021-08-08T22:01:29Z date_published: 2021-05-16T00:00:00Z date_updated: 2022-05-31T06:58:21Z day: '16' department: - _id: HeEd doi: 10.1007/978-3-030-76657-3_10 ec_funded: 1 intvolume: ' 12708' language: - iso: eng month: '05' oa_version: None page: 152-163 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Discrete Geometry and Mathematical Morphology publication_identifier: eissn: - '16113349' isbn: - '9783030766566' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Body centered cubic grid - coordinate system and discrete analytical plane definition type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12708 year: '2021' ... --- _id: '8322' abstract: - lang: eng text: "Reverse firewalls were introduced at Eurocrypt 2015 by Miro-nov and Stephens-Davidowitz, as a method for protecting cryptographic protocols against attacks on the devices of the honest parties. In a nutshell: a reverse firewall is placed outside of a device and its goal is to “sanitize” the messages sent by it, in such a way that a malicious device cannot leak its secrets to the outside world. It is typically assumed that the cryptographic devices are attacked in a “functionality-preserving way” (i.e. informally speaking, the functionality of the protocol remains unchanged under this attacks). In their paper, Mironov and Stephens-Davidowitz construct a protocol for passively-secure two-party computations with firewalls, leaving extension of this result to stronger models as an open question.\r\nIn this paper, we address this problem by constructing a protocol for secure computation with firewalls that has two main advantages over the original protocol from Eurocrypt 2015. Firstly, it is a multiparty computation protocol (i.e. it works for an arbitrary number n of the parties, and not just for 2). Secondly, it is secure in much stronger corruption settings, namely in the active corruption model. More precisely: we consider an adversary that can fully corrupt up to \U0001D45B−1 parties, while the remaining parties are corrupt in a functionality-preserving way.\r\nOur core techniques are: malleable commitments and malleable non-interactive zero-knowledge, which in particular allow us to create a novel protocol for multiparty augmented coin-tossing into the well with reverse firewalls (that is based on a protocol of Lindell from Crypto 2001)." acknowledgement: We would like to thank the anonymous reviewers for their helpful comments and suggestions. The work was initiated while the first author was in IIT Madras, India. Part of this work was done while the author was visiting the University of Warsaw. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (682815 - TOCNeT) and from the Foundation for Polish Science under grant TEAM/2016-1/4 founded within the UE 2014–2020 Smart Growth Operational Program. The last author was supported by the Independent Research Fund Denmark project BETHE and the Concordium Blockchain Research Center, Aarhus University, Denmark. alternative_title: - LNCS article_processing_charge: No author: - first_name: Suvradip full_name: Chakraborty, Suvradip id: B9CD0494-D033-11E9-B219-A439E6697425 last_name: Chakraborty - first_name: Stefan full_name: Dziembowski, Stefan last_name: Dziembowski - first_name: Jesper Buus full_name: Nielsen, Jesper Buus last_name: Nielsen citation: ama: 'Chakraborty S, Dziembowski S, Nielsen JB. Reverse firewalls for actively secure MPCs. In: Advances in Cryptology – CRYPTO 2020. Vol 12171. Springer Nature; 2020:732-762. doi:10.1007/978-3-030-56880-1_26' apa: 'Chakraborty, S., Dziembowski, S., & Nielsen, J. B. (2020). Reverse firewalls for actively secure MPCs. In Advances in Cryptology – CRYPTO 2020 (Vol. 12171, pp. 732–762). Santa Barbara, CA, United States: Springer Nature. https://doi.org/10.1007/978-3-030-56880-1_26' chicago: Chakraborty, Suvradip, Stefan Dziembowski, and Jesper Buus Nielsen. “Reverse Firewalls for Actively Secure MPCs.” In Advances in Cryptology – CRYPTO 2020, 12171:732–62. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-56880-1_26. ieee: S. Chakraborty, S. Dziembowski, and J. B. Nielsen, “Reverse firewalls for actively secure MPCs,” in Advances in Cryptology – CRYPTO 2020, Santa Barbara, CA, United States, 2020, vol. 12171, pp. 732–762. ista: 'Chakraborty S, Dziembowski S, Nielsen JB. 2020. Reverse firewalls for actively secure MPCs. Advances in Cryptology – CRYPTO 2020. CRYPTO: Annual International Cryptology Conference, LNCS, vol. 12171, 732–762.' mla: Chakraborty, Suvradip, et al. “Reverse Firewalls for Actively Secure MPCs.” Advances in Cryptology – CRYPTO 2020, vol. 12171, Springer Nature, 2020, pp. 732–62, doi:10.1007/978-3-030-56880-1_26. short: S. Chakraborty, S. Dziembowski, J.B. Nielsen, in:, Advances in Cryptology – CRYPTO 2020, Springer Nature, 2020, pp. 732–762. conference: end_date: 2020-08-21 location: Santa Barbara, CA, United States name: 'CRYPTO: Annual International Cryptology Conference' start_date: 2020-08-17 date_created: 2020-08-30T22:01:12Z date_published: 2020-08-10T00:00:00Z date_updated: 2021-01-12T08:18:08Z day: '10' department: - _id: KrPi doi: 10.1007/978-3-030-56880-1_26 ec_funded: 1 intvolume: ' 12171' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2019/1317 month: '08' oa: 1 oa_version: Preprint page: 732-762 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: Advances in Cryptology – CRYPTO 2020 publication_identifier: eissn: - '16113349' isbn: - '9783030568795' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Reverse firewalls for actively secure MPCs type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12171 year: '2020' ... --- _id: '8339' abstract: - lang: eng text: "Discrete Gaussian distributions over lattices are central to lattice-based cryptography, and to the computational and mathematical aspects of lattices more broadly. The literature contains a wealth of useful theorems about the behavior of discrete Gaussians under convolutions and related operations. Yet despite their structural similarities, most of these theorems are formally incomparable, and their proofs tend to be monolithic and written nearly “from scratch,” making them unnecessarily hard to verify, understand, and extend.\r\nIn this work we present a modular framework for analyzing linear operations on discrete Gaussian distributions. The framework abstracts away the particulars of Gaussians, and usually reduces proofs to the choice of appropriate linear transformations and elementary linear algebra. To showcase the approach, we establish several general properties of discrete Gaussians, and show how to obtain all prior convolution theorems (along with some new ones) as straightforward corollaries. As another application, we describe a self-reduction for Learning With Errors (LWE) that uses a fixed number of samples to generate an unlimited number of additional ones (having somewhat larger error). The distinguishing features of our reduction are its simple analysis in our framework, and its exclusive use of discrete Gaussians without any loss in parameters relative to a prior mixed discrete-and-continuous approach.