--- _id: '9331' abstract: - lang: eng text: 'Quantum entanglement has been generated and verified in cold-atom experiments and used to make atom-interferometric measurements below the shot-noise limit. However, current state-of-the-art cold-atom devices exploit separable (i.e., unentangled) atomic states. This perspective piece asks the question: can entanglement usefully improve cold-atom sensors, in the sense that it gives new sensing capabilities unachievable with current state-of-the-art devices? We briefly review the state-of-the-art in precision cold-atom sensing, focusing on clocks and inertial sensors, identifying the potential benefits entanglement could bring to these devices, and the challenges that need to be overcome to realize these benefits. We survey demonstrated methods of generating metrologically useful entanglement in cold-atom systems, note their relative strengths and weaknesses, and assess their prospects for near-to-medium term quantum-enhanced cold-atom sensing.' acknowledgement: We acknowledge fruitful discussions with John Close, Chris Freier, Kyle Hardman, Joseph Hope, and Paul Wigley, and insightful suggestions made by Franck Pereira dos Santos on behalf of the Atom Interferometry and Inertial Sensors team at SYRTE. S.S.S. was supported by an Australian Research Council Discovery Early Career Researcher Award (DECRA), Project No. DE200100495. O.H. was supported by IST Austria. article_number: '140501' article_processing_charge: No article_type: original author: - first_name: Stuart S. full_name: Szigeti, Stuart S. last_name: Szigeti - first_name: Onur full_name: Hosten, Onur id: 4C02D85E-F248-11E8-B48F-1D18A9856A87 last_name: Hosten orcid: 0000-0002-2031-204X - first_name: Simon A. full_name: Haine, Simon A. last_name: Haine citation: ama: 'Szigeti SS, Hosten O, Haine SA. Improving cold-atom sensors with quantum entanglement: Prospects and challenges. Applied Physics Letters. 2021;118(14). doi:10.1063/5.0050235' apa: 'Szigeti, S. S., Hosten, O., & Haine, S. A. (2021). Improving cold-atom sensors with quantum entanglement: Prospects and challenges. Applied Physics Letters. AIP Publishing. https://doi.org/10.1063/5.0050235' chicago: 'Szigeti, Stuart S., Onur Hosten, and Simon A. Haine. “Improving Cold-Atom Sensors with Quantum Entanglement: Prospects and Challenges.” Applied Physics Letters. AIP Publishing, 2021. https://doi.org/10.1063/5.0050235.' ieee: 'S. S. Szigeti, O. Hosten, and S. A. Haine, “Improving cold-atom sensors with quantum entanglement: Prospects and challenges,” Applied Physics Letters, vol. 118, no. 14. AIP Publishing, 2021.' ista: 'Szigeti SS, Hosten O, Haine SA. 2021. Improving cold-atom sensors with quantum entanglement: Prospects and challenges. Applied Physics Letters. 118(14), 140501.' mla: 'Szigeti, Stuart S., et al. “Improving Cold-Atom Sensors with Quantum Entanglement: Prospects and Challenges.” Applied Physics Letters, vol. 118, no. 14, 140501, AIP Publishing, 2021, doi:10.1063/5.0050235.' short: S.S. Szigeti, O. Hosten, S.A. Haine, Applied Physics Letters 118 (2021). date_created: 2021-04-18T22:01:40Z date_published: 2021-04-07T00:00:00Z date_updated: 2023-08-07T14:36:42Z day: '07' department: - _id: OnHo doi: 10.1063/5.0050235 external_id: arxiv: - '2010.09168' isi: - '000637702100001' intvolume: ' 118' isi: 1 issue: '14' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2010.09168 month: '04' oa: 1 oa_version: Preprint publication: Applied Physics Letters publication_identifier: issn: - '00036951' publication_status: published publisher: AIP Publishing quality_controlled: '1' scopus_import: '1' status: public title: 'Improving cold-atom sensors with quantum entanglement: Prospects and challenges' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 118 year: '2021' ... --- _id: '796' abstract: - lang: eng text: We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate. Key to the qubit fabrication is the use of an anhydrous hydrofluoric vapor process which selectively removes the lossy silicon oxide buried underneath the silicon device layer. For a 5.6 GHz qubit measured dispersively by a 7.1 GHz resonator, we find T1 = 3.5 μs and T∗2 = 2.2 μs. This process in principle permits the co-fabrication of silicon photonic and mechanical elements, providing a route towards chip-scale integration of electro-opto-mechanical transducers for quantum networking of superconducting microwave quantum circuits. The additional processing steps are compatible with established fabrication techniques for aluminum transmon qubits on silicon. acknowledgement: This work was supported by the AFOSR MURI Quantum Photonic Matter (Grant No. 16RT0696), the AFOSR MURI Wiring Quantum Networks with Mechanical Transducers (Grant No. FA9550-15-1-0015), the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (Grant No. PHY-1125565) with the support of the Gordon and Betty Moore Foundation, and the Kavli Nanoscience Institute at Caltech. A.J.K. acknowledges the IQIM Postdoctoral Fellowship. article_number: '042603' article_processing_charge: No author: - first_name: Andrew J full_name: Keller, Andrew J last_name: Keller - first_name: Paul full_name: Dieterle, Paul last_name: Dieterle - first_name: Michael full_name: Fang, Michael last_name: Fang - first_name: Brett full_name: Berger, Brett last_name: Berger - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Oskar full_name: Painter, Oskar last_name: Painter citation: ama: Keller AJ, Dieterle P, Fang M, Berger B, Fink JM, Painter O. Al transmon qubits on silicon on insulator for quantum device integration. Applied Physics Letters. 2017;111(4). doi:10.1063/1.4994661 apa: Keller, A. J., Dieterle, P., Fang, M., Berger, B., Fink, J. M., & Painter, O. (2017). Al transmon qubits on silicon on insulator for quantum device integration. Applied Physics Letters. American Institute of Physics. https://doi.org/10.1063/1.4994661 chicago: Keller, Andrew J, Paul Dieterle, Michael Fang, Brett Berger, Johannes M Fink, and Oskar Painter. “Al Transmon Qubits on Silicon on Insulator for Quantum Device Integration.” Applied Physics Letters. American Institute of Physics, 2017. https://doi.org/10.1063/1.4994661. ieee: A. J. Keller, P. Dieterle, M. Fang, B. Berger, J. M. Fink, and O. Painter, “Al transmon qubits on silicon on insulator for quantum device integration,” Applied Physics Letters, vol. 111, no. 4. American Institute of Physics, 2017. ista: Keller AJ, Dieterle P, Fang M, Berger B, Fink JM, Painter O. 2017. Al transmon qubits on silicon on insulator for quantum device integration. Applied Physics Letters. 111(4), 042603. mla: Keller, Andrew J., et al. “Al Transmon Qubits on Silicon on Insulator for Quantum Device Integration.” Applied Physics Letters, vol. 111, no. 4, 042603, American Institute of Physics, 2017, doi:10.1063/1.4994661. short: A.J. Keller, P. Dieterle, M. Fang, B. Berger, J.M. Fink, O. Painter, Applied Physics Letters 111 (2017). date_created: 2018-12-11T11:48:33Z date_published: 2017-07-01T00:00:00Z date_updated: 2023-09-27T12:13:36Z day: '01' department: - _id: JoFi doi: 10.1063/1.4994661 external_id: isi: - '000406779700031' intvolume: ' 111' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1703.10195 month: '07' oa: 1 oa_version: Submitted Version publication: Applied Physics Letters publication_identifier: issn: - '00036951' publication_status: published publisher: American Institute of Physics publist_id: '6857' quality_controlled: '1' scopus_import: '1' status: public title: Al transmon qubits on silicon on insulator for quantum device integration type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 111 year: '2017' ...