@article{8818, abstract = {The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep1. These changes require precise homeostatic control by subcortical neuromodulatory structures2. The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis.}, author = {Ramirez Villegas, Juan F and Besserve, Michel and Murayama, Yusuke and Evrard, Henry C. and Oeltermann, Axel and Logothetis, Nikos K.}, issn = {14764687}, journal = {Nature}, number = {7840}, pages = {96--102}, publisher = {Springer Nature}, title = {{Coupling of hippocampal theta and ripples with pontogeniculooccipital waves}}, doi = {10.1038/s41586-020-2914-4}, volume = {589}, year = {2021}, } @article{10223, abstract = {Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.}, author = {Li, Lanxin and Verstraeten, Inge and Roosjen, Mark and Takahashi, Koji and Rodriguez Solovey, Lesia and Merrin, Jack and Chen, Jian and Shabala, Lana and Smet, Wouter and Ren, Hong and Vanneste, Steffen and Shabala, Sergey and De Rybel, Bert and Weijers, Dolf and Kinoshita, Toshinori and Gray, William M. and Friml, Jiří}, issn = {14764687}, journal = {Nature}, keywords = {Multidisciplinary}, number = {7884}, pages = {273--277}, publisher = {Springer Nature}, title = {{Cell surface and intracellular auxin signalling for H+ fluxes in root growth}}, doi = {10.1038/s41586-021-04037-6}, volume = {599}, year = {2021}, } @article{7885, abstract = {Eukaryotic cells migrate by coupling the intracellular force of the actin cytoskeleton to the environment. While force coupling is usually mediated by transmembrane adhesion receptors, especially those of the integrin family, amoeboid cells such as leukocytes can migrate extremely fast despite very low adhesive forces1. Here we show that leukocytes cannot only migrate under low adhesion but can also transmit forces in the complete absence of transmembrane force coupling. When confined within three-dimensional environments, they use the topographical features of the substrate to propel themselves. Here the retrograde flow of the actin cytoskeleton follows the texture of the substrate, creating retrograde shear forces that are sufficient to drive the cell body forwards. Notably, adhesion-dependent and adhesion-independent migration are not mutually exclusive, but rather are variants of the same principle of coupling retrograde actin flow to the environment and thus can potentially operate interchangeably and simultaneously. As adhesion-free migration is independent of the chemical composition of the environment, it renders cells completely autonomous in their locomotive behaviour.}, author = {Reversat, Anne and Gärtner, Florian R and Merrin, Jack and Stopp, Julian A and Tasciyan, Saren and Aguilera Servin, Juan L and De Vries, Ingrid and Hauschild, Robert and Hons, Miroslav and Piel, Matthieu and Callan-Jones, Andrew and Voituriez, Raphael and Sixt, Michael K}, issn = {14764687}, journal = {Nature}, pages = {582–585}, publisher = {Springer Nature}, title = {{Cellular locomotion using environmental topography}}, doi = {10.1038/s41586-020-2283-z}, volume = {582}, year = {2020}, } @article{6348, abstract = {High-speed optical telecommunication is enabled by wavelength-division multiplexing, whereby hundreds of individually stabilized lasers encode information within a single-mode optical fibre. Higher bandwidths require higher total optical power, but the power sent into the fibre is limited by optical nonlinearities within the fibre, and energy consumption by the light sources starts to become a substantial cost factor1. Optical frequency combs have been suggested to remedy this problem by generating numerous discrete, equidistant laser lines within a monolithic device; however, at present their stability and coherence allow them to operate only within small parameter ranges2,3,4. Here we show that a broadband frequency comb realized through the electro-optic effect within a high-quality whispering-gallery-mode resonator can operate at low microwave and optical powers. Unlike the usual third-order Kerr nonlinear optical frequency combs, our combs rely on the second-order nonlinear effect, which is much more efficient. Our result uses a fixed microwave signal that is mixed with an optical-pump signal to generate a coherent frequency comb with a precisely determined carrier separation. The resonant enhancement enables us to work with microwave powers that are three orders of magnitude lower than those in commercially available devices. We emphasize the practical relevance of our results to high rates of data communication. To circumvent the limitations imposed by nonlinear effects in optical communication fibres, one has to solve two problems: to provide a compact and fully integrated, yet high-quality and coherent, frequency comb generator; and to calculate nonlinear signal propagation in real time5. We report a solution to the first problem.}, author = {Rueda Sanchez, Alfredo R and Sedlmeir, Florian and Kumari, Madhuri and Leuchs, Gerd and Schwefel, Harald G.L.