\r\nAs a contribution of independent interest, for subgaussian random matrices we prove a singular value concentration bound with explicitly stated constants, and we give tighter heuristics for specific distributions that are commonly used for generating lattice trapdoors. These bounds yield improvements in the concrete bit-security estimates for trapdoor lattice cryptosystems." alternative_title: - LNCS article_processing_charge: No author: - first_name: Nicholas full_name: Genise, Nicholas last_name: Genise - first_name: Daniele full_name: Micciancio, Daniele last_name: Micciancio - first_name: Chris full_name: Peikert, Chris last_name: Peikert - first_name: Michael full_name: Walter, Michael id: 488F98B0-F248-11E8-B48F-1D18A9856A87 last_name: Walter orcid: 0000-0003-3186-2482 citation: ama: 'Genise N, Micciancio D, Peikert C, Walter M. Improved discrete Gaussian and subgaussian analysis for lattice cryptography. In: 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography. Vol 12110. Springer Nature; 2020:623-651. doi:10.1007/978-3-030-45374-9_21' apa: 'Genise, N., Micciancio, D., Peikert, C., & Walter, M. (2020). Improved discrete Gaussian and subgaussian analysis for lattice cryptography. In 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography (Vol. 12110, pp. 623–651). Edinburgh, United Kingdom: Springer Nature. https://doi.org/10.1007/978-3-030-45374-9_21' chicago: Genise, Nicholas, Daniele Micciancio, Chris Peikert, and Michael Walter. “Improved Discrete Gaussian and Subgaussian Analysis for Lattice Cryptography.” In 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, 12110:623–51. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-45374-9_21. ieee: N. Genise, D. Micciancio, C. Peikert, and M. Walter, “Improved discrete Gaussian and subgaussian analysis for lattice cryptography,” in 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, Edinburgh, United Kingdom, 2020, vol. 12110, pp. 623–651. ista: 'Genise N, Micciancio D, Peikert C, Walter M. 2020. Improved discrete Gaussian and subgaussian analysis for lattice cryptography. 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography. PKC: Public-Key Cryptography, LNCS, vol. 12110, 623–651.' mla: Genise, Nicholas, et al. “Improved Discrete Gaussian and Subgaussian Analysis for Lattice Cryptography.” 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, vol. 12110, Springer Nature, 2020, pp. 623–51, doi:10.1007/978-3-030-45374-9_21. short: N. Genise, D. Micciancio, C. Peikert, M. Walter, in:, 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, Springer Nature, 2020, pp. 623–651. conference: end_date: 2020-05-07 location: Edinburgh, United Kingdom name: 'PKC: Public-Key Cryptography' start_date: 2020-05-04 date_created: 2020-09-06T22:01:13Z date_published: 2020-05-15T00:00:00Z date_updated: 2023-02-23T13:31:06Z day: '15' department: - _id: KrPi doi: 10.1007/978-3-030-45374-9_21 ec_funded: 1 intvolume: ' 12110' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2020/337 month: '05' oa: 1 oa_version: Preprint page: 623-651 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography publication_identifier: eissn: - '16113349' isbn: - '9783030453732' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Improved discrete Gaussian and subgaussian analysis for lattice cryptography type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12110 year: '2020' ... --- _id: '7808' abstract: - lang: eng text: Quantization converts neural networks into low-bit fixed-point computations which can be carried out by efficient integer-only hardware, and is standard practice for the deployment of neural networks on real-time embedded devices. However, like their real-numbered counterpart, quantized networks are not immune to malicious misclassification caused by adversarial attacks. We investigate how quantization affects a network’s robustness to adversarial attacks, which is a formal verification question. We show that neither robustness nor non-robustness are monotonic with changing the number of bits for the representation and, also, neither are preserved by quantization from a real-numbered network. For this reason, we introduce a verification method for quantized neural networks which, using SMT solving over bit-vectors, accounts for their exact, bit-precise semantics. We built a tool and analyzed the effect of quantization on a classifier for the MNIST dataset. We demonstrate that, compared to our method, existing methods for the analysis of real-numbered networks often derive false conclusions about their quantizations, both when determining robustness and when detecting attacks, and that existing methods for quantized networks often miss attacks. Furthermore, we applied our method beyond robustness, showing how the number of bits in quantization enlarges the gender bias of a predictor for students’ grades. alternative_title: - LNCS article_processing_charge: No author: - first_name: Mirco full_name: Giacobbe, Mirco id: 3444EA5E-F248-11E8-B48F-1D18A9856A87 last_name: Giacobbe orcid: 0000-0001-8180-0904 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner citation: ama: 'Giacobbe M, Henzinger TA, Lechner M. How many bits does it take to quantize your neural network? In: International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Vol 12079. Springer Nature; 2020:79-97. doi:10.1007/978-3-030-45237-7_5' apa: 'Giacobbe, M., Henzinger, T. A., & Lechner, M. (2020). How many bits does it take to quantize your neural network? In International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Vol. 12079, pp. 79–97). Dublin, Ireland: Springer Nature. https://doi.org/10.1007/978-3-030-45237-7_5' chicago: Giacobbe, Mirco, Thomas A Henzinger, and Mathias Lechner. “How Many Bits Does It Take to Quantize Your Neural Network?” In International Conference on Tools and Algorithms for the Construction and Analysis of Systems, 12079:79–97. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-45237-7_5. ieee: M. Giacobbe, T. A. Henzinger, and M. Lechner, “How many bits does it take to quantize your neural network?,” in International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Dublin, Ireland, 2020, vol. 12079, pp. 79–97. ista: 'Giacobbe M, Henzinger TA, Lechner M. 2020. How many bits does it take to quantize your neural network? International Conference on Tools and Algorithms for the Construction and Analysis of Systems. TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 12079, 79–97.' mla: Giacobbe, Mirco, et al. “How Many Bits Does It Take to Quantize Your Neural Network?” International Conference on Tools and Algorithms for the Construction and Analysis of Systems, vol. 12079, Springer Nature, 2020, pp. 79–97, doi:10.1007/978-3-030-45237-7_5. short: M. Giacobbe, T.A. Henzinger, M. Lechner, in:, International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Springer Nature, 2020, pp. 79–97. conference: end_date: 2020-04-30 location: Dublin, Ireland name: 'TACAS: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2020-04-25 date_created: 2020-05-10T22:00:49Z date_published: 2020-04-17T00:00:00Z date_updated: 2023-06-23T07:01:11Z day: '17' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-030-45237-7_5 file: - access_level: open_access checksum: f19905a42891fe5ce93d69143fa3f6fb content_type: application/pdf creator: dernst date_created: 2020-05-26T12:48:15Z date_updated: 2020-07-14T12:48:03Z file_id: '7893' file_name: 2020_TACAS_Giacobbe.pdf file_size: 2744030 relation: main_file file_date_updated: 2020-07-14T12:48:03Z has_accepted_license: '1' intvolume: ' 12079' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 79-97 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: International Conference on Tools and Algorithms for the Construction and Analysis of Systems publication_identifier: eissn: - '16113349' isbn: - '9783030452360' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '11362' relation: dissertation_contains status: public scopus_import: 1 status: public title: How many bits does it take to quantize your neural network? tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12079 year: '2020' ... --- _id: '8194' abstract: - lang: eng text: 'Fixed-point arithmetic is a popular alternative to floating-point arithmetic on embedded systems. Existing work on the verification of fixed-point programs relies on custom formalizations of fixed-point arithmetic, which makes it hard to compare the described techniques or reuse the implementations. In this paper, we address this issue by proposing and formalizing an SMT theory of fixed-point arithmetic. We present an intuitive yet comprehensive syntax of the fixed-point theory, and provide formal semantics for it based on rational arithmetic. We also describe two decision procedures for this theory: one based on the theory of bit-vectors and the other on the theory of reals. We implement the two decision procedures, and evaluate our implementations using existing mature SMT solvers on a benchmark suite we created. Finally, we perform a case study of using the theory we propose to verify properties of quantized neural networks.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Marek full_name: Baranowski, Marek last_name: Baranowski - first_name: Shaobo full_name: He, Shaobo last_name: He - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Thanh Son full_name: Nguyen, Thanh Son last_name: Nguyen - first_name: Zvonimir full_name: Rakamarić, Zvonimir last_name: Rakamarić citation: ama: 'Baranowski M, He S, Lechner M, Nguyen TS, Rakamarić Z. An SMT theory of fixed-point arithmetic. In: Automated Reasoning. Vol 12166. Springer Nature; 2020:13-31. doi:10.1007/978-3-030-51074-9_2' apa: 'Baranowski, M., He, S., Lechner, M., Nguyen, T. S., & Rakamarić, Z. (2020). An SMT theory of fixed-point arithmetic. In Automated Reasoning (Vol. 12166, pp. 13–31). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-030-51074-9_2' chicago: Baranowski, Marek, Shaobo He, Mathias Lechner, Thanh Son Nguyen, and Zvonimir Rakamarić. “An SMT Theory of Fixed-Point Arithmetic.” In Automated Reasoning, 12166:13–31. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-51074-9_2. ieee: M. Baranowski, S. He, M. Lechner, T. S. Nguyen, and Z. Rakamarić, “An SMT theory of fixed-point arithmetic,” in Automated Reasoning, Paris, France, 2020, vol. 12166, pp. 13–31. ista: 'Baranowski M, He S, Lechner M, Nguyen TS, Rakamarić Z. 2020. An SMT theory of fixed-point arithmetic. Automated Reasoning. IJCAR: International Joint Conference on Automated Reasoning, LNCS, vol. 12166, 13–31.' mla: Baranowski, Marek, et al. “An SMT Theory of Fixed-Point Arithmetic.” Automated Reasoning, vol. 12166, Springer Nature, 2020, pp. 13–31, doi:10.1007/978-3-030-51074-9_2. short: M. Baranowski, S. He, M. Lechner, T.S. Nguyen, Z. Rakamarić, in:, Automated Reasoning, Springer Nature, 2020, pp. 13–31. conference: end_date: 2020-07-04 location: Paris, France name: 'IJCAR: International Joint Conference on Automated Reasoning' start_date: 2020-07-01 date_created: 2020-08-02T22:00:59Z date_published: 2020-06-24T00:00:00Z date_updated: 2023-08-22T08:27:25Z day: '24' department: - _id: ToHe doi: 10.1007/978-3-030-51074-9_2 external_id: isi: - '000884318000002' intvolume: ' 12166' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/978-3-030-51074-9_2 month: '06' oa: 1 oa_version: Published Version page: 13-31 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Automated Reasoning publication_identifier: eissn: - '16113349' isbn: - '9783030510732' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: An SMT theory of fixed-point arithmetic type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12166 year: '2020' ... --- _id: '8987' abstract: - lang: eng text: "Currently several projects aim at designing and implementing protocols for privacy preserving automated contact tracing to help fight the current pandemic. Those proposal are quite similar, and in their most basic form basically propose an app for mobile phones which broadcasts frequently changing pseudorandom identifiers via (low energy) Bluetooth, and at the same time, the app stores IDs broadcast by phones in its proximity. Only if a user is tested positive, they upload either the beacons they did broadcast (which is the case in decentralized proposals as DP-3T, east and west coast PACT or Covid watch) or received (as in Popp-PT or ROBERT) during the last two weeks or so.\r\n\r\nVaudenay [eprint 2020/399] observes that this basic scheme (he considers the DP-3T proposal) succumbs to relay and even replay attacks, and proposes more complex interactive schemes which prevent those attacks without giving up too many privacy aspects. Unfortunately interaction is problematic for this application for efficiency and security reasons. The countermeasures that have been suggested so far are either not practical or give up on key privacy aspects. We propose a simple non-interactive variant of the basic protocol that\r\n(security) Provably prevents replay and (if location data is available) relay attacks.