TY - JOUR
AB - We establish the Hardy-Littlewood property (à la Borovoi-Rudnick) for Zariski open subsets in affine quadrics of the form q(x1,...,xn)=m, where q is a non-degenerate integral quadratic form in n>3 variables and m is a non-zero integer. This gives asymptotic formulas for the density of integral points taking coprime polynomial values, which is a quantitative version of the arithmetic purity of strong approximation property off infinity for affine quadrics.
AU - Cao, Yang
AU - Huang, Zhizhong
ID - 10765
IS - 3
JF - Advances in Mathematics
SN - 00018708
TI - Arithmetic purity of the Hardy-Littlewood property and geometric sieve for affine quadrics
VL - 398
ER -
TY - JOUR
AB - An asymptotic formula is established for the number of rational points of bounded anticanonical height which lie on a certain Zariskiopen subset of an arbitrary smooth biquadratic hypersurface in sufficiently many variables. The proof uses the Hardy–Littlewood circle method.
AU - Browning, Timothy D
AU - Hu, L.Q.
ID - 6310
JF - Advances in Mathematics
SN - 00018708
TI - Counting rational points on biquadratic hypersurfaces
VL - 349
ER -
TY - JOUR
AB - In this article we define an algebraic vertex of a generalized polyhedron and show that the set of algebraic vertices is the smallest set of points needed to define the polyhedron. We prove that the indicator function of a generalized polytope P is a linear combination of indicator functions of simplices whose vertices are algebraic vertices of P. We also show that the indicator function of any generalized polyhedron is a linear combination, with integer coefficients, of indicator functions of cones with apices at algebraic vertices and line-cones. The concept of an algebraic vertex is closely related to the Fourier–Laplace transform. We show that a point v is an algebraic vertex of a generalized polyhedron P if and only if the tangent cone of P, at v, has non-zero Fourier–Laplace transform.
AU - Akopyan, Arseniy
AU - Bárány, Imre
AU - Robins, Sinai
ID - 1180
JF - Advances in Mathematics
SN - 00018708
TI - Algebraic vertices of non-convex polyhedra
VL - 308
ER -