}, issn = {14764687}, journal = {Nature}, number = {7752}, pages = {378--381}, publisher = {Springer Nature}, title = {{Resonant electro-optic frequency comb}}, doi = {10.1038/s41586-019-1110-x}, volume = {568}, year = {2019}, } @article{6513, abstract = {Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR5 1,2 and fuel the constant replenishment of the intestinal epithelium1. Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells3,4, it remains unclear whether this population in the patterned epithelium represents unique intestinal stem-cell precursors. Here we show, using unbiased quantitative lineage-tracing approaches, biophysical modelling and intestinal transplantation, that all cells of the mouse intestinal epithelium—irrespective of their location and pattern of LGR5 expression in the fetal gut tube—contribute actively to the adult intestinal stem cell pool. Using 3D imaging, we find that during fetal development the villus undergoes gross remodelling and fission. This brings epithelial cells from the non-proliferative villus into the proliferative intervillus region, which enables them to contribute to the adult stem-cell niche. Our results demonstrate that large-scale remodelling of the intestinal wall and cell-fate specification are closely linked. Moreover, these findings provide a direct link between the observed plasticity and cellular reprogramming of differentiating cells in adult tissues following damage5,6,7,8,9, revealing that stem-cell identity is an induced rather than a hardwired property.}, author = {Guiu, Jordi and Hannezo, Edouard B and Yui, Shiro and Demharter, Samuel and Ulyanchenko, Svetlana and Maimets, Martti and Jørgensen, Anne and Perlman, Signe and Lundvall, Lene and Mamsen, Linn Salto and Larsen, Agnete and Olesen, Rasmus H. and Andersen, Claus Yding and Thuesen, Lea Langhoff and Hare, Kristine Juul and Pers, Tune H. and Khodosevich, Konstantin and Simons, Benjamin D. and Jensen, Kim B.}, issn = {14764687}, journal = {Nature}, pages = {107--111}, publisher = {Springer Nature}, title = {{Tracing the origin of adult intestinal stem cells}}, doi = {10.1038/s41586-019-1212-5}, volume = {570}, year = {2019}, } @article{6836, abstract = {Direct reciprocity is a powerful mechanism for the evolution of cooperation on the basis of repeated interactions1,2,3,4. It requires that interacting individuals are sufficiently equal, such that everyone faces similar consequences when they cooperate or defect. Yet inequality is ubiquitous among humans5,6 and is generally considered to undermine cooperation and welfare7,8,9,10. Most previous models of reciprocity do not include inequality11,12,13,14,15. These models assume that individuals are the same in all relevant aspects. Here we introduce a general framework to study direct reciprocity among unequal individuals. Our model allows for multiple sources of inequality. Subjects can differ in their endowments, their productivities and in how much they benefit from public goods. We find that extreme inequality prevents cooperation. But if subjects differ in productivity, some endowment inequality can be necessary for cooperation to prevail. Our mathematical predictions are supported by a behavioural experiment in which we vary the endowments and productivities of the subjects. We observe that overall welfare is maximized when the two sources of heterogeneity are aligned, such that more productive individuals receive higher endowments. By contrast, when endowments and productivities are misaligned, cooperation quickly breaks down. Our findings have implications for policy-makers concerned with equity, efficiency and the provisioning of public goods.}, author = {Hauser, Oliver P. and Hilbe, Christian and Chatterjee, Krishnendu and Nowak, Martin A.}, issn = {14764687}, journal = {Nature}, number = {7770}, pages = {524--527}, publisher = {Springer Nature}, title = {{Social dilemmas among unequals}}, doi = {10.1038/s41586-019-1488-5}, volume = {572}, year = {2019}, } @article{651, abstract = {Superhydrophobic surfaces reduce the frictional drag between water and solid materials, but this effect is often temporary. The realization of sustained drag reduction has applications for water vehicles and pipeline flows. }, author = {Hof, Björn}, issn = {00280836}, journal = {Nature}, number = {7636}, pages = {161 -- 162}, publisher = {Nature Publishing Group}, title = {{Fluid dynamics: Water flows out of touch}}, doi = {10.1038/541161a}, volume = {541}, year = {2017}, } @article{934, abstract = {During puberty, the mouse mammary gland develops into a highly branched epithelial network. Owing to the absence of exclusive stem cell markers, the location, multiplicity, dynamics and fate of mammary stem cells (MaSCs), which drive branching morphogenesis, are unknown. Here we show that morphogenesis is driven by proliferative terminal end buds that terminate or bifurcate with near equal probability, in a stochastic and time-invariant manner, leading to a heterogeneous epithelial network. We show that the majority of terminal end bud cells function as highly proliferative, lineage-committed MaSCs that are heterogeneous in their expression profile and short-term contribution to ductal extension. Yet, through cell rearrangements during terminal end bud bifurcation, each MaSC is able to contribute actively to long-term growth. Our study shows that the behaviour of MaSCs is not directly linked to a single expression profile. Instead, morphogenesis relies upon lineage-restricted heterogeneous MaSC populations that function as single equipotent pools in the long term.