--- _id: '6371' abstract: - lang: eng text: "Decades of studies have revealed the mechanisms of gene regulation in molecular detail. We make use of such well-described regulatory systems to explore how the molecular mechanisms of protein-protein and protein-DNA interactions shape the dynamics and evolution of gene regulation. \r\n\r\ni) We uncover how the biophysics of protein-DNA binding determines the potential of regulatory networks to evolve and adapt, which can be captured using a simple mathematical model. \r\nii) The evolution of regulatory connections can lead to a significant amount of crosstalk between binding proteins. We explore the effect of crosstalk on gene expression from a target promoter, which seems to be modulated through binding competition at non-specific DNA sites. \r\niii) We investigate how the very same biophysical characteristics as in i) can generate significant fitness costs for cells through global crosstalk, meaning non-specific DNA binding across the genomic background. \r\niv) Binding competition between proteins at a target promoter is a prevailing regulatory feature due to the prevalence of co-regulation at bacterial promoters. However, the dynamics of these systems are not always straightforward to determine even if the molecular mechanisms of regulation are known. A detailed model of the biophysical interactions reveals that interference between the regulatory proteins can constitute a new, generic form of system memory that records the history of the input signals at the promoter. \r\n\r\nWe demonstrate how the biophysics of protein-DNA binding can be harnessed to investigate the principles that shape and ultimately limit cellular gene regulation. These results provide a basis for studies of higher-level functionality, which arises from the underlying regulation. \ \r\n" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Claudia full_name: Igler, Claudia id: 46613666-F248-11E8-B48F-1D18A9856A87 last_name: Igler citation: ama: Igler C. On the nature of gene regulatory design - The biophysics of transcription factor binding shapes gene regulation. 2019. doi:10.15479/AT:ISTA:6371 apa: Igler, C. (2019). On the nature of gene regulatory design - The biophysics of transcription factor binding shapes gene regulation. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6371 chicago: Igler, Claudia. “On the Nature of Gene Regulatory Design - The Biophysics of Transcription Factor Binding Shapes Gene Regulation.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6371. ieee: C. Igler, “On the nature of gene regulatory design - The biophysics of transcription factor binding shapes gene regulation,” Institute of Science and Technology Austria, 2019. ista: Igler C. 2019. On the nature of gene regulatory design - The biophysics of transcription factor binding shapes gene regulation. Institute of Science and Technology Austria. mla: Igler, Claudia. On the Nature of Gene Regulatory Design - The Biophysics of Transcription Factor Binding Shapes Gene Regulation. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6371. short: C. Igler, On the Nature of Gene Regulatory Design - The Biophysics of Transcription Factor Binding Shapes Gene Regulation, Institute of Science and Technology Austria, 2019. date_created: 2019-05-03T11:55:51Z date_published: 2019-05-03T00:00:00Z date_updated: 2024-02-21T13:45:52Z day: '03' ddc: - '576' - '579' degree_awarded: PhD department: - _id: CaGu doi: 10.15479/AT:ISTA:6371 file: - access_level: open_access checksum: c0085d47c58c9cbcab1b0a783480f6da content_type: application/pdf creator: cigler date_created: 2019-05-03T11:54:52Z date_updated: 2021-02-11T11:17:13Z embargo: 2020-05-02 file_id: '6373' file_name: IglerClaudia_OntheNatureofGeneRegulatoryDesign.pdf file_size: 12597663 relation: main_file - access_level: closed checksum: 2eac954de1c8bbf7e6fb35ed0221ae8c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: cigler date_created: 2019-05-03T11:54:54Z date_updated: 2020-07-14T12:47:28Z embargo_to: open_access file_id: '6374' file_name: IglerClaudia_OntheNatureofGeneRegulatoryDesign.docx file_size: 34644426 relation: source_file file_date_updated: 2021-02-11T11:17:13Z has_accepted_license: '1' keyword: - gene regulation - biophysics - transcription factor binding - bacteria language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '152' project: - _id: 251EE76E-B435-11E9-9278-68D0E5697425 grant_number: '24573' name: Design principles underlying genetic switch architecture (DOC Fellowship) publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '67' relation: part_of_dissertation status: public - id: '5585' relation: popular_science status: public status: public supervisor: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 title: On the nature of gene regulatory design - The biophysics of transcription factor binding shapes gene regulation type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '10286' abstract: - lang: eng text: 'In this paper, we evaluate clock signals generated in ring oscillators and self-timed rings and the way their jitter can be transformed into random numbers. We show that counting the periods of the jittery clock signal produces random numbers of significantly better quality than the methods in which the jittery signal is simply sampled (the case in almost all current methods). Moreover, we use the counter values to characterize and continuously monitor the source of randomness. However, instead of using the widely used statistical variance, we propose to use Allan variance to do so. There are two main advantages: Allan variance is insensitive to low frequency noises such as flicker noise that are known to be autocorrelated and significantly less circuitry is required for its computation than that used to compute commonly used variance. We also show that it is essential to use a differential principle of randomness extraction from the jitter based on the use of two identical oscillators to avoid autocorrelations originating from external and internal global jitter sources and that this fact is valid for both kinds of rings. Last but not least, we propose a method of statistical testing based on high order Markov model to show the reduced dependencies when the proposed randomness extraction is applied.' article_processing_charge: No article_type: original author: - first_name: Elie Noumon full_name: Allini, Elie Noumon last_name: Allini - first_name: Maciej full_name: Skórski, Maciej id: EC09FA6A-02D0-11E9-8223-86B7C91467DD last_name: Skórski - first_name: Oto full_name: Petura, Oto last_name: Petura - first_name: Florent full_name: Bernard, Florent last_name: Bernard - first_name: Marek full_name: Laban, Marek last_name: Laban - first_name: Viktor full_name: Fischer, Viktor last_name: Fischer citation: ama: Allini EN, Skórski M, Petura O, Bernard F, Laban M, Fischer V. Evaluation and monitoring of free running oscillators serving as source of randomness. IACR Transactions on Cryptographic Hardware and Embedded Systems. 2018;2018(3):214-242. doi:10.13154/tches.v2018.i3.214-242 apa: Allini, E. N., Skórski, M., Petura, O., Bernard, F., Laban, M., & Fischer, V. (2018). Evaluation and monitoring of free running oscillators serving as source of randomness. IACR Transactions on Cryptographic Hardware and Embedded Systems. International Association for Cryptologic Research. https://doi.org/10.13154/tches.v2018.i3.214-242 chicago: Allini, Elie Noumon, Maciej Skórski, Oto Petura, Florent Bernard, Marek Laban, and Viktor Fischer. “Evaluation and Monitoring of Free Running Oscillators Serving as Source of Randomness.” IACR Transactions on Cryptographic Hardware and Embedded Systems. International Association for Cryptologic Research, 2018. https://doi.org/10.13154/tches.v2018.i3.214-242. ieee: E. N. Allini, M. Skórski, O. Petura, F. Bernard, M. Laban, and V. Fischer, “Evaluation and monitoring of free running oscillators serving as source of randomness,” IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2018, no. 3. International Association for Cryptologic Research, pp. 214–242, 2018. ista: Allini EN, Skórski M, Petura O, Bernard F, Laban M, Fischer V. 2018. Evaluation and monitoring of free running oscillators serving as source of randomness. IACR Transactions on Cryptographic Hardware and Embedded Systems. 