TY - JOUR
AB - The analogy between an equilibrium partition function and the return probability in many-body unitary dynamics has led to the concept of dynamical quantum phase transition (DQPT). DQPTs are defined by nonanalyticities in the return amplitude and are present in many models. In some cases, DQPTs can be related to equilibrium concepts, such as order parameters, yet their universal description is an open question. In this Letter, we provide first steps toward a classification of DQPTs by using a matrix product state description of unitary dynamics in the thermodynamic limit. This allows us to distinguish the two limiting cases of “precession” and “entanglement” DQPTs, which are illustrated using an analytical description in the quantum Ising model. While precession DQPTs are characterized by a large entanglement gap and are semiclassical in their nature, entanglement DQPTs occur near avoided crossings in the entanglement spectrum and can be distinguished by a complex pattern of nonlocal correlations. We demonstrate the existence of precession and entanglement DQPTs beyond Ising models, discuss observables that can distinguish them, and relate their interplay to complex DQPT phenomenology.
AU - De Nicola, Stefano
AU - Michailidis, Alexios
AU - Serbyn, Maksym
ID - 9048
IS - 4
JF - Physical Review Letters
KW - General Physics and Astronomy
SN - 0031-9007
TI - Entanglement view of dynamical quantum phase transitions
VL - 126
ER -
TY - JOUR
AB - We show that turbulent dynamics that arise in simulations of the three-dimensional Navier--Stokes equations in a triply-periodic domain under sinusoidal forcing can be described as transient visits to the neighborhoods of unstable time-periodic solutions. Based on this description, we reduce the original system with more than 10^5 degrees of freedom to a 17-node Markov chain where each node corresponds to the neighborhood of a periodic orbit. The model accurately reproduces long-term averages of the system's observables as weighted sums over the periodic orbits.
AU - Yalniz, Gökhan
AU - Hof, Björn
AU - Budanur, Nazmi B
ID - 9558
IS - 24
JF - Physical Review Letters
SN - 0031-9007
TI - Coarse graining the state space of a turbulent flow using periodic orbits
VL - 126
ER -
TY - JOUR
AB - In laboratory studies and numerical simulations, we observe clear signatures of unstable time-periodic solutions in a moderately turbulent quasi-two-dimensional flow. We validate the dynamical relevance of such solutions by demonstrating that turbulent flows in both experiment and numerics transiently display time-periodic dynamics when they shadow unstable periodic orbits (UPOs). We show that UPOs we computed are also statistically significant, with turbulent flows spending a sizable fraction of the total time near these solutions. As a result, the average rates of energy input and dissipation for the turbulent flow and frequently visited UPOs differ only by a few percent.
AU - Suri, Balachandra
AU - Kageorge, Logan
AU - Grigoriev, Roman O.
AU - Schatz, Michael F.
ID - 8634
IS - 6
JF - Physical Review Letters
KW - General Physics and Astronomy
SN - 0031-9007
TI - Capturing turbulent dynamics and statistics in experiments with unstable periodic orbits
VL - 125
ER -
TY - JOUR
AB - We present conductance-matrix measurements of a three-terminal superconductor-semiconductor hybrid device consisting of two normal leads and one superconducting lead. Using a symmetry decomposition of the conductance, we find that antisymmetric components of pairs of local and nonlocal conductances qualitatively match at energies below the superconducting gap, and we compare this finding with symmetry relations based on a noninteracting scattering matrix approach. Further, the local charge character of Andreev bound states is extracted from the symmetry-decomposed conductance data and is found to be similar at both ends of the device and tunable with gate voltage. Finally, we measure the conductance matrix as a function of magnetic field and identify correlated splittings in low-energy features, demonstrating how conductance-matrix measurements can complement traditional single-probe measurements in the search for Majorana zero modes.
AU - Ménard, G. C.
AU - Anselmetti, G. L. R.
AU - Martinez, E. A.
AU - Puglia, D.
AU - Malinowski, F. K.
AU - Lee, J. S.
AU - Choi, S.
AU - Pendharkar, M.
AU - Palmstrøm, C. J.
AU - Flensberg, K.
AU - Marcus, C. M.
AU - Casparis, L.
AU - Higginbotham, Andrew P
ID - 7477
IS - 3
JF - Physical Review Letters
SN - 0031-9007
TI - Conductance-matrix symmetries of a three-terminal hybrid device
VL - 124
ER -
TY - JOUR
AB - Two-terminal conductance spectroscopy of superconducting devices is a common tool for probing Andreev and Majorana bound states. Here, we study theoretically a three-terminal setup, with two normal leads coupled to a grounded superconducting terminal. Using a single-electron scattering matrix, we derive the subgap conductance matrix for the normal leads and discuss its symmetries. In particular, we show that the local and the nonlocal elements of the conductance matrix have pairwise identical antisymmetric components. Moreover, we find that the nonlocal elements are directly related to the local BCS charges of the bound states close to the normal probes and we show how the BCS charge of overlapping Majorana bound states can be extracted from experiments.