\r\n(privacy) The data of all parties (even jointly) reveals no information on the location or time where encounters happened.\r\n(efficiency) The broadcasted message can fit into 128 bits and uses only basic crypto (commitments and secret key authentication).\r\n\r\nTowards this end we introduce the concept of “delayed authentication”, which basically is a message authentication code where verification can be done in two steps, where the first doesn’t require the key, and the second doesn’t require the message." article_processing_charge: No author: - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 citation: ama: 'Pietrzak KZ. Delayed authentication: Preventing replay and relay attacks in private contact tracing. In: Progress in Cryptology. Vol 12578. LNCS. Springer Nature; 2020:3-15. doi:10.1007/978-3-030-65277-7_1' apa: 'Pietrzak, K. Z. (2020). Delayed authentication: Preventing replay and relay attacks in private contact tracing. In Progress in Cryptology (Vol. 12578, pp. 3–15). Bangalore, India: Springer Nature. https://doi.org/10.1007/978-3-030-65277-7_1' chicago: 'Pietrzak, Krzysztof Z. “Delayed Authentication: Preventing Replay and Relay Attacks in Private Contact Tracing.” In Progress in Cryptology, 12578:3–15. LNCS. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-65277-7_1.' ieee: 'K. Z. Pietrzak, “Delayed authentication: Preventing replay and relay attacks in private contact tracing,” in Progress in Cryptology, Bangalore, India, 2020, vol. 12578, pp. 3–15.' ista: 'Pietrzak KZ. 2020. Delayed authentication: Preventing replay and relay attacks in private contact tracing. Progress in Cryptology. INDOCRYPT: International Conference on Cryptology in IndiaLNCS vol. 12578, 3–15.' mla: 'Pietrzak, Krzysztof Z. “Delayed Authentication: Preventing Replay and Relay Attacks in Private Contact Tracing.” Progress in Cryptology, vol. 12578, Springer Nature, 2020, pp. 3–15, doi:10.1007/978-3-030-65277-7_1.' short: K.Z. Pietrzak, in:, Progress in Cryptology, Springer Nature, 2020, pp. 3–15. conference: end_date: 2020-12-16 location: Bangalore, India name: 'INDOCRYPT: International Conference on Cryptology in India' start_date: 2020-12-13 date_created: 2021-01-03T23:01:23Z date_published: 2020-12-08T00:00:00Z date_updated: 2023-08-24T11:08:58Z day: '08' department: - _id: KrPi doi: 10.1007/978-3-030-65277-7_1 ec_funded: 1 external_id: isi: - '000927592800001' intvolume: ' 12578' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2020/418 month: '12' oa: 1 oa_version: Preprint page: 3-15 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: Progress in Cryptology publication_identifier: eissn: - '16113349' isbn: - '9783030652760' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: LNCS status: public title: 'Delayed authentication: Preventing replay and relay attacks in private contact tracing' type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12578 year: '2020' ... --- _id: '8272' abstract: - lang: eng text: We study turn-based stochastic zero-sum games with lexicographic preferences over reachability and safety objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both randomness as well as angelic and demonic non-determinism. Lexicographic order allows to consider multiple objectives with a strict preference order over the satisfaction of the objectives. To the best of our knowledge, stochastic games with lexicographic objectives have not been studied before. We establish determinacy of such games and present strategy and computational complexity results. For strategy complexity, we show that lexicographically optimal strategies exist that are deterministic and memory is only required to remember the already satisfied and violated objectives. For a constant number of objectives, we show that the relevant decision problem is in NP∩coNP , matching the current known bound for single objectives; and in general the decision problem is PSPACE -hard and can be solved in NEXPTIME∩coNEXPTIME . We present an algorithm that computes the lexicographically optimal strategies via a reduction to computation of optimal strategies in a sequence of single-objectives games. We have implemented our algorithm and report experimental results on various case studies. alternative_title: - LNCS article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Joost P full_name: Katoen, Joost P id: 4524F760-F248-11E8-B48F-1D18A9856A87 last_name: Katoen - first_name: Maximilian full_name: Weininger, Maximilian last_name: Weininger - first_name: Tobias full_name: Winkler, Tobias last_name: Winkler citation: ama: 'Chatterjee K, Katoen JP, Weininger M, Winkler T. Stochastic games with lexicographic reachability-safety objectives. In: International Conference on Computer Aided Verification. Vol 12225. Springer Nature; 2020:398-420. doi:10.1007/978-3-030-53291-8_21' apa: Chatterjee, K., Katoen, J. P., Weininger, M., & Winkler, T. (2020). Stochastic games with lexicographic reachability-safety objectives. In International Conference on Computer Aided Verification (Vol. 12225, pp. 398–420). Springer Nature. https://doi.org/10.1007/978-3-030-53291-8_21 chicago: Chatterjee, Krishnendu, Joost P Katoen, Maximilian Weininger, and Tobias Winkler. “Stochastic Games with Lexicographic Reachability-Safety Objectives.” In International Conference on Computer Aided Verification, 12225:398–420. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-53291-8_21. ieee: K. Chatterjee, J. P. Katoen, M. Weininger, and T. Winkler, “Stochastic games with lexicographic reachability-safety objectives,” in International Conference on Computer Aided Verification, 2020, vol. 12225, pp. 398–420. ista: 'Chatterjee K, Katoen JP, Weininger M, Winkler T. 2020. Stochastic games with lexicographic reachability-safety objectives. International Conference on Computer Aided Verification. CAV: Computer Aided Verification, LNCS, vol. 12225, 398–420.' mla: Chatterjee, Krishnendu, et al. “Stochastic Games with Lexicographic Reachability-Safety Objectives.” International Conference on Computer Aided Verification, vol. 12225, Springer Nature, 2020, pp. 398–420, doi:10.1007/978-3-030-53291-8_21. short: K. Chatterjee, J.P. Katoen, M. Weininger, T. Winkler, in:, International Conference on Computer Aided Verification, Springer Nature, 2020, pp. 398–420. conference: name: 'CAV: Computer Aided Verification' date_created: 2020-08-16T22:00:58Z date_published: 2020-07-14T00:00:00Z date_updated: 2023-10-03T11:36:13Z day: '14' ddc: - '000' department: - _id: KrCh doi: 10.1007/978-3-030-53291-8_21 