2018(3), 214–242. mla: Allini, Elie Noumon, et al. “Evaluation and Monitoring of Free Running Oscillators Serving as Source of Randomness.” IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2018, no. 3, International Association for Cryptologic Research, 2018, pp. 214–42, doi:10.13154/tches.v2018.i3.214-242. short: E.N. Allini, M. Skórski, O. Petura, F. Bernard, M. Laban, V. Fischer, IACR Transactions on Cryptographic Hardware and Embedded Systems 2018 (2018) 214–242. date_created: 2021-11-14T23:01:25Z date_published: 2018-01-01T00:00:00Z date_updated: 2021-11-15T10:48:49Z day: '01' ddc: - '000' department: - _id: KrPi doi: 10.13154/tches.v2018.i3.214-242 file: - access_level: open_access checksum: b816b848f046c48a8357700d9305dce5 content_type: application/pdf creator: cchlebak date_created: 2021-11-15T10:27:29Z date_updated: 2021-11-15T10:27:29Z file_id: '10289' file_name: 2018_IACR_Allini.pdf file_size: 955755 relation: main_file success: 1 file_date_updated: 2021-11-15T10:27:29Z has_accepted_license: '1' intvolume: ' 2018' issue: '3' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 214-242 publication: IACR Transactions on Cryptographic Hardware and Embedded Systems publication_identifier: eissn: - 2569-2925 publication_status: published publisher: International Association for Cryptologic Research quality_controlled: '1' scopus_import: '1' status: public title: Evaluation and monitoring of free running oscillators serving as source of randomness tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 2018 year: '2018' ... --- _id: '10883' abstract: - lang: eng text: 'Solving parity games, which are equivalent to modal μ-calculus model checking, is a central algorithmic problem in formal methods, with applications in reactive synthesis, program repair, verification of branching-time properties, etc. Besides the standard compu- tation model with the explicit representation of games, another important theoretical model of computation is that of set-based symbolic algorithms. Set-based symbolic algorithms use basic set operations and one-step predecessor operations on the implicit description of games, rather than the explicit representation. The significance of symbolic algorithms is that they provide scalable algorithms for large finite-state systems, as well as for infinite-state systems with finite quotient. Consider parity games on graphs with n vertices and parity conditions with d priorities. While there is a rich literature of explicit algorithms for parity games, the main results for set-based symbolic algorithms are as follows: (a) the basic algorithm that requires O(nd) symbolic operations and O(d) symbolic space; and (b) an improved algorithm that requires O(nd/3+1) symbolic operations and O(n) symbolic space. In this work, our contributions are as follows: (1) We present a black-box set-based symbolic algorithm based on the explicit progress measure algorithm. Two important consequences of our algorithm are as follows: (a) a set-based symbolic algorithm for parity games that requires quasi-polynomially many symbolic operations and O(n) symbolic space; and (b) any future improvement in progress measure based explicit algorithms immediately imply an efficiency improvement in our set-based symbolic algorithm for parity games. (2) We present a set-based symbolic algorithm that requires quasi-polynomially many symbolic operations and O(d · log n) symbolic space. Moreover, for the important special case of d ≤ log n, our algorithm requires only polynomially many symbolic operations and poly-logarithmic symbolic space.' acknowledgement: 'A. S. is fully supported by the Vienna Science and Technology Fund (WWTF) through project ICT15-003. K.C. is supported by the Austrian Science Fund (FWF) NFN Grant No S11407-N23 (RiSE/SHiNE) and an ERC Starting grant (279307: Graph Games). For M.H the research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) /ERC Grant Agreement no. 340506.' alternative_title: - EPiC Series in Computing article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Wolfgang full_name: Dvořák, Wolfgang last_name: Dvořák - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Alexander full_name: Svozil, Alexander last_name: Svozil citation: ama: 'Chatterjee K, Dvořák W, Henzinger MH, Svozil A. Quasipolynomial set-based symbolic algorithms for parity games. In: 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning. Vol 57. EasyChair; 2018:233-253. doi:10.29007/5z5k' apa: 'Chatterjee, K., Dvořák, W., Henzinger, M. H., & Svozil, A. (2018). Quasipolynomial set-based symbolic algorithms for parity games. In 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning (Vol. 57, pp. 233–253). Awassa, Ethiopia: EasyChair. https://doi.org/10.29007/5z5k' chicago: Chatterjee, Krishnendu, Wolfgang Dvořák, Monika H Henzinger, and Alexander Svozil. “Quasipolynomial Set-Based Symbolic Algorithms for Parity Games.” In 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning, 57:233–53. EasyChair, 2018. https://doi.org/10.29007/5z5k. ieee: K. Chatterjee, W. Dvořák, M. H. Henzinger, and A. Svozil, “Quasipolynomial set-based symbolic algorithms for parity games,” in 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Awassa, Ethiopia, 2018, vol. 57, pp. 233–253. ista: 'Chatterjee K, Dvořák W, Henzinger MH, Svozil A. 2018. Quasipolynomial set-based symbolic algorithms for parity games. 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning. LPAR: Conference on Logic for Programming, Artificial Intelligence and Reasoning, EPiC Series in Computing, vol. 57, 233–253.' mla: Chatterjee, Krishnendu, et al. “Quasipolynomial Set-Based Symbolic Algorithms for Parity Games.” 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning, vol. 57, EasyChair, 2018, pp. 233–53, doi:10.29007/5z5k. short: K. Chatterjee, W. Dvořák, M.H. Henzinger, A. Svozil, in:, 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning, EasyChair, 2018, pp. 233–253. conference: end_date: 2018-11-21 location: Awassa, Ethiopia name: 'LPAR: Conference on Logic for Programming, Artificial Intelligence and Reasoning' start_date: 2018-11-17 date_created: 2022-03-18T12:46:32Z date_published: 2018-10-23T00:00:00Z date_updated: 2022-07-29T09:24:31Z day: '23' ddc: - '000' department: - _id: KrCh doi: 10.29007/5z5k ec_funded: 1 external_id: arxiv: - '1909.04983' file: - access_level: open_access checksum: 1229aa8640bd6db610c85decf2265480 content_type: application/pdf creator: dernst date_created: 2022-05-17T07:51:08Z date_updated: 2022-05-17T07:51:08Z file_id: '11392' file_name: 2018_EPiCs_Chatterjee.pdf file_size: 720893 relation: main_file success: 1 file_date_updated: 2022-05-17T07:51:08Z has_accepted_license: '1' intvolume: ' 57' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 233-253 project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication: 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning publication_identifier: issn: - 2398-7340 publication_status: published publisher: EasyChair quality_controlled: '1' scopus_import: '1' status: public title: Quasipolynomial set-based symbolic algorithms for parity games type: conference user_id: 72615eeb-f1f3-11ec-aa25-d4573ddc34fd volume: 57 year: '2018' ... --- _id: '11' abstract: - lang: eng text: We report on a novel strategy to derive mean-field limits of quantum mechanical systems in which a large number of particles weakly couple to a second-quantized radiation field. The technique combines the method of counting and the coherent state approach to study the growth of the correlations among the particles and in the radiation field. As an instructional example, we derive the Schrödinger–Klein–Gordon system of equations from the Nelson model with ultraviolet cutoff and possibly massless scalar field. In particular, we prove the convergence of the reduced density matrices (of the nonrelativistic particles and the field bosons) associated with the exact time evolution to the projectors onto the solutions of the Schrödinger–Klein–Gordon equations in trace norm. Furthermore, we derive explicit bounds on the rate of convergence of the one-particle reduced density matrix of the nonrelativistic particles in Sobolev norm. author: - first_name: Nikolai K full_name: Leopold, Nikolai K id: 4BC40BEC-F248-11E8-B48F-1D18A9856A87 last_name: Leopold orcid: 0000-0002-0495-6822 - first_name: Peter full_name: Pickl, Peter last_name: Pickl citation: ama: 'Leopold NK, Pickl P. Mean-field limits of particles in interaction with quantised radiation fields. In: Vol 270. Springer; 2018:185-214. doi:10.1007/978-3-030-01602-9_9' apa: 'Leopold, N. K., & Pickl, P. (2018). Mean-field limits of particles in interaction with quantised radiation fields (Vol. 270, pp. 185–214). Presented at the MaLiQS: Macroscopic Limits of Quantum Systems, Munich, Germany: Springer. https://doi.org/10.1007/978-3-030-01602-9_9' chicago: Leopold, Nikolai K, and Peter Pickl. “Mean-Field Limits of Particles in Interaction with Quantised Radiation Fields,” 270:185–214. Springer, 2018. https://doi.org/10.1007/978-3-030-01602-9_9. ieee: 'N. K. Leopold and P. Pickl, “Mean-field limits of particles in interaction with quantised radiation fields,” presented at the MaLiQS: Macroscopic Limits of Quantum Systems, Munich, Germany, 2018, vol. 270, pp. 185–214.' ista: 'Leopold NK, Pickl P. 2018. Mean-field limits of particles in interaction with quantised radiation fields. MaLiQS: Macroscopic Limits of Quantum Systems vol. 270, 185–214.' mla: Leopold, Nikolai K., and Peter Pickl. Mean-Field Limits of Particles in Interaction with Quantised Radiation Fields. Vol. 270, Springer, 2018, pp. 185–214, doi:10.1007/978-3-030-01602-9_9. short: N.K. Leopold, P. Pickl, in:, Springer, 2018, pp. 185–214. conference: end_date: 2017-04-01 location: Munich, Germany name: 'MaLiQS: Macroscopic Limits of Quantum Systems' start_date: 2017-03-30 date_created: 2018-12-11T11:44:08Z date_published: 2018-10-27T00:00:00Z date_updated: 2021-01-12T06:48:16Z day: '27' department: - _id: RoSe doi: 10.1007/978-3-030-01602-9_9 ec_funded: 1 external_id: arxiv: - '1806.10843' intvolume: ' 270' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1806.10843 month: '10' oa: 1 oa_version: Preprint page: 185 - 214 project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication_status: published publisher: Springer publist_id: '8045' quality_controlled: '1' scopus_import: 1 status: public title: Mean-field limits of particles in interaction with quantised radiation fields type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 270 year: '2018' ... --- _id: '1215' abstract: - lang: eng text: "Two generalizations of Itô formula to infinite-dimensional spaces are given.\r\nThe first one, in Hilbert spaces, extends the classical one by taking advantage of\r\ncancellations when they occur in examples and it is applied to the case of a group\r\ngenerator. The second one, based on the previous one and a limit procedure, is an Itô\r\nformula in a special class of Banach spaces having a product structure with the noise\r\nin a Hilbert component; again the key point is the extension due to a cancellation. This\r\nextension to Banach spaces and in particular the specific cancellation are motivated\r\nby path-dependent Itô calculus." acknowledgement: Open access funding provided by Institute of Science and Technology (IST Austria). The second named author benefited partially from the support of the “FMJH Program Gaspard Monge in Optimization and Operations Research” (Project 2014-1607H). He is also grateful for the invitation to the Department of Mathematics of the University of Pisa. The third named author is grateful for the invitation to ENSTA. article_processing_charge: Yes (via OA deal) author: - first_name: Franco full_name: Flandoli, Franco last_name: Flandoli - first_name: Francesco full_name: Russo, Francesco last_name: Russo - first_name: Giovanni A full_name: Zanco, Giovanni A id: 47491882-F248-11E8-B48F-1D18A9856A87 last_name: Zanco citation: ama: Flandoli F, Russo F, Zanco GA. Infinite-dimensional calculus under weak spatial regularity of the processes. Journal of Theoretical Probability. 2018;31(2):789-826. doi:10.1007/s10959-016-0724-2 apa: Flandoli, F., Russo, F., & Zanco, G. A. (2018). Infinite-dimensional calculus under weak spatial regularity of the processes. Journal of Theoretical Probability. Springer. https://doi.org/10.1007/s10959-016-0724-2 chicago: Flandoli, Franco, Francesco Russo, and Giovanni A Zanco. “Infinite-Dimensional Calculus under Weak Spatial Regularity of the Processes.” Journal of Theoretical Probability. Springer, 2018. https://doi.org/10.1007/s10959-016-0724-2. ieee: F. Flandoli, F. Russo, and G. A. Zanco, “Infinite-dimensional calculus under weak spatial regularity of the processes,” Journal of Theoretical Probability, vol. 31, no. 2. Springer, pp. 789–826, 2018. ista: Flandoli F, Russo F, Zanco GA. 2018. Infinite-dimensional calculus under weak spatial regularity of the processes. Journal of Theoretical Probability. 31(2), 789–826. mla: Flandoli, Franco, et al. “Infinite-Dimensional Calculus under Weak Spatial Regularity of the Processes.” Journal of Theoretical Probability, vol. 31, no. 2, Springer, 2018, pp. 789–826, doi:10.1007/s10959-016-0724-2. short: F. Flandoli, F. Russo, G.A. Zanco, Journal of Theoretical Probability 31 (2018) 789–826. date_created: 2018-12-11T11:50:45Z date_published: 2018-06-01T00:00:00Z date_updated: 2021-01-12T06:49:09Z day: '01' ddc: - '519' department: - _id: JaMa doi: 10.1007/s10959-016-0724-2 file: - access_level: open_access checksum: 47686d58ec21c164540f1a980ff2163f content_type: application/pdf creator: system date_created: 2018-12-12T10:17:13Z date_updated: 2020-07-14T12:44:39Z file_id: '5266' file_name: IST-2016-712-v1+1_s10959-016-0724-2.pdf file_size: 671125 relation: main_file file_date_updated: 2020-07-14T12:44:39Z has_accepted_license: '1' intvolume: ' 31' issue: '2' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 789-826 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Journal of Theoretical Probability publication_status: published publisher: Springer publist_id: '6119' pubrep_id: '712' quality_controlled: '1' scopus_import: 1 status: public title: Infinite-dimensional calculus under weak spatial regularity of the processes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 31 year: '2018' ... --- _id: '185' abstract: - lang: eng text: We resolve in the affirmative conjectures of A. Skopenkov and Repovš (1998), and M. Skopenkov (2003) generalizing the classical Hanani-Tutte theorem to the setting of approximating maps of graphs on 2-dimensional surfaces by embeddings. Our proof of this result is constructive and almost immediately implies an efficient algorithm for testing whether a given piecewise linear map of a graph in a surface is approximable by an embedding. More precisely, an instance of this problem consists of (i) a graph G whose vertices are partitioned into clusters and whose inter-cluster edges are partitioned into bundles, and (ii) a region R of a 2-dimensional compact surface M given as the union of a set of pairwise disjoint discs corresponding to the clusters and a set of pairwise disjoint "pipes" corresponding to the bundles, connecting certain pairs of these discs. We are to decide whether G can be embedded inside M so that the vertices in every cluster are drawn in the corresponding disc, the edges in every bundle pass only through its corresponding pipe, and every edge crosses the boundary of each disc at most once. alternative_title: - Leibniz International Proceedings in Information, LIPIcs article_number: '39' author: - first_name: Radoslav full_name: Fulek, Radoslav id: 39F3FFE4-F248-11E8-B48F-1D18A9856A87 last_name: Fulek orcid: 0000-0001-8485-1774 - first_name: Jan full_name: Kynčl, Jan last_name: Kynčl citation: ama: 'Fulek R, Kynčl J. Hanani-Tutte for approximating maps of graphs. In: Vol 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018. doi:10.4230/LIPIcs.SoCG.2018.39' apa: 'Fulek, R., & Kynčl, J. (2018). Hanani-Tutte for approximating maps of graphs (Vol. 99). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.39' chicago: Fulek, Radoslav, and Jan Kynčl. “Hanani-Tutte for Approximating Maps of Graphs,” Vol. 