AU - Danon, Jeroen
AU - Hellenes, Anna Birk
AU - Hansen, Esben Bork
AU - Casparis, Lucas
AU - Higginbotham, Andrew P
AU - Flensberg, Karsten
ID - 7478
IS - 3
JF - Physical Review Letters
SN - 0031-9007
TI - Nonlocal conductance spectroscopy of Andreev bound states: Symmetry relations and BCS charges
VL - 124
ER -
TY - JOUR
AB - We introduce a simple, exactly solvable strong-randomness renormalization group (RG) model for the many-body localization (MBL) transition in one dimension. Our approach relies on a family of RG flows parametrized by the asymmetry between thermal and localized phases. We identify the physical MBL transition in the limit of maximal asymmetry, reflecting the instability of MBL against rare thermal inclusions. We find a critical point that is localized with power-law distributed thermal inclusions. The typical size of critical inclusions remains finite at the transition, while the average size is logarithmically diverging. We propose a two-parameter scaling theory for the many-body localization transition that falls into the Kosterlitz-Thouless universality class, with the MBL phase corresponding to a stable line of fixed points with multifractal behavior.
AU - Goremykina, Anna
AU - Vasseur, Romain
AU - Serbyn, Maksym
ID - 5906
IS - 4
JF - Physical Review Letters
SN - 0031-9007
TI - Analytically solvable renormalization group for the many-body localization transition
VL - 122
ER -
TY - JOUR
AB - We study the effect of a linear tunneling coupling between two-dimensional systems, each separately
exhibiting the topological Berezinskii-Kosterlitz-Thouless (BKT) transition. In the uncoupled limit, there
are two phases: one where the one-body correlation functions are algebraically decaying and the other with
exponential decay. When the linear coupling is turned on, a third BKT-paired phase emerges, in which one-body correlations are exponentially decaying, while two-body correlation functions exhibit power-law
decay. We perform numerical simulations in the paradigmatic case of two coupled XY models at finite
temperature, finding evidences that for any finite value of the interlayer coupling, the BKT-paired phase is
present. We provide a picture of the phase diagram using a renormalization group approach.
AU - Bighin, Giacomo
AU - Defenu, Nicolò
AU - Nándori, István
AU - Salasnich, Luca
AU - Trombettoni, Andrea
ID - 6940
IS - 10
JF - Physical Review Letters
SN - 0031-9007
TI - Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models
VL - 123
ER -
TY - JOUR
AB - The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron’s classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the “tunnel exit.”
AU - Camus, Nicolas
AU - Yakaboylu, Enderalp
AU - Fechner, Lutz
AU - Klaiber, Michael
AU - Laux, Martin
AU - Mi, Yonghao
AU - Hatsagortsyan, Karen Z.
AU - Pfeifer, Thomas
AU - Keitel, Christoph H.
AU - Moshammer, Robert
ID - 6013
IS - 2
JF - Physical Review Letters
SN - 0031-9007
TI - Experimental evidence for quantum tunneling time
VL - 119
ER -
TY - JOUR
AB - We study the effect of dilute pinning on the jamming transition. Pinning reduces the average contact number needed to jam unpinned particles and shifts the jamming threshold to lower densities, leading to a pinning susceptibility, χp. Our main results are that this susceptibility obeys scaling form and diverges in the thermodynamic limit as χp∝|ϕ−ϕ∞c|−γp where ϕ∞c is the jamming threshold in the absence of pins. Finite-size scaling arguments yield these values with associated statistical (systematic) errors γp=1.018±0.026(0.291) in d=2 and γp=1.534±0.120(0.822) in d=3. Logarithmic corrections raise the exponent in d=2 to close to the d=3 value, although the systematic errors are very large.
AU - Graves, Amy L.
AU - Nashed, Samer
AU - Padgett, Elliot
AU - Goodrich, Carl Peter
AU - Liu, Andrea J.
AU - Sethna, James P.
ID - 7761
IS - 23
JF - Physical Review Letters
SN - 0031-9007
TI - Pinning susceptibility: The effect of dilute, quenched disorder on jamming
VL - 116
ER -
TY - JOUR
AB - Characterizing structural inhomogeneity is an essential step in understanding the mechanical response of amorphous materials. We introduce a threshold-free measure based on the field of vectors pointing from the center of each particle to the centroid of the Voronoi cell in which the particle resides. These vectors tend to point in toward regions of high free volume and away from regions of low free volume, reminiscent of sinks and sources in a vector field. We compute the local divergence of these vectors, where positive values correspond to overpacked regions and negative values identify underpacked regions within the material. Distributions of this divergence are nearly Gaussian with zero mean, allowing for structural characterization using only the moments of the distribution. We explore how the standard deviation and skewness vary with the packing fraction for simulations of bidisperse systems and find a kink in these moments that coincides with the jamming transition.