}, author = {Scheele, Colinda and Hannezo, Edouard B and Muraro, Mauro and Zomer, Anoek and Langedijk, Nathalia and Van Oudenaarden, Alexander and Simons, Benjamin and Van Rheenen, Jacco}, issn = {00280836}, journal = {Nature}, number = {7641}, pages = {313 -- 317}, publisher = {Nature Publishing Group}, title = {{Identity and dynamics of mammary stem cells during branching morphogenesis}}, doi = {10.1038/nature21046}, volume = {542}, year = {2017}, } @article{937, abstract = {During epithelial cytokinesis, the remodelling of adhesive cell-cell contacts between the dividing cell and its neighbours has profound implications for the integrity, arrangement and morphogenesis of proliferative tissues. In both vertebrates and invertebrates, this remodelling requires the activity of non-muscle myosin II (MyoII) in the interphasic cells neighbouring the dividing cell. However, the mechanisms that coordinate cytokinesis and MyoII activity in the neighbours are unknown. Here we show that in the Drosophila notum epithelium, each cell division is associated with a mechanosensing and transmission event that controls MyoII dynamics in neighbouring cells. We find that the ring pulling forces promote local junction elongation, which results in local E-cadherin dilution at the ingressing adherens junction. In turn, the reduction in E-cadherin concentration and the contractility of the neighbouring cells promote self-organized actomyosin flows, ultimately leading to accumulation of MyoII at the base of the ingressing junction. Although force transduction has been extensively studied in the context of adherens junction reinforcement to stabilize adhesive cell-cell contacts, we propose an alternative mechanosensing mechanism that coordinates actomyosin dynamics between epithelial cells and sustains the remodelling of the adherens junction in response to mechanical forces.}, author = {Pinheiro, Diana and Hannezo, Edouard B and Herszterg, Sophie and Bosveld, Floris and Gaugué, Isabelle and Balakireva, Maria and Wang, Zhimin and Cristo, Inês and Rigaud, Stéphane and Markova, Olga and Bellaïche, Yohanns}, issn = {00280836}, journal = {Nature}, number = {7652}, pages = {103 -- 107}, publisher = {Nature Publishing Group}, title = {{Transmission of cytokinesis forces via E cadherin dilution and actomyosin flows}}, doi = {10.1038/nature22041}, volume = {545}, year = {2017}, } @article{1025, abstract = {Many organ surfaces are covered by a protective epithelial-cell layer. It emerges that such layers are maintained by cell stretching that triggers cell division mediated by the force-sensitive ion-channel protein Piezo1. See Letter p.118}, author = {Heisenberg, Carl-Philipp J}, issn = {00280836}, journal = {Nature}, number = {7643}, pages = {43 -- 44}, publisher = {Nature Publishing Group}, title = {{Cell biology: Stretched divisions}}, doi = {10.1038/nature21502}, volume = {543}, year = {2017}, } @article{2235, abstract = {Emerging infectious diseases (EIDs) pose a risk to human welfare, both directly and indirectly, by affecting managed livestock and wildlife that provide valuable resources and ecosystem services, such as the pollination of crops. Honeybees (Apis mellifera), the prevailing managed insect crop pollinator, suffer from a range of emerging and exotic high-impact pathogens, and population maintenance requires active management by beekeepers to control them. Wild pollinators such as bumblebees (Bombus spp.) are in global decline, one cause of which may be pathogen spillover from managed pollinators like honeybees or commercial colonies of bumblebees. Here we use a combination of infection experiments and landscape-scale field data to show that honeybee EIDs are indeed widespread infectious agents within the pollinator assemblage. The prevalence of deformed wing virus (DWV) and the exotic parasite Nosema ceranae in honeybees and bumblebees is linked; as honeybees have higher DWV prevalence, and sympatric bumblebees and honeybees are infected by the same DWV strains, Apis is the likely source of at least one major EID in wild pollinators. Lessons learned from vertebrates highlight the need for increased pathogen control in managed bee species to maintain wild pollinators, as declines in native pollinators may be caused by interspecies pathogen transmission originating from managed pollinators.}, author = {Fürst, Matthias and Mcmahon, Dino and Osborne, Juliet and Paxton, Robert and Brown, Mark}, issn = {00280836}, journal = {Nature}, number = {7488}, pages = {364 -- 366}, publisher = {Nature Publishing Group}, title = {{Disease associations between honeybees and bumblebees as a threat to wild pollinators}}, doi = {10.1038/nature12977}, volume = {506}, year = {2014}, }