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.SoCG.2018.39. ieee: 'R. Fulek and J. Kynčl, “Hanani-Tutte for approximating maps of graphs,” presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary, 2018, vol. 99.' ista: 'Fulek R, Kynčl J. 2018. Hanani-Tutte for approximating maps of graphs. SoCG: Symposium on Computational Geometry, Leibniz International Proceedings in Information, LIPIcs, vol. 99, 39.' mla: Fulek, Radoslav, and Jan Kynčl. Hanani-Tutte for Approximating Maps of Graphs. Vol. 99, 39, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, doi:10.4230/LIPIcs.SoCG.2018.39. short: R. Fulek, J. Kynčl, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. conference: end_date: 2018-06-14 location: Budapest, Hungary name: 'SoCG: Symposium on Computational Geometry' start_date: 2018-06-11 date_created: 2018-12-11T11:45:04Z date_published: 2018-01-01T00:00:00Z date_updated: 2021-01-12T06:53:36Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2018.39 file: - access_level: open_access checksum: f1b94f1a75b37c414a1f61d59fb2cd4c content_type: application/pdf creator: dernst date_created: 2018-12-17T12:33:52Z date_updated: 2020-07-14T12:45:19Z file_id: '5701' file_name: 2018_LIPIcs_Fulek.pdf file_size: 718857 relation: main_file file_date_updated: 2020-07-14T12:45:19Z has_accepted_license: '1' intvolume: ' 99' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 261FA626-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02281 name: Eliminating intersections in drawings of graphs publication_identifier: isbn: - 978-3-95977-066-8 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '7735' quality_controlled: '1' scopus_import: 1 status: public title: Hanani-Tutte for approximating maps of graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2018' ... --- _id: '188' abstract: - lang: eng text: Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex. acknowledgement: This research is partially supported by the Office of Naval Research, through grant no. N62909-18-1-2038, and the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund alternative_title: - Leibniz International Proceedings in Information, LIPIcs author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Ziga full_name: Virk, Ziga last_name: Virk - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: 'Edelsbrunner H, Virk Z, Wagner H. Smallest enclosing spheres and Chernoff points in Bregman geometry. In: Vol 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018:35:1-35:13. doi:10.4230/LIPIcs.SoCG.2018.35' apa: 'Edelsbrunner, H., Virk, Z., & Wagner, H. (2018). Smallest enclosing spheres and Chernoff points in Bregman geometry (Vol. 99, p. 35:1-35:13). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.35' chicago: Edelsbrunner, Herbert, Ziga Virk, and Hubert Wagner. “Smallest Enclosing Spheres and Chernoff Points in Bregman Geometry,” 99:35:1-35:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.SoCG.2018.35. ieee: 'H. Edelsbrunner, Z. Virk, and H. Wagner, “Smallest enclosing spheres and Chernoff points in Bregman geometry,” presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary, 2018, vol. 99, p. 35:1-35:13.' ista: 'Edelsbrunner H, Virk Z, Wagner H. 2018. Smallest enclosing spheres and Chernoff points in Bregman geometry. SoCG: Symposium on Computational Geometry, Leibniz International Proceedings in Information, LIPIcs, vol. 99, 35:1-35:13.' mla: Edelsbrunner, Herbert, et al. Smallest Enclosing Spheres and Chernoff Points in Bregman Geometry. Vol. 99, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 35:1-35:13, doi:10.4230/LIPIcs.SoCG.2018.35. short: H. Edelsbrunner, Z. Virk, H. Wagner, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 35:1-35:13. conference: end_date: 2018-06-14 location: Budapest, Hungary name: 'SoCG: Symposium on Computational Geometry' start_date: 2018-06-11 date_created: 2018-12-11T11:45:05Z date_published: 2018-06-11T00:00:00Z date_updated: 2021-01-12T06:53:48Z day: '11' ddc: - '000' department: - _id: HeEd doi: 10.4230/LIPIcs.SoCG.2018.35 file: - access_level: open_access checksum: 7509403803b3ac1aee94bbc2ad293d21 content_type: application/pdf creator: dernst date_created: 2018-12-17T16:31:31Z date_updated: 2020-07-14T12:45:20Z file_id: '5724' file_name: 2018_LIPIcs_Edelsbrunner.pdf file_size: 489080 relation: main_file file_date_updated: 2020-07-14T12:45:20Z has_accepted_license: '1' intvolume: ' 99' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 35:1 - 35:13 project: - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '7733' quality_controlled: '1' scopus_import: 1 status: public title: Smallest enclosing spheres and Chernoff points in Bregman geometry tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2018' ... --- _id: '306' abstract: - lang: eng text: A cornerstone of statistical inference, the maximum entropy framework is being increasingly applied to construct descriptive and predictive models of biological systems, especially complex biological networks, from large experimental data sets. Both its broad applicability and the success it obtained in different contexts hinge upon its conceptual simplicity and mathematical soundness. Here we try to concisely review the basic elements of the maximum entropy principle, starting from the notion of ‘entropy’, and describe its usefulness for the analysis of biological systems. As examples, we focus specifically on the problem of reconstructing gene interaction networks from expression data and on recent work attempting to expand our system-level understanding of bacterial metabolism. Finally, we highlight some extensions and potential limitations of the maximum entropy approach, and point to more recent developments that are likely to play a key role in the upcoming challenges of extracting structures and information from increasingly rich, high-throughput biological data. article_number: e00596 author: - first_name: Andrea full_name: De Martino, Andrea last_name: De Martino - first_name: Daniele full_name: De Martino, Daniele id: 3FF5848A-F248-11E8-B48F-1D18A9856A87 last_name: De Martino orcid: 0000-0002-5214-4706 citation: ama: De Martino A, De Martino D. An introduction to the maximum entropy approach and its application to inference problems in biology. Heliyon. 2018;4(4). doi:10.1016/j.heliyon.2018.e00596 apa: De Martino, A., & De Martino, D. (2018). An introduction to the maximum entropy approach and its application to inference problems in biology. Heliyon. Elsevier. https://doi.org/10.1016/j.heliyon.2018.e00596 chicago: De Martino, Andrea, and Daniele De Martino. “An Introduction to the Maximum Entropy Approach and Its Application to Inference Problems in Biology.” Heliyon. Elsevier, 2018. https://doi.org/10.1016/j.heliyon.2018.e00596. ieee: A. De Martino and D. De Martino, “An introduction to the maximum entropy approach and its application to inference problems in biology,” Heliyon, vol. 4, no. 4. Elsevier, 2018. ista: De Martino A, De Martino D. 2018. An introduction to the maximum entropy approach and its application to inference problems in biology. Heliyon. 4(4), e00596. mla: De Martino, Andrea, and Daniele De Martino. “An Introduction to the Maximum Entropy Approach and Its Application to Inference Problems in Biology.” Heliyon, vol. 4, no. 4, e00596, Elsevier, 2018, doi:10.1016/j.heliyon.2018.e00596. short: A. De Martino, D. De Martino, Heliyon 4 (2018). date_created: 2018-12-11T11:45:44Z date_published: 2018-04-01T00:00:00Z date_updated: 2021-01-12T07:40:46Z day: '01' ddc: - '530' department: - _id: GaTk doi: 10.1016/j.heliyon.2018.e00596 ec_funded: 1 file: - access_level: open_access checksum: 67010cf5e3b3e0637c659371714a715a content_type: application/pdf creator: dernst date_created: 2019-02-06T07:36:24Z date_updated: 2020-07-14T12:45:59Z file_id: '5929' file_name: 2018_Heliyon_DeMartino.pdf file_size: 994490 relation: main_file file_date_updated: 2020-07-14T12:45:59Z has_accepted_license: '1' intvolume: ' 4' issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Heliyon publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: 1 status: public title: An introduction to the maximum entropy approach and its application to inference problems in biology tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2018' ... --- _id: '3300' abstract: - lang: eng text: "This book first explores the origins of this idea, grounded in theoretical work on temporal logic and automata. The editors and authors are among the world's leading researchers in this domain, and they contributed 32 chapters representing a thorough view of the development and application of the technique. Topics covered include binary decision diagrams, symbolic model checking, satisfiability modulo theories, partial-order reduction, abstraction, interpolation, concurrency, security protocols, games, probabilistic model checking, and process algebra, and chapters on the transfer of theory to industrial practice, property specification languages for hardware, and verification of real-time systems and hybrid systems.\r\n\r\nThe book will be valuable for researchers and graduate students engaged with the development of formal methods and verification tools." article_processing_charge: No author: - first_name: Edmund M. full_name: Clarke, Edmund M. last_name: Clarke - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Helmut full_name: Veith, Helmut last_name: Veith - first_name: Roderick full_name: Bloem, Roderick last_name: Bloem citation: ama: 'Clarke EM, Henzinger TA, Veith H, Bloem R. Handbook of Model Checking. 1st ed. Cham: Springer Nature; 2018. doi:10.1007/978-3-319-10575-8' apa: 'Clarke, E. M., Henzinger, T. A., Veith, H., & Bloem, R. (2018). Handbook of Model Checking (1st ed.). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-10575-8' chicago: 'Clarke, Edmund M., Thomas A Henzinger, Helmut Veith, and Roderick Bloem. Handbook of Model Checking. 1st ed. Cham: Springer Nature, 2018. https://doi.org/10.1007/978-3-319-10575-8.' ieee: 'E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of Model Checking, 1st ed. Cham: Springer Nature, 2018.' ista: 'Clarke EM, Henzinger TA, Veith H, Bloem R. 2018. Handbook of Model Checking 1st ed., Cham: Springer Nature, XLVIII, 1212p.' mla: Clarke, Edmund M., et al. Handbook of Model Checking. 1st ed., Springer Nature, 2018, doi:10.1007/978-3-319-10575-8. short: E.M. Clarke, T.A. Henzinger, H. Veith, R. Bloem, Handbook of Model Checking, 1st ed., Springer Nature, Cham, 2018. date_created: 2018-12-11T12:02:32Z date_published: 2018-06-08T00:00:00Z date_updated: 2021-12-21T10:49:36Z day: '08' department: - _id: ToHe doi: 10.1007/978-3-319-10575-8 edition: '1' language: - iso: eng month: '06' oa_version: None page: XLVIII, 1212 place: Cham publication_identifier: eisbn: - 978-3-319-10575-8 isbn: - 978-3-319-10574-1 publication_status: published publisher: Springer Nature publist_id: '3340' quality_controlled: '1' scopus_import: '1' status: public title: Handbook of Model Checking type: book user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2018' ... --- _id: '37' abstract: - lang: eng text: Developmental processes are inherently dynamic and understanding them requires quantitative measurements of gene and protein expression levels in space and time. While live imaging is a powerful approach for obtaining such data, it is still a challenge to apply it over long periods of time to large tissues, such as the embryonic spinal cord in mouse and chick. Nevertheless, dynamics of gene expression and signaling activity patterns in this organ can be studied by collecting tissue sections at different developmental stages. In combination with immunohistochemistry, this allows for measuring the levels of multiple developmental regulators in a quantitative manner with high spatiotemporal resolution. The mean protein expression levels over time, as well as embryo-to-embryo variability can be analyzed. A key aspect of the approach is the ability to compare protein levels across different samples. This requires a number of considerations in sample preparation, imaging and data analysis. Here we present a protocol for obtaining time course data of dorsoventral expression patterns from mouse and chick neural tube in the first 3 days of neural tube development. The described workflow starts from embryo dissection and ends with a processed dataset. Software scripts for data analysis are included. The protocol is adaptable and instructions that allow the user to modify different steps are provided. Thus, the procedure can be altered for analysis of time-lapse images and applied to systems other than the neural tube. alternative_title: - Methods in Molecular Biology article_processing_charge: No author: - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 citation: ama: 'Zagórski MP, Kicheva A. Measuring dorsoventral pattern and morphogen signaling profiles in the growing neural tube. In: Morphogen Gradients . Vol 1863. MIMB. Springer Nature; 2018:47-63. doi:10.1007/978-1-4939-8772-6_4' apa: Zagórski, M. P., & Kicheva, A. (2018). Measuring dorsoventral pattern and morphogen signaling profiles in the growing neural tube. In Morphogen Gradients (Vol. 1863, pp. 47–63). Springer Nature. https://doi.org/10.1007/978-1-4939-8772-6_4 chicago: Zagórski, Marcin P, and Anna Kicheva. “Measuring Dorsoventral Pattern and Morphogen Signaling Profiles in the Growing Neural Tube.” In Morphogen Gradients , 1863:47–63. MIMB. Springer Nature, 2018. https://doi.org/10.1007/978-1-4939-8772-6_4. ieee: M. P. Zagórski and A. Kicheva, “Measuring dorsoventral pattern and morphogen signaling profiles in the growing neural tube,” in Morphogen Gradients , vol. 1863, Springer Nature, 2018, pp. 47–63. ista: 'Zagórski MP, Kicheva A. 2018.Measuring dorsoventral pattern and morphogen signaling profiles in the growing neural tube. In: Morphogen Gradients . Methods in Molecular Biology, vol. 1863, 47–63.' mla: Zagórski, Marcin P., and Anna Kicheva. “Measuring Dorsoventral Pattern and Morphogen Signaling Profiles in the Growing Neural Tube.” Morphogen Gradients , vol. 1863, Springer Nature, 2018, pp. 47–63, doi:10.1007/978-1-4939-8772-6_4. short: M.P. Zagórski, A. Kicheva, in:, Morphogen Gradients , Springer Nature, 2018, pp. 47–63. date_created: 2018-12-11T11:44:17Z date_published: 2018-10-16T00:00:00Z date_updated: 2021-01-12T07:49:03Z day: '16' ddc: - '570' department: - _id: AnKi doi: 10.1007/978-1-4939-8772-6_4 ec_funded: 1 file: - access_level: open_access checksum: 2a97d0649fdcfcf1bdca7c8ad1dce71b content_type: application/pdf creator: dernst date_created: 2020-10-13T14:20:37Z date_updated: 2020-10-13T14:20:37Z file_id: '8656' file_name: 2018_MIMB_Zagorski.pdf file_size: 4906815 relation: main_file success: 1 file_date_updated: 2020-10-13T14:20:37Z has_accepted_license: '1' intvolume: ' 1863' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 47 - 63 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord publication: 'Morphogen Gradients ' publication_identifier: isbn: - 978-1-4939-8771-9 issn: - 1064-3745 publication_status: published publisher: Springer Nature publist_id: '8018' quality_controlled: '1' scopus_import: '1' series_title: MIMB status: public title: Measuring dorsoventral pattern and morphogen signaling profiles in the growing neural tube type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1863 year: '2018' ... --- _id: '305' abstract: - lang: eng text: The hanging-drop network (HDN) is a technology platform based on a completely open microfluidic network at the bottom of an inverted, surface-patterned substrate. The platform is predominantly used for the formation, culturing, and interaction of self-assembled spherical microtissues (spheroids) under precisely controlled flow conditions. Here, we describe design, fabrication, and operation of microfluidic hanging-drop networks. acknowledgement: This work was financially supported by FP7 of the EU through the project “Body on a chip,” ICT-FET-296257, and the ERC Advanced Grant “NeuroCMOS” (contract 267351), as well as by an individual Ambizione Grant 142440 from the Swiss National Science Foundation for Olivier Frey. The research leading to these results also received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. [291734]. We would like to thank Alexander Stettler, ETH Zurich for his expertise and support in the cleanroom, and we acknowledge the Single Cell Unit of D-BSSE, ETH Zurich for assistance in microscopy issues. M.L. is grateful to the members of the Guet and Tkačik groups, IST Austria, for valuable comments and support. alternative_title: - MIMB author: - first_name: Patrick full_name: Misun, Patrick last_name: Misun - first_name: Axel full_name: Birchler, Axel last_name: Birchler - first_name: Moritz full_name: Lang, Moritz id: 29E0800A-F248-11E8-B48F-1D18A9856A87 last_name: Lang - first_name: Andreas full_name: Hierlemann, Andreas last_name: Hierlemann - first_name: Olivier full_name: Frey, Olivier last_name: Frey citation: ama: Misun P, Birchler A, Lang M, Hierlemann A, Frey O. Fabrication and operation of microfluidic hanging drop networks. Methods in Molecular Biology. 2018;1771:183-202. doi:10.1007/978-1-4939-7792-5_15 apa: Misun, P., Birchler, A., Lang, M., Hierlemann, A., & Frey, O. (2018). Fabrication and operation of microfluidic hanging drop networks. Methods in Molecular Biology. Springer. https://doi.org/10.1007/978-1-4939-7792-5_15 chicago: Misun, Patrick, Axel Birchler, Moritz Lang, Andreas Hierlemann, and Olivier Frey. “Fabrication and Operation of Microfluidic Hanging Drop Networks.” Methods in Molecular Biology. Springer, 2018. https://doi.org/10.1007/978-1-4939-7792-5_15. ieee: P. Misun, A. Birchler, M. Lang, A. Hierlemann, and O. Frey, “Fabrication and operation of microfluidic hanging drop networks,” Methods in Molecular Biology, vol. 1771. Springer, pp. 183–202, 2018. ista: Misun P, Birchler A, Lang M, Hierlemann A, Frey O. 2018. Fabrication and operation of microfluidic hanging drop networks. Methods in Molecular Biology. 