AU - Rieser, Jennifer M.
AU - Goodrich, Carl Peter
AU - Liu, Andrea J.
AU - Durian, Douglas J.
ID - 7762
IS - 8
JF - Physical Review Letters
SN - 0031-9007
TI - Divergence of Voronoi cell anisotropy vector: A threshold-free characterization of local structure in amorphous materials
VL - 116
ER -
TY - JOUR
AB - We introduce a principle unique to disordered solids wherein the contribution of any bond to one global perturbation is uncorrelated with its contribution to another. Coupled with sufficient variability in the contributions of different bonds, this “independent bond-level response” paves the way for the design of real materials with unusual and exquisitely tuned properties. To illustrate this, we choose two global perturbations: compression and shear. By applying a bond removal procedure that is both simple and experimentally relevant to remove a very small fraction of bonds, we can drive disordered spring networks to both the incompressible and completely auxetic limits of mechanical behavior.
AU - Goodrich, Carl Peter
AU - Liu, Andrea J.
AU - Nagel, Sidney R.
ID - 7765
IS - 22
JF - Physical Review Letters
SN - 0031-9007
TI - The principle of independent bond-level response: Tuning by pruning to exploit disorder for global behavior
VL - 114
ER -
TY - JOUR
AB - In their Letter, Schreck, Bertrand, O'Hern and Shattuck [Phys. Rev. Lett. 107, 078301 (2011)] study nonlinearities in jammed particulate systems that arise when contacts are altered. They conclude that there is "no harmonic regime in the large system limit for all compressions" and "at jamming onset for any system size." Their argument rests on the claim that for finite-range repulsive potentials, of the form used in studies of jamming, the breaking or forming of a single contact is sufficient to destroy the linear regime. We dispute these conclusions and argue that linear response is both justified and essential for understanding the nature of the jammed solid.
AU - Goodrich, Carl Peter
AU - Liu, Andrea J.
AU - Nagel, Sidney R.
ID - 7771
IS - 4
JF - Physical Review Letters
SN - 0031-9007
TI - Comment on “Repulsive contact interactions make jammed particulate systems inherently nonharmonic”
VL - 112
ER -
TY - JOUR
AB - We investigate the structural and magnetic properties of two molecule-based magnets synthesized from the same starting components. Their different structural motifs promote contrasting exchange pathways and consequently lead to markedly different magnetic ground states. Through examination of their structural and magnetic properties we show that [Cu(pyz)(H2O)(gly)2](ClO4)2 may be considered a quasi-one-dimensional quantum Heisenberg antiferromagnet whereas the related compound [Cu(pyz)(gly)](ClO4), which is formed from dimers of antiferromagnetically interacting Cu2+ spins, remains disordered down to at least 0.03 K in zero field but shows a field-temperature phase diagram reminiscent of that seen in materials showing a Bose-Einstein condensation of magnons.
AU - Lancaster, T.
AU - Goddard, P. A.
AU - Blundell, S. J.
AU - Foronda, F. R.
AU - Ghannadzadeh, S.
AU - Möller, J. S.
AU - Baker, P. J.
AU - Pratt, F. L.
AU - Baines, C.
AU - Huang, L.
AU - Wosnitza, J.
AU - McDonald, R. D.
AU - Modic, Kimberly A
AU - Singleton, J.
AU - Topping, C. V.
AU - Beale, T. A. W.
AU - Xiao, F.
AU - Schlueter, J. A.
AU - Barton, A. M.
AU - Cabrera, R. D.
AU - Carreiro, K. E.
AU - Tran, H. E.
AU - Manson, J. L.
ID - 7072
IS - 20
JF - Physical Review Letters
SN - 0031-9007
TI - Controlling magnetic order and quantum disorder in molecule-based magnets
VL - 112
ER -
TY - JOUR
AB - We present an analysis of finite-size effects in jammed packings of N soft, frictionless spheres at zero temperature. There is a 1/N correction to the discrete jump in the contact number at the transition so that jammed packings exist only above isostaticity. As a result, the canonical power-law scalings of the contact number and elastic moduli break down at low pressure. These quantities exhibit scaling collapse with a nontrivial scaling function, demonstrating that the jamming transition can be considered a phase transition. Scaling is achieved as a function of N in both two and three dimensions, indicating an upper critical dimension of 2.
AU - Goodrich, Carl Peter
AU - Liu, Andrea J.
AU - Nagel, Sidney R.
ID - 7776
IS - 9
JF - Physical Review Letters
SN - 0031-9007
TI - Finite-size scaling at the jamming transition
VL - 109
ER -