@article{8910, abstract = {A semiconducting nanowire fully wrapped by a superconducting shell has been proposed as a platform for obtaining Majorana modes at small magnetic fields. In this study, we demonstrate that the appearance of subgap states in such structures is actually governed by the junction region in tunneling spectroscopy measurements and not the full-shell nanowire itself. Short tunneling regions never show subgap states, whereas longer junctions always do. This can be understood in terms of quantum dots forming in the junction and hosting Andreev levels in the Yu-Shiba-Rusinov regime. The intricate magnetic field dependence of the Andreev levels, through both the Zeeman and Little-Parks effects, may result in robust zero-bias peaks—features that could be easily misinterpreted as originating from Majorana zero modes but are unrelated to topological superconductivity.}, author = {Valentini, Marco and Peñaranda, Fernando and Hofmann, Andrea C and Brauns, Matthias and Hauschild, Robert and Krogstrup, Peter and San-Jose, Pablo and Prada, Elsa and Aguado, Ramón and Katsaros, Georgios}, issn = {10959203}, journal = {Science}, number = {6550}, publisher = {American Association for the Advancement of Science}, title = {{Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states}}, doi = {10.1126/science.abf1513}, volume = {373}, year = {2021}, } @article{611, abstract = {Small RNAs (sRNAs) regulate genes in plants and animals. Here, we show that population-wide differences in color patterns in snapdragon flowers are caused by an inverted duplication that generates sRNAs. The complexity and size of the transcripts indicate that the duplication represents an intermediate on the pathway to microRNA evolution. The sRNAs repress a pigment biosynthesis gene, creating a yellow highlight at the site of pollinator entry. The inverted duplication exhibits steep clines in allele frequency in a natural hybrid zone, showing that the allele is under selection. Thus, regulatory interactions of evolutionarily recent sRNAs can be acted upon by selection and contribute to the evolution of phenotypic diversity.}, author = {Bradley, Desmond and Xu, Ping and Mohorianu, Irina and Whibley, Annabel and Field, David and Tavares, Hugo and Couchman, Matthew and Copsey, Lucy and Carpenter, Rosemary and Li, Miaomiao and Li, Qun and Xue, Yongbiao and Dalmay, Tamas and Coen, Enrico}, issn = {00368075}, journal = {Science}, number = {6365}, pages = {925 -- 928}, publisher = {American Association for the Advancement of Science}, title = {{Evolution of flower color pattern through selection on regulatory small RNAs}}, doi = {10.1126/science.aao3526}, volume = {358}, year = {2017}, } @article{1132, abstract = {The hippocampus is thought to initiate systems-wide mnemonic processes through the reactivation of previously acquired spatial and episodic memory traces, which can recruit the entorhinal cortex as a first stage of memory redistribution to other brain areas. Hippocampal reactivation occurs during sharp wave-ripples, in which synchronous network firing encodes sequences of places.We investigated the coordination of this replay by recording assembly activity simultaneously in the CA1 region of the hippocampus and superficial layers of the medial entorhinal cortex. We found that entorhinal cell assemblies can replay trajectories independently of the hippocampus and sharp wave-ripples. This suggests that the hippocampus is not the sole initiator of spatial and episodic memory trace reactivation. Memory systems involved in these processes may include nonhierarchical, parallel components.}, author = {O'Neill, Joseph and Boccara, Charlotte and Stella, Federico and Schönenberger, Philipp and Csicsvari, Jozsef L}, issn = {00368075}, journal = {Science}, number = {6321}, pages = {184 -- 188}, publisher = {American Association for the Advancement of Science}, title = {{Superficial layers of the medial entorhinal cortex replay independently of the hippocampus}}, doi = {10.1126/science.aag2787}, volume = {355}, year = {2017}, } @article{943, abstract = {Like many developing tissues, the vertebrate neural tube is patterned by antiparallel morphogen gradients. To understand how these inputs are interpreted, we measured morphogen signaling and target gene expression in mouse embryos and chick ex vivo assays. From these data, we derived and validated a characteristic decoding map that relates morphogen input to the positional identity of neural progenitors. Analysis of the observed responses indicates that the underlying interpretation strategy minimizes patterning errors in response to the joint input of noisy opposing gradients. We reverse-engineered a transcriptional network that provides a mechanistic basis for the observed cell fate decisions and accounts for the precision and dynamics of pattern formation. Together, our data link opposing gradient dynamics in a growing tissue to precise pattern formation.}, author = {Zagórski, Marcin P and Tabata, Yoji and Brandenberg, Nathalie and Lutolf, Matthias and Tkacik, Gasper and Bollenbach, Tobias and Briscoe, James and Kicheva, Anna}, issn = {00368075}, journal = {Science}, number = {6345}, pages = {1379 -- 1383}, publisher = {American Association for the Advancement of Science}, title = {{Decoding of position in the developing neural tube from antiparallel morphogen gradients}}, doi = {10.1126/science.aam5887}, volume = {356}, year = {2017}, } @article{665, abstract = {The molecular mechanisms underlying phenotypic variation in isogenic bacterial populations remain poorly understood.We report that AcrAB-TolC, the main multidrug efflux pump of Escherichia coli, exhibits a strong partitioning bias for old cell poles by a segregation mechanism that is mediated by ternary AcrAB-TolC complex formation. Mother cells inheriting old poles are phenotypically distinct and display increased drug efflux activity relative to daughters. Consequently, we find systematic and long-lived growth differences between mother and daughter cells in the presence of subinhibitory drug concentrations. A simple model for biased partitioning predicts a population structure of long-lived and highly heterogeneous phenotypes. This straightforward mechanism of generating sustained growth rate differences at subinhibitory antibiotic concentrations has implications for understanding the emergence of multidrug resistance in bacteria.}, author = {Bergmiller, Tobias and Andersson, Anna M and Tomasek, Kathrin and Balleza, Enrique and Kiviet, Daniel and Hauschild, Robert and Tkacik, Gasper and Guet, Calin C}, issn = {00368075}, journal = {Science}, number = {6335}, pages = {311 -- 315}, publisher = {American Association for the Advancement of Science}, title = {{Biased partitioning of the multidrug efflux pump AcrAB TolC underlies long lived phenotypic heterogeneity}}, doi = {10.1126/science.aaf4762}, volume = {356}, year = {2017}, } @article{2229, abstract = {The distance between Ca^2+ channels and release sensors determines the speed and efficacy of synaptic transmission. Tight "nanodomain" channel-sensor coupling initiates transmitter release at synapses in the mature brain, whereas loose "microdomain" coupling appears restricted to early developmental stages. To probe the coupling configuration at a plastic synapse in the mature central nervous system, we performed paired recordings between mossy fiber terminals and CA3 pyramidal neurons in rat hippocampus. Millimolar concentrations of both the fast Ca^2+ chelator BAPTA [1,2-bis(2-aminophenoxy)ethane- N,N, N′,N′-tetraacetic acid] and the slow chelator EGTA efficiently suppressed transmitter release, indicating loose coupling between Ca^2+ channels and release sensors. Loose coupling enabled the control of initial release probability by fast endogenous Ca^2+ buffers and the generation of facilitation by buffer saturation. Thus, loose coupling provides the molecular framework for presynaptic plasticity.}, author = {Vyleta, Nicholas and Jonas, Peter M}, issn = {00368075}, journal = {Science}, number = {6171}, pages = {665 -- 670}, publisher = {American Association for the Advancement of Science}, title = {{Loose coupling between Ca^2+ channels and release sensors at a plastic hippocampal synapse}}, doi = {10.1126/science.1244811}, volume = {343}, year = {2014}, }