1771, 183–202. mla: Misun, Patrick, et al. “Fabrication and Operation of Microfluidic Hanging Drop Networks.” Methods in Molecular Biology, vol. 1771, Springer, 2018, pp. 183–202, doi:10.1007/978-1-4939-7792-5_15. short: P. Misun, A. Birchler, M. Lang, A. Hierlemann, O. Frey, Methods in Molecular Biology 1771 (2018) 183–202. date_created: 2018-12-11T11:45:43Z date_published: 2018-01-01T00:00:00Z date_updated: 2021-01-12T07:40:42Z day: '01' department: - _id: CaGu - _id: GaTk doi: 10.1007/978-1-4939-7792-5_15 ec_funded: 1 intvolume: ' 1771' language: - iso: eng month: '01' oa_version: None page: 183 - 202 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Methods in Molecular Biology publication_status: published publisher: Springer publist_id: '7574' quality_controlled: '1' scopus_import: 1 status: public title: Fabrication and operation of microfluidic hanging drop networks type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1771 year: '2018' ... --- _id: '325' abstract: - lang: eng text: Probabilistic programs extend classical imperative programs with real-valued random variables and random branching. The most basic liveness property for such programs is the termination property. The qualitative (aka almost-sure) termination problem asks whether a given program program terminates with probability 1. While ranking functions provide a sound and complete method for non-probabilistic programs, the extension of them to probabilistic programs is achieved via ranking supermartingales (RSMs). Although deep theoretical results have been established about RSMs, their application to probabilistic programs with nondeterminism has been limited only to programs of restricted control-flow structure. For non-probabilistic programs, lexicographic ranking functions provide a compositional and practical approach for termination analysis of real-world programs. In this work we introduce lexicographic RSMs and show that they present a sound method for almost-sure termination of probabilistic programs with nondeterminism. We show that lexicographic RSMs provide a tool for compositional reasoning about almost-sure termination, and for probabilistic programs with linear arithmetic they can be synthesized efficiently (in polynomial time). We also show that with additional restrictions even asymptotic bounds on expected termination time can be obtained through lexicographic RSMs. Finally, we present experimental results on benchmarks adapted from previous work to demonstrate the effectiveness of our approach. article_number: '34' author: - first_name: Sheshansh full_name: Agrawal, Sheshansh last_name: Agrawal - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Petr full_name: Novotny, Petr id: 3CC3B868-F248-11E8-B48F-1D18A9856A87 last_name: Novotny citation: ama: 'Agrawal S, Chatterjee K, Novotný P. Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs. In: Vol 2. ACM; 2018. doi:10.1145/3158122' apa: 'Agrawal, S., Chatterjee, K., & Novotný, P. (2018). Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs (Vol. 2). Presented at the POPL: Principles of Programming Languages, Los Angeles, CA, USA: ACM. https://doi.org/10.1145/3158122' chicago: 'Agrawal, Sheshansh, Krishnendu Chatterjee, and Petr Novotný. “Lexicographic Ranking Supermartingales: An Efficient Approach to Termination of Probabilistic Programs,” Vol. 2. ACM, 2018. https://doi.org/10.1145/3158122.' ieee: 'S. Agrawal, K. Chatterjee, and P. Novotný, “Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs,” presented at the POPL: Principles of Programming Languages, Los Angeles, CA, USA, 2018, vol. 2, no. POPL.' ista: 'Agrawal S, Chatterjee K, Novotný P. 2018. Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs. POPL: Principles of Programming Languages vol. 2, 34.' mla: 'Agrawal, Sheshansh, et al. Lexicographic Ranking Supermartingales: An Efficient Approach to Termination of Probabilistic Programs. Vol. 2, no. POPL, 34, ACM, 2018, doi:10.1145/3158122.' short: S. Agrawal, K. Chatterjee, P. Novotný, in:, ACM, 2018. conference: end_date: 2018-01-13 location: Los Angeles, CA, USA name: 'POPL: Principles of Programming Languages' start_date: 2018-01-07 date_created: 2018-12-11T11:45:50Z date_published: 2018-01-01T00:00:00Z date_updated: 2021-01-12T07:42:07Z day: '01' department: - _id: KrCh doi: 10.1145/3158122 external_id: arxiv: - '1709.04037' intvolume: ' 2' issue: POPL language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1709.04037 month: '01' oa: 1 oa_version: Preprint project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication_status: published publisher: ACM publist_id: '7540' quality_controlled: '1' status: public title: 'Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2018' ... --- _id: '408' abstract: - lang: eng text: Adventitious roots (AR) are de novo formed roots that emerge from any part of the plant or from callus in tissue culture, except root tissue. The plant tissue origin and the method by which they are induced determine the physiological properties of emerged ARs. Hence, a standard method encompassing all types of AR does not exist. Here we describe a method for the induction and analysis of AR that emerge from the etiolated hypocotyl of dicot plants. The hypocotyl is formed during embryogenesis and shows a determined developmental pattern which usually does not involve AR formation. However, the hypocotyl shows propensity to form de novo roots under specific circumstances such as removal of the root system, high humidity or flooding, or during de-etiolation. The hypocotyl AR emerge from a pericycle-like cell layer surrounding the vascular tissue of the central cylinder, which is reminiscent to the developmental program of lateral roots. Here we propose an easy protocol for in vitro hypocotyl AR induction from etiolated Arabidopsis seedlings. alternative_title: - MIMB article_processing_charge: No author: - first_name: Hoang full_name: Trinh, Hoang last_name: Trinh - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Danny full_name: Geelen, Danny last_name: Geelen citation: ama: 'Trinh H, Verstraeten I, Geelen D. In vitro assay for induction of adventitious rooting on intact arabidopsis hypocotyls. In: Root Development . Vol 1761. Springer Nature; 2018:95-102. doi:10.1007/978-1-4939-7747-5_7' apa: Trinh, H., Verstraeten, I., & Geelen, D. (2018). In vitro assay for induction of adventitious rooting on intact arabidopsis hypocotyls. In Root Development (Vol. 1761, pp. 95–102). Springer Nature. https://doi.org/10.1007/978-1-4939-7747-5_7 chicago: Trinh, Hoang, Inge Verstraeten, and Danny Geelen. “In Vitro Assay for Induction of Adventitious Rooting on Intact Arabidopsis Hypocotyls.” In Root Development , 1761:95–102. Springer Nature, 2018. https://doi.org/10.1007/978-1-4939-7747-5_7. ieee: H. Trinh, I. Verstraeten, and D. Geelen, “In vitro assay for induction of adventitious rooting on intact arabidopsis hypocotyls,” in Root Development , vol. 1761, Springer Nature, 2018, pp. 95–102. ista: 'Trinh H, Verstraeten I, Geelen D. 2018.In vitro assay for induction of adventitious rooting on intact arabidopsis hypocotyls. In: Root Development . MIMB, vol. 1761, 95–102.' mla: Trinh, Hoang, et al. “In Vitro Assay for Induction of Adventitious Rooting on Intact Arabidopsis Hypocotyls.” Root Development , vol. 1761, Springer Nature, 2018, pp. 95–102, doi:10.1007/978-1-4939-7747-5_7. short: H. Trinh, I. Verstraeten, D. Geelen, in:, Root Development , Springer Nature, 2018, pp. 95–102. date_created: 2018-12-11T11:46:18Z date_published: 2018-03-01T00:00:00Z date_updated: 2021-01-12T07:54:21Z day: '01' department: - _id: JiFr doi: 10.1007/978-1-4939-7747-5_7 external_id: pmid: - '29525951' intvolume: ' 1761' language: - iso: eng month: '03' oa_version: None page: 95 - 102 pmid: 1 publication: 'Root Development ' publication_identifier: issn: - 1064-3745 publication_status: published publisher: Springer Nature publist_id: '7421' quality_controlled: '1' scopus_import: '1' status: public title: In vitro assay for induction of adventitious rooting on intact arabidopsis hypocotyls type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1761 year: '2018' ... --- _id: '411' abstract: - lang: eng text: Immunolocalization is a valuable tool for cell biology research that allows to rapidly determine the localization and expression levels of endogenous proteins. In plants, whole-mount in situ immunolocalization remains a challenging method, especially in tissues protected by waxy layers and complex cell wall carbohydrates. Here, we present a robust method for whole-mount in situ immunolocalization in primary root meristems and lateral root primordia in Arabidopsis thaliana. For good epitope preservation, fixation is done in an alkaline paraformaldehyde/glutaraldehyde mixture. This fixative is suitable for detecting a wide range of