ec_funded: 1 external_id: arxiv: - '2005.04018' isi: - '000695272500021' file: - access_level: open_access checksum: 093d4788d7d5b2ce0ffe64fbe7820043 content_type: application/pdf creator: dernst date_created: 2020-08-17T11:32:44Z date_updated: 2020-08-17T11:32:44Z file_id: '8276' file_name: 2020_LNCS_CAV_Chatterjee.pdf file_size: 625056 relation: main_file success: 1 file_date_updated: 2020-08-17T11:32:44Z has_accepted_license: '1' intvolume: ' 12225' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 398-420 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification publication: International Conference on Computer Aided Verification publication_identifier: eissn: - '16113349' isbn: - '9783030532901' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12738' relation: later_version status: public scopus_import: '1' status: public title: Stochastic games with lexicographic reachability-safety objectives tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12225 year: '2020' ... --- _id: '7810' abstract: - lang: eng text: "Interprocedural data-flow analyses form an expressive and useful paradigm of numerous static analysis applications, such as live variables analysis, alias analysis and null pointers analysis. The most widely-used framework for interprocedural data-flow analysis is IFDS, which encompasses distributive data-flow functions over a finite domain. On-demand data-flow analyses restrict the focus of the analysis on specific program locations and data facts. This setting provides a natural split between (i) an offline (or preprocessing) phase, where the program is partially analyzed and analysis summaries are created, and (ii) an online (or query) phase, where analysis queries arrive on demand and the summaries are used to speed up answering queries.\r\nIn this work, we consider on-demand IFDS analyses where the queries concern program locations of the same procedure (aka same-context queries). We exploit the fact that flow graphs of programs have low treewidth to develop faster algorithms that are space and time optimal for many common data-flow analyses, in both the preprocessing and the query phase. We also use treewidth to develop query solutions that are embarrassingly parallelizable, i.e. the total work for answering each query is split to a number of threads such that each thread performs only a constant amount of work. Finally, we implement a static analyzer based on our algorithms, and perform a series of on-demand analysis experiments on standard benchmarks. Our experimental results show a drastic speed-up of the queries after only a lightweight preprocessing phase, which significantly outperforms existing techniques." alternative_title: - LNCS article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: 'Chatterjee K, Goharshady AK, Ibsen-Jensen R, Pavlogiannis A. Optimal and perfectly parallel algorithms for on-demand data-flow analysis. In: European Symposium on Programming. Vol 12075. Springer Nature; 2020:112-140. doi:10.1007/978-3-030-44914-8_5' apa: 'Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., & Pavlogiannis, A. (2020). Optimal and perfectly parallel algorithms for on-demand data-flow analysis. In European Symposium on Programming (Vol. 12075, pp. 112–140). Dublin, Ireland: Springer Nature. https://doi.org/10.1007/978-3-030-44914-8_5' chicago: Chatterjee, Krishnendu, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. “Optimal and Perfectly Parallel Algorithms for On-Demand Data-Flow Analysis.” In European Symposium on Programming, 12075:112–40. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-44914-8_5. ieee: K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and A. Pavlogiannis, “Optimal and perfectly parallel algorithms for on-demand data-flow analysis,” in European Symposium on Programming, Dublin, Ireland, 2020, vol. 12075, pp. 112–140. ista: 'Chatterjee K, Goharshady AK, Ibsen-Jensen R, Pavlogiannis A. 2020. Optimal and perfectly parallel algorithms for on-demand data-flow analysis. European Symposium on Programming. ESOP: Programming Languages and Systems, LNCS, vol. 12075, 112–140.' mla: Chatterjee, Krishnendu, et al. “Optimal and Perfectly Parallel Algorithms for On-Demand Data-Flow Analysis.” European Symposium on Programming, vol. 12075, Springer Nature, 2020, pp. 112–40, doi:10.1007/978-3-030-44914-8_5. short: K. Chatterjee, A.K. Goharshady, R. Ibsen-Jensen, A. Pavlogiannis, in:, European Symposium on Programming, Springer Nature, 2020, pp. 112–140. conference: end_date: 2020-04-30 location: Dublin, Ireland name: 'ESOP: Programming Languages and Systems' start_date: 2020-04-25 date_created: 2020-05-10T22:00:50Z date_published: 2020-04-18T00:00:00Z date_updated: 2024-03-27T23:30:33Z day: '18' ddc: - '000' department: - _id: KrCh doi: 10.1007/978-3-030-44914-8_5 external_id: isi: - '000681656800005' file: - access_level: open_access checksum: 8618b80f4cf7b39a60e61a6445ad9807 content_type: application/pdf creator: dernst date_created: 2020-05-26T13:34:48Z date_updated: 2020-07-14T12:48:03Z file_id: '7895' file_name: 2020_LNCS_Chatterjee.pdf file_size: 651250 relation: main_file file_date_updated: 2020-07-14T12:48:03Z has_accepted_license: '1' intvolume: ' 12075' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 112-140 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 266EEEC0-B435-11E9-9278-68D0E5697425 name: Quantitative Game-theoretic Analysis of Blockchain Applications and Smart Contracts - _id: 267066CE-B435-11E9-9278-68D0E5697425 name: Quantitative Analysis of Probablistic Systems with a focus on Crypto-currencies publication: European Symposium on Programming publication_identifier: eissn: - '16113349' isbn: - '9783030449131' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '8934' relation: dissertation_contains status: public scopus_import: '1' status: public title: Optimal and perfectly parallel algorithms for on-demand data-flow analysis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12075 year: '2020' ... --- _id: '7183' abstract: - lang: eng text: 'A probabilistic vector addition system with states (pVASS) is a finite state Markov process augmented with non-negative integer counters that can be incremented or decremented during each state transition, blocking any behaviour that would cause a counter to decrease below zero. The pVASS can be used as abstractions of probabilistic programs with many decidable properties. The use of pVASS as abstractions requires the presence of nondeterminism in the model. In this paper, we develop techniques for checking fast termination of pVASS with nondeterminism. That is, for every initial configuration of size n, we consider the worst expected number of transitions needed to reach a configuration with some counter negative (the expected termination time). We show that the problem whether the asymptotic expected termination time is linear is decidable in polynomial time for a certain natural class of pVASS with nondeterminism. Furthermore, we show the following dichotomy: if the asymptotic expected termination time is not linear, then it is at least quadratic, i.e., in Ω(n2).' alternative_title: - LNCS article_processing_charge: No author: - first_name: Tomás full_name: Brázdil, Tomás last_name: Brázdil - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Antonín full_name: Kucera, Antonín last_name: Kucera - first_name: Petr full_name: Novotný, Petr id: 3CC3B868-F248-11E8-B48F-1D18A9856A87 last_name: Novotný - first_name: Dominik full_name: Velan, Dominik last_name: Velan citation: ama: 'Brázdil T, Chatterjee K, Kucera A, Novotný P, Velan D. Deciding fast termination for probabilistic VASS with nondeterminism. In: International Symposium on Automated Technology for Verification and Analysis. Vol 11781. Springer Nature; 2019:462-478. doi:10.1007/978-3-030-31784-3_27' apa: 'Brázdil, T., Chatterjee, K., Kucera, A., Novotný, P., & Velan, D. (2019). Deciding fast termination for probabilistic VASS with nondeterminism. In International Symposium on Automated Technology for Verification and Analysis (Vol. 11781, pp. 462–478). Taipei, Taiwan: Springer Nature. https://doi.org/10.1007/978-3-030-31784-3_27' chicago: Brázdil, Tomás, Krishnendu Chatterjee, Antonín Kucera, Petr Novotný, and Dominik Velan. “Deciding Fast Termination for Probabilistic VASS with Nondeterminism.” In International Symposium on Automated Technology for Verification and Analysis, 11781:462–78. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-31784-3_27. ieee: T. Brázdil, K. Chatterjee, A. Kucera, P. Novotný, and D. Velan, “Deciding fast termination for probabilistic VASS with nondeterminism,” in International Symposium on Automated Technology for Verification and Analysis, Taipei, Taiwan, 2019, vol. 11781, pp. 462–478. ista: 'Brázdil T, Chatterjee K, Kucera A, Novotný P, Velan D. 2019. Deciding fast termination for probabilistic VASS with nondeterminism. International Symposium on Automated Technology for Verification and Analysis. ATVA: Automated TEchnology for Verification and Analysis, LNCS, vol. 11781, 462–478.' mla: Brázdil, Tomás, et al. “Deciding Fast Termination for Probabilistic VASS with Nondeterminism.” International Symposium on Automated Technology for Verification and Analysis, vol. 11781, Springer Nature, 2019, pp. 462–78, doi:10.1007/978-3-030-31784-3_27. short: T. Brázdil, K. Chatterjee, A. Kucera, P. Novotný, D. Velan, in:, International Symposium on Automated Technology for Verification and Analysis, Springer Nature, 2019, pp. 462–478. conference: end_date: 2019-10-31 location: Taipei, Taiwan name: 'ATVA: Automated TEchnology for Verification and Analysis' start_date: 2019-10-28 date_created: 2019-12-15T23:00:44Z date_published: 2019-10-21T00:00:00Z date_updated: 2023-09-06T12:40:58Z day: '21' department: - _id: KrCh doi: 10.1007/978-3-030-31784-3_27 external_id: arxiv: - '1907.11010' isi: - '000723515700027' intvolume: ' 11781' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.11010 month: '10' oa: 1 oa_version: Preprint page: 462-478 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: International Symposium on Automated Technology for Verification and Analysis publication_identifier: eissn: - '16113349' isbn: - '9783030317836' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Deciding fast termination for probabilistic VASS with nondeterminism type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11781 year: '2019' ... --- _id: '6430' abstract: - lang: eng text: "A proxy re-encryption (PRE) scheme is a public-key encryption scheme that allows the holder of a key pk to derive a re-encryption key for any other key \U0001D45D\U0001D458′. This re-encryption key lets anyone transform ciphertexts under pk into ciphertexts under \U0001D45D\U0001D458′ without having to know the underlying message, while transformations from \U0001D45D\U0001D458′ to pk should not be possible (unidirectional). Security is defined in a multi-user setting against an adversary that gets the users’ public keys and can ask for re-encryption keys and can corrupt users by requesting their secret keys. Any ciphertext that the adversary cannot trivially decrypt given the obtained secret and re-encryption keys should be secure.\r\n\r\nAll existing security proofs for PRE only show selective security, where the adversary must first declare the users it wants to corrupt. This can be lifted to more meaningful adaptive security by guessing the set of corrupted users among the n users, which loses a factor exponential in Open image in new window , rendering the result meaningless already for moderate Open image in new window .\r\n\r\nJafargholi et al. (CRYPTO’17) proposed a framework that in some cases allows to give adaptive security proofs for schemes which were previously only known to be selectively secure, while avoiding the exponential loss that results from guessing the adaptive choices made by an adversary. We apply their framework to PREs that satisfy some natural additional properties. Concretely, we give a more fine-grained reduction for several unidirectional PREs, proving adaptive security at a much smaller loss. The loss depends on the graph of users whose edges represent the re-encryption keys queried by the adversary. For trees and chains the loss is quasi-polynomial in the size and for general graphs it is exponential in their depth and indegree (instead of their size as for previous reductions). Fortunately, trees and low-depth graphs cover many, if not most, interesting applications.\r\n\r\nOur results apply e.g. to the bilinear-map based PRE schemes by Ateniese et al. (NDSS’05 and CT-RSA’09), Gentry’s FHE-based scheme (STOC’09) and the LWE-based scheme by Chandran et al. (PKC’14)." alternative_title: - LNCS article_processing_charge: No author: - first_name: Georg full_name: Fuchsbauer, Georg id: 46B4C3EE-F248-11E8-B48F-1D18A9856A87 last_name: Fuchsbauer - first_name: Chethan full_name: Kamath Hosdurg, Chethan id: 4BD3F30E-F248-11E8-B48F-1D18A9856A87 last_name: Kamath Hosdurg - first_name: Karen full_name: Klein, Karen id: 3E83A2F8-F248-11E8-B48F-1D18A9856A87 last_name: Klein - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 citation: ama: 'Fuchsbauer G, Kamath Hosdurg C, Klein K, Pietrzak KZ. Adaptively secure proxy re-encryption. In: Vol 11443. Springer Nature; 2019:317-346. doi:10.1007/978-3-030-17259-6_11' apa: 'Fuchsbauer, G., Kamath Hosdurg, C., Klein, K., & Pietrzak, K. Z. (2019). Adaptively secure proxy re-encryption (Vol. 11443, pp. 317–346). Presented at the PKC: Public-Key Cryptograhy, Beijing, China: Springer Nature. https://doi.org/10.1007/978-3-030-17259-6_11' chicago: Fuchsbauer, Georg, Chethan Kamath Hosdurg, Karen Klein, and Krzysztof Z Pietrzak. “Adaptively Secure Proxy Re-Encryption,” 11443:317–46. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-17259-6_11. ieee: 'G. Fuchsbauer, C. Kamath Hosdurg, K. Klein, and K. Z. Pietrzak, “Adaptively secure proxy re-encryption,” presented at the PKC: Public-Key Cryptograhy, Beijing, China, 2019, vol. 11443, pp. 317–346.' ista: 'Fuchsbauer G, Kamath Hosdurg C, Klein K, Pietrzak KZ. 2019. Adaptively secure proxy re-encryption. PKC: Public-Key Cryptograhy, LNCS, vol. 11443, 317–346.' mla: Fuchsbauer, Georg, et al. Adaptively Secure Proxy Re-Encryption. Vol. 11443, Springer Nature, 2019, pp. 317–46, doi:10.1007/978-3-030-17259-6_11. short: G. Fuchsbauer, C. Kamath Hosdurg, K. Klein, K.Z. Pietrzak, in:, Springer Nature, 2019, pp. 317–346. conference: end_date: 2019-04-17 location: Beijing, China name: 'PKC: Public-Key Cryptograhy' start_date: 2019-04-14 date_created: 2019-05-13T08:13:46Z date_published: 2019-04-06T00:00:00Z date_updated: 2023-09-08T11:33:20Z day: '06' department: - _id: KrPi doi: 10.1007/978-3-030-17259-6_11 ec_funded: 1 intvolume: ' 11443' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2018/426 month: '04' oa: 1 oa_version: Preprint page: 317-346 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication_identifier: eissn: - '16113349' isbn: - '9783030172589' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '10035' relation: dissertation_contains status: public scopus_import: '1' status: public title: Adaptively secure proxy re-encryption type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11443 year: '2019' ... --- _id: '5788' abstract: - lang: eng text: In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner or payoff of the game. Such games are central in formal verification since they model the interaction between a non-terminating system and its environment. We study bidding games in which the players bid for the right to move the token. Two bidding rules have been defined. In Richman bidding, in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Poorman bidding is similar except that the winner of the bidding pays the “bank” rather than the other player. While poorman reachability games have been studied before, we present, for the first time, results on infinite-duration poorman games. A central quantity in these games is the ratio between the two players’ initial budgets. The questions we study concern a necessary and sufficient ratio with which a player can achieve a goal. For reachability objectives, such threshold ratios are known to exist for both bidding rules. We show that the properties of poorman reachability games extend to complex qualitative objectives such as parity, similarly to the Richman case. Our most interesting results concern quantitative poorman games, namely poorman mean-payoff games, where we construct optimal strategies depending on the initial ratio, by showing a connection with random-turn based games. The connection in itself is interesting, because it does not hold for reachability poorman games. We also solve the complexity problems that arise in poorman bidding games. alternative_title: - LNCS article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 citation: ama: 'Avni G, Henzinger TA, Ibsen-Jensen R. Infinite-duration poorman-bidding games. In: Vol 11316. Springer; 2018:21-36. doi:10.1007/978-3-030-04612-5_2' apa: 'Avni, G., Henzinger, T. A., & Ibsen-Jensen, R. (2018). Infinite-duration poorman-bidding games (Vol. 11316, pp. 21–36). Presented at the 14th International Conference on Web and Internet Economics, WINE, Oxford, UK: Springer. https://doi.org/10.1007/978-3-030-04612-5_2' chicago: Avni, Guy, Thomas A Henzinger, and Rasmus Ibsen-Jensen. “Infinite-Duration Poorman-Bidding Games,” 11316:21–36. Springer, 2018. https://doi.org/10.1007/978-3-030-04612-5_2. ieee: G. Avni, T. A. Henzinger, and R. Ibsen-Jensen, “Infinite-duration poorman-bidding games,” presented at the 14th International Conference on Web and Internet Economics, WINE, Oxford, UK, 2018, vol. 11316, pp. 21–36. ista: Avni G, Henzinger TA, Ibsen-Jensen R. 2018. Infinite-duration poorman-bidding games. 14th International Conference on Web and Internet Economics, WINE, LNCS, vol. 11316, 21–36. mla: Avni, Guy, et al. Infinite-Duration Poorman-Bidding Games. Vol. 11316, Springer, 2018, pp. 21–36, doi:10.1007/978-3-030-04612-5_2. short: G. Avni, T.A. Henzinger, R. Ibsen-Jensen, in:, Springer, 2018, pp. 21–36. conference: end_date: 2018-12-17 location: Oxford, UK name: 14th International Conference on Web and Internet Economics, WINE start_date: 2018-12-15 date_created: 2018-12-30T22:59:14Z date_published: 2018-11-21T00:00:00Z date_updated: 2023-09-12T07:44:01Z day: '21' department: - _id: ToHe doi: 10.1007/978-3-030-04612-5_2 external_id: arxiv: - '1804.04372' isi: - '000865933000002' intvolume: ' 11316' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1804.04372 month: '11' oa: 1 oa_version: Preprint page: 21-36 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory publication_identifier: isbn: - '9783030046118' issn: - '03029743' publisher: Springer quality_controlled: '1' scopus_import: '1' status: public title: Infinite-duration poorman-bidding games type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11316 year: '2018' ... --- _id: '5679' abstract: - lang: eng text: We study the almost-sure termination problem for probabilistic programs. First, we show that supermartingales with lower bounds on conditional absolute difference provide a sound approach for the almost-sure termination problem. Moreover, using this approach we can obtain explicit optimal bounds on tail probabilities of non-termination within a given number of steps. Second, we present a new approach based on Central Limit Theorem for the almost-sure termination problem, and show that this approach can establish almost-sure termination of programs which none of the existing approaches can handle. Finally, we discuss algorithmic approaches for the two above methods that lead to automated analysis techniques for almost-sure termination of probabilistic programs. alternative_title: - LNCS article_processing_charge: No author: - first_name: Mingzhang full_name: Huang, Mingzhang last_name: Huang - first_name: Hongfei full_name: Fu, Hongfei last_name: Fu - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: 'Huang M, Fu H, Chatterjee K. New approaches for almost-sure termination of probabilistic programs. In: Ryu S, ed. Vol 11275. Springer; 2018:181-201. doi:10.1007/978-3-030-02768-1_11' apa: 'Huang, M., Fu, H., & Chatterjee, K. (2018). New approaches for almost-sure termination of probabilistic programs. In S. Ryu (Ed.) (Vol. 11275, pp. 181–201). Presented at the 16th Asian Symposium on Programming Languages and Systems, APLAS, Wellington, New Zealand: Springer. https://doi.org/10.1007/978-3-030-02768-1_11' chicago: Huang, Mingzhang, Hongfei Fu, and Krishnendu Chatterjee. “New Approaches for Almost-Sure Termination of Probabilistic Programs.” edited by Sukyoung Ryu, 11275:181–201. Springer, 2018. https://doi.org/10.1007/978-3-030-02768-1_11. ieee: M. Huang, H. Fu, and K. Chatterjee, “New approaches for almost-sure termination of probabilistic programs,” presented at the 16th Asian Symposium on Programming Languages and Systems, APLAS, Wellington, New Zealand, 2018, vol. 11275, pp. 181–201. ista: Huang M, Fu H, Chatterjee K. 2018. New approaches for almost-sure termination of probabilistic programs. 16th Asian Symposium on Programming Languages and Systems, APLAS, LNCS, vol. 11275, 181–201. mla: Huang, Mingzhang, et al. New Approaches for Almost-Sure Termination of Probabilistic Programs. Edited by Sukyoung Ryu, vol. 11275, Springer, 2018, pp. 181–201, doi:10.1007/978-3-030-02768-1_11. short: M. Huang, H. Fu, K. Chatterjee, in:, S. Ryu (Ed.), Springer, 2018, pp. 181–201. conference: end_date: 2018-12-06 location: Wellington, New Zealand name: 16th Asian Symposium on Programming Languages and Systems, APLAS start_date: 2018-12-02 date_created: 2018-12-16T22:59:20Z date_published: 2018-12-01T00:00:00Z date_updated: 2023-09-13T09:02:22Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-030-02768-1_11 editor: - first_name: Sukyoung full_name: Ryu, Sukyoung last_name: Ryu external_id: arxiv: - '1806.06683' isi: - '000916310900011' intvolume: ' 11275' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1806.06683 month: '12' oa: 1 oa_version: Preprint page: 181-201 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification publication_identifier: isbn: - '9783030027674' issn: - '03029743' publisher: Springer quality_controlled: '1' scopus_import: '1' status: public title: New approaches for almost-sure termination of probabilistic programs type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11275 year: '2018' ... --- _id: '85' abstract: - lang: eng text: Concurrent accesses to shared data structures must be synchronized to avoid data races. Coarse-grained synchronization, which locks the entire data structure, is easy to implement but does not scale. Fine-grained synchronization can scale well, but can be hard to reason about. Hand-over-hand locking, in which operations are pipelined as they traverse the data structure, combines fine-grained synchronization with ease of use. However, the traditional implementation suffers from inherent overheads. This paper introduces snapshot-based synchronization (SBS), a novel hand-over-hand locking mechanism. SBS decouples the synchronization state from the data, significantly improving cache utilization. Further, it relies on guarantees provided by pipelining to minimize synchronization that requires cross-thread communication. Snapshot-based synchronization thus scales much better than traditional hand-over-hand locking, while maintaining the same ease of use. acknowledgement: Trevor Brown was supported in part by the ISF (grants 2005/17 & 1749/14) and by a NSERC post-doctoral fellowship. alternative_title: - LNCS article_processing_charge: No author: - first_name: Eran full_name: Gilad, Eran last_name: Gilad - first_name: Trevor A full_name: Brown, Trevor A id: 3569F0A0-F248-11E8-B48F-1D18A9856A87 last_name: Brown - first_name: Mark full_name: Oskin, Mark last_name: Oskin - first_name: Yoav full_name: Etsion, Yoav last_name: Etsion citation: ama: 'Gilad E, Brown TA, Oskin M, Etsion Y. Snapshot based synchronization: A fast replacement for Hand-over-Hand locking. In: Vol 11014. Springer; 2018:465-479. doi:10.1007/978-3-319-96983-1_33' apa: 'Gilad, E., Brown, T. A., Oskin, M., & Etsion, Y. (2018). Snapshot based synchronization: A fast replacement for Hand-over-Hand locking (Vol. 11014, pp. 465–479). Presented at the Euro-Par: European Conference on Parallel Processing, Turin, Italy: Springer. https://doi.org/10.1007/978-3-319-96983-1_33' chicago: 'Gilad, Eran, Trevor A Brown, Mark Oskin, and Yoav Etsion. “Snapshot Based Synchronization: A Fast Replacement for Hand-over-Hand Locking,” 11014:465–79. Springer, 2018. https://doi.org/10.1007/978-3-319-96983-1_33.' ieee: 'E. Gilad, T. A. Brown, M. Oskin, and Y. Etsion, “Snapshot based synchronization: A fast replacement for Hand-over-Hand locking,” presented at the Euro-Par: European Conference on Parallel Processing, Turin, Italy, 2018, vol. 11014, pp. 465–479.' ista: 'Gilad E, Brown TA, Oskin M, Etsion Y. 2018. Snapshot based synchronization: A fast replacement for Hand-over-Hand locking. Euro-Par: European Conference on Parallel Processing, LNCS, vol. 11014, 465–479.' mla: 'Gilad, Eran, et al. Snapshot Based Synchronization: A Fast Replacement for Hand-over-Hand Locking. Vol. 11014, Springer, 2018, pp. 465–79, doi:10.1007/978-3-319-96983-1_33.' short: E. Gilad, T.A. Brown, M. Oskin, Y. Etsion, in:, Springer, 2018, pp. 465–479. conference: end_date: 2018-08-31 location: Turin, Italy name: 'Euro-Par: European Conference on Parallel Processing' start_date: 2018-08-27 date_created: 2018-12-11T11:44:33Z date_published: 2018-08-01T00:00:00Z date_updated: 2023-09-18T09:32:36Z day: '01' ddc: - '000' department: - _id: DaAl doi: 10.1007/978-3-319-96983-1_33 external_id: isi: - '000851042300031' file: - access_level: open_access checksum: 13a3f250be8878405e791b53c19722ad content_type: application/pdf creator: dernst date_created: 2019-02-12T07:40:40Z date_updated: 2020-07-14T12:48:14Z file_id: '5954' file_name: 2018_Brown.pdf file_size: 665372 relation: main_file file_date_updated: 2020-07-14T12:48:14Z has_accepted_license: '1' intvolume: ' 11014' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Preprint page: 465 - 479 project: - _id: 26450934-B435-11E9-9278-68D0E5697425 name: NSERC Postdoctoral fellowship publication_identifier: issn: - '03029743' publication_status: published publisher: Springer publist_id: '7969' quality_controlled: '1' scopus_import: '1' status: public title: 'Snapshot based synchronization: A fast replacement for Hand-over-Hand locking' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11014 year: '2018' ...