proteins, including integral transmembrane proteins and proteins peripherally attached to the plasma membrane. From initiation until emergence from the primary root, lateral root primordia are surrounded by several layers of differentiated tissues with a complex cell wall composition that interferes with the efficient penetration of all buffers. Therefore, immunolocalization in early lateral root primordia requires a modified method, including a strong solvent treatment for removal of hydrophobic barriers and a specific cocktail of cell wall-degrading enzymes. The presented method allows for easy, reliable, and high-quality in situ detection of the subcellular localization of endogenous proteins in primary and lateral root meristems without the need of time-consuming crosses or making translational fusions to fluorescent proteins. alternative_title: - Methods in Molecular Biology author: - first_name: Michael full_name: Karampelias, Michael last_name: Karampelias - first_name: Ricardo full_name: Tejos, Ricardo last_name: Tejos - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste citation: ama: 'Karampelias M, Tejos R, Friml J, Vanneste S. Optimized whole mount in situ immunolocalization for Arabidopsis thaliana  root meristems and lateral root primordia. In: Ristova D, Barbez E, eds. Root Development. Methods and Protocols. Vol 1761. MIMB. Springer; 2018:131-143. doi:10.1007/978-1-4939-7747-5_10' apa: Karampelias, M., Tejos, R., Friml, J., & Vanneste, S. (2018). Optimized whole mount in situ immunolocalization for Arabidopsis thaliana  root meristems and lateral root primordia. In D. Ristova & E. Barbez (Eds.), Root Development. Methods and Protocols (Vol. 1761, pp. 131–143). Springer. https://doi.org/10.1007/978-1-4939-7747-5_10 chicago: Karampelias, Michael, Ricardo Tejos, Jiří Friml, and Steffen Vanneste. “Optimized Whole Mount in Situ Immunolocalization for Arabidopsis Thaliana  Root Meristems and Lateral Root Primordia.” In Root Development. Methods and Protocols, edited by Daniela Ristova and Elke Barbez, 1761:131–43. MIMB. Springer, 2018. https://doi.org/10.1007/978-1-4939-7747-5_10. ieee: M. Karampelias, R. Tejos, J. Friml, and S. Vanneste, “Optimized whole mount in situ immunolocalization for Arabidopsis thaliana  root meristems and lateral root primordia,” in Root Development. Methods and Protocols, vol. 1761, D. Ristova and E. Barbez, Eds. Springer, 2018, pp. 131–143. ista: 'Karampelias M, Tejos R, Friml J, Vanneste S. 2018.Optimized whole mount in situ immunolocalization for Arabidopsis thaliana  root meristems and lateral root primordia. In: Root Development. Methods and Protocols. Methods in Molecular Biology, vol. 1761, 131–143.' mla: Karampelias, Michael, et al. “Optimized Whole Mount in Situ Immunolocalization for Arabidopsis Thaliana  Root Meristems and Lateral Root Primordia.” Root Development. Methods and Protocols, edited by Daniela Ristova and Elke Barbez, vol. 1761, Springer, 2018, pp. 131–43, doi:10.1007/978-1-4939-7747-5_10. short: M. Karampelias, R. Tejos, J. Friml, S. Vanneste, in:, D. Ristova, E. Barbez (Eds.), Root Development. Methods and Protocols, Springer, 2018, pp. 131–143. date_created: 2018-12-11T11:46:20Z date_published: 2018-03-11T00:00:00Z date_updated: 2021-01-12T07:54:34Z day: '11' department: - _id: JiFr doi: 10.1007/978-1-4939-7747-5_10 editor: - first_name: Daniela full_name: Ristova, Daniela last_name: Ristova - first_name: Elke full_name: Barbez, Elke last_name: Barbez intvolume: ' 1761' language: - iso: eng month: '03' oa_version: None page: 131 - 143 publication: Root Development. Methods and Protocols publication_status: published publisher: Springer publist_id: '7418' quality_controlled: '1' scopus_import: 1 series_title: MIMB status: public title: Optimized whole mount in situ immunolocalization for Arabidopsis thaliana root meristems and lateral root primordia type: book_chapter user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 1761 year: '2018' ... --- _id: '456' abstract: - lang: eng text: 'Inhibition of the endoplasmic reticulum stress pathway may hold the key to Zika virus-associated microcephaly treatment. ' article_number: eaar7514 author: - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 citation: ama: 'Novarino G. Zika-associated microcephaly: Reduce the stress and race for the treatment. Science Translational Medicine. 2018;10(423). doi:10.1126/scitranslmed.aar7514' apa: 'Novarino, G. (2018). Zika-associated microcephaly: Reduce the stress and race for the treatment. Science Translational Medicine. American Association for the Advancement of Science. https://doi.org/10.1126/scitranslmed.aar7514' chicago: 'Novarino, Gaia. “Zika-Associated Microcephaly: Reduce the Stress and Race for the Treatment.” Science Translational Medicine. American Association for the Advancement of Science, 2018. https://doi.org/10.1126/scitranslmed.aar7514.' ieee: 'G. Novarino, “Zika-associated microcephaly: Reduce the stress and race for the treatment,” Science Translational Medicine, vol. 10, no. 423. American Association for the Advancement of Science, 2018.' ista: 'Novarino G. 2018. Zika-associated microcephaly: Reduce the stress and race for the treatment. Science Translational Medicine. 10(423), eaar7514.' mla: 'Novarino, Gaia. “Zika-Associated Microcephaly: Reduce the Stress and Race for the Treatment.” Science Translational Medicine, vol. 10, no. 423, eaar7514, American Association for the Advancement of Science, 2018, doi:10.1126/scitranslmed.aar7514.' short: G. Novarino, Science Translational Medicine 10 (2018). date_created: 2018-12-11T11:46:34Z date_published: 2018-01-10T00:00:00Z date_updated: 2021-01-12T07:59:42Z day: '10' department: - _id: GaNo doi: 10.1126/scitranslmed.aar7514 intvolume: ' 10' issue: '423' language: - iso: eng month: '01' oa_version: None publication: Science Translational Medicine publication_status: published publisher: American Association for the Advancement of Science publist_id: '7365' quality_controlled: '1' scopus_import: 1 status: public title: 'Zika-associated microcephaly: Reduce the stress and race for the treatment' type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2018' ... --- _id: '53' abstract: - lang: eng text: In 2013, a publication repository was implemented at IST Austria and 2015 after a thorough preparation phase a data repository was implemented - both based on the Open Source Software EPrints. In this text, designed as field report, we will reflect on our experiences with Open Source Software in general and specifically with EPrints regarding technical aspects but also regarding their characteristics of the user community. The second part is a pleading for including the end users in the process of implementation, adaption and evaluation. author: - first_name: Barbara full_name: Petritsch, Barbara id: 406048EC-F248-11E8-B48F-1D18A9856A87 last_name: Petritsch orcid: 0000-0003-2724-4614 - first_name: Jana full_name: Porsche, Jana id: 3252EDC2-F248-11E8-B48F-1D18A9856A87 last_name: Porsche citation: ama: 'Petritsch B, Porsche J. IST PubRep and IST DataRep: the institutional repositories at IST Austria. VÖB Mitteilungen. 2018;71(1):199-206. doi:10.31263/voebm.v71i1.1993' apa: 'Petritsch, B., & Porsche, J. (2018). IST PubRep and IST DataRep: the institutional repositories at IST Austria. VÖB Mitteilungen. Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. https://doi.org/10.31263/voebm.v71i1.1993' chicago: 'Petritsch, Barbara, and Jana Porsche. “IST PubRep and IST DataRep: The Institutional Repositories at IST Austria.” VÖB Mitteilungen. Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare, 2018. https://doi.org/10.31263/voebm.v71i1.1993.' ieee: 'B. Petritsch and J. Porsche, “IST PubRep and IST DataRep: the institutional repositories at IST Austria,” VÖB Mitteilungen, vol. 71, no. 1. Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare, pp. 199–206, 2018.' ista: 'Petritsch B, Porsche J. 2018. IST PubRep and IST DataRep: the institutional repositories at IST Austria. VÖB Mitteilungen. 71(1), 199–206.' mla: 'Petritsch, Barbara, and Jana Porsche. “IST PubRep and IST DataRep: The Institutional Repositories at IST Austria.” VÖB Mitteilungen, vol. 71, no. 1, Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare, 2018, pp. 199–206, doi:10.31263/voebm.v71i1.1993.' short: B. Petritsch, J. Porsche, VÖB Mitteilungen 71 (2018) 199–206. date_created: 2018-12-11T11:44:22Z date_published: 2018-10-01T00:00:00Z date_updated: 2021-01-12T08:01:26Z day: '01' ddc: - '020' department: - _id: E-Lib doi: 10.31263/voebm.v71i1.1993 file: - access_level: open_access checksum: 7ac61bade5f37db011ca435ebcf86797 content_type: application/pdf creator: dernst date_created: 2018-12-17T12:40:27Z date_updated: 2020-07-14T12:46:38Z file_id: '5702' file_name: 2018_VOEB_Petritsch.pdf file_size: 509434 relation: main_file file_date_updated: 2020-07-14T12:46:38Z has_accepted_license: '1' intvolume: ' 71' issue: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 199 - 206 publication: VÖB Mitteilungen publication_status: published publisher: Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare publist_id: '8001' scopus_import: 1 status: public title: 'IST PubRep and IST DataRep: the institutional repositories at IST Austria' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 71 year: '2018' ... --- _id: '536' abstract: - lang: eng text: 'We consider the problem of consensus in the challenging classic model. In this model, the adversary is adaptive; it can choose which processors crash at any point during the course of the algorithm. Further, communication is via asynchronous message passing: there is no known upper bound on the time to send a message from one processor to another, and all messages and coin flips are seen by the adversary. We describe a new randomized consensus protocol with expected message complexity O(n2log2n) when fewer than n / 2 processes may fail by crashing. This is an almost-linear improvement over the best previously known protocol, and within logarithmic factors of a known Ω(n2) message lower bound. The protocol further ensures that no process sends more than O(nlog3n) messages in expectation, which is again within logarithmic factors of optimal. We also present a generalization of the algorithm to an arbitrary number of failures t, which uses expected O(nt+t2log2t) total messages. Our approach is to build a message-efficient, resilient mechanism for aggregating individual processor votes, implementing the message-passing equivalent of a weak shared coin. Roughly, in our protocol, a processor first announces its votes to small groups, then propagates them to increasingly larger groups as it generates more and more votes. To bound the number of messages that an individual process might have to send or receive, the protocol progressively increases the weight of generated votes. The main technical challenge is bounding the impact of votes that are still “in flight” (generated, but not fully propagated) on the final outcome of the shared coin, especially since such votes might have different weights. We achieve this by leveraging the structure of the algorithm, and a technical argument based on martingale concentration bounds. Overall, we show that it is possible to build an efficient message-passing implementation of a shared coin, and in the process (almost-optimally) solve the classic consensus problem in the asynchronous message-passing model.' article_processing_charge: Yes (via OA deal) author: - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: James full_name: Aspnes, James last_name: Aspnes - first_name: Valerie full_name: King, Valerie last_name: King - first_name: Jared full_name: Saia, Jared last_name: Saia citation: ama: Alistarh D-A, Aspnes J, King V, Saia J. Communication-efficient randomized consensus. Distributed Computing. 2018;31(6):489-501. doi:10.1007/s00446-017-0315-1 apa: Alistarh, D.-A., Aspnes, J., King, V., & Saia, J. (2018). Communication-efficient randomized consensus. Distributed Computing. Springer. https://doi.org/10.1007/s00446-017-0315-1 chicago: Alistarh, Dan-Adrian, James Aspnes, Valerie King, and Jared Saia. “Communication-Efficient Randomized Consensus.” Distributed Computing. Springer, 2018. https://doi.org/10.1007/s00446-017-0315-1. ieee: D.-A. Alistarh, J. Aspnes, V. King, and J. Saia, “Communication-efficient randomized consensus,” Distributed Computing, vol. 31, no. 6. Springer, pp. 489–501, 2018. ista: Alistarh D-A, Aspnes J, King V, Saia J. 2018. Communication-efficient randomized consensus. Distributed Computing. 31(6), 489–501. mla: Alistarh, Dan-Adrian, et al. “Communication-Efficient Randomized Consensus.” Distributed Computing, vol. 31, no. 6, Springer, 2018, pp. 489–501, doi:10.1007/s00446-017-0315-1. short: D.-A. Alistarh, J. Aspnes, V. King, J. Saia, Distributed Computing 31 (2018) 489–501. date_created: 2018-12-11T11:47:01Z date_published: 2018-11-01T00:00:00Z date_updated: 2023-02-23T12:23:25Z day: '01' ddc: - '000' department: - _id: DaAl doi: 10.1007/s00446-017-0315-1 file: - access_level: open_access checksum: 69b46e537acdcac745237ddb853fcbb5 content_type: application/pdf creator: dernst date_created: 2019-01-22T07:25:51Z date_updated: 2020-07-14T12:46:38Z file_id: '5867' file_name: 2017_DistribComp_Alistarh.pdf file_size: 595707 relation: main_file file_date_updated: 2020-07-14T12:46:38Z has_accepted_license: '1' intvolume: ' 31' issue: '6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 489-501 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Distributed Computing publication_identifier: issn: - '01782770' publication_status: published publisher: Springer publist_id: '7281' quality_controlled: '1' scopus_import: 1 status: public title: Communication-efficient randomized consensus tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 31 year: '2018' ... --- _id: '554' abstract: - lang: eng text: We analyse the canonical Bogoliubov free energy functional in three dimensions at low temperatures in the dilute limit. We prove existence of a first-order phase transition and, in the limit (Formula presented.), we determine the critical temperature to be (Formula presented.) to leading order. Here, (Formula presented.) is the critical temperature of the free Bose gas, ρ is the density of the gas and a is the scattering length of the pair-interaction potential V. We also prove asymptotic expansions for the free energy. In particular, we recover the Lee–Huang–Yang formula in the limit (Formula presented.). author: - first_name: Marcin M full_name: Napiórkowski, Marcin M id: 4197AD04-F248-11E8-B48F-1D18A9856A87 last_name: Napiórkowski - first_name: Robin full_name: Reuvers, Robin last_name: Reuvers - first_name: Jan full_name: Solovej, Jan last_name: Solovej citation: ama: 'Napiórkowski MM, Reuvers R, Solovej J. The Bogoliubov free energy functional II: The dilute Limit. Communications in Mathematical Physics. 2018;360(1):347-403. doi:10.1007/s00220-017-3064-x' apa: 'Napiórkowski, M. M., Reuvers, R., & Solovej, J. (2018). The Bogoliubov free energy functional II: The dilute Limit. Communications in Mathematical Physics. Springer. https://doi.org/10.1007/s00220-017-3064-x' chicago: 'Napiórkowski, Marcin M, Robin Reuvers, and Jan Solovej. “The Bogoliubov Free Energy Functional II: The Dilute Limit.” Communications in Mathematical Physics. Springer, 2018. https://doi.org/10.1007/s00220-017-3064-x.' ieee: 'M. M. Napiórkowski, R. Reuvers, and J. Solovej, “The Bogoliubov free energy functional II: The dilute Limit,” Communications in Mathematical Physics, vol. 360, no. 1. Springer, pp. 347–403, 2018.' ista: 'Napiórkowski MM, Reuvers R, Solovej J. 2018. The Bogoliubov free energy functional II: The dilute Limit. Communications in Mathematical Physics. 360(1), 347–403.' mla: 'Napiórkowski, Marcin M., et al. “The Bogoliubov Free Energy Functional II: The Dilute Limit.” Communications in Mathematical Physics, vol. 360, no. 1, Springer, 2018, pp. 347–403, doi:10.1007/s00220-017-3064-x.' short: M.M. Napiórkowski, R. Reuvers, J. Solovej, Communications in Mathematical Physics 360 (2018) 347–403. date_created: 2018-12-11T11:47:09Z date_published: 2018-05-01T00:00:00Z date_updated: 2021-01-12T08:02:35Z day: '01' department: - _id: RoSe doi: 10.1007/s00220-017-3064-x external_id: arxiv: - '1511.05953' intvolume: ' 360' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1511.05953 month: '05' oa: 1 oa_version: Submitted Version page: 347-403 project: - _id: 25C878CE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27533_N27 name: Structure of the Excitation Spectrum for Many-Body Quantum Systems publication: Communications in Mathematical Physics publication_identifier: issn: - '00103616' publication_status: published publisher: Springer publist_id: '7260' quality_controlled: '1' scopus_import: 1 status: public title: 'The Bogoliubov free energy functional II: The dilute Limit' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 360 year: '2018' ... --- _id: '562' abstract: - lang: eng text: Primary neuronal cell culture preparations are widely used to investigate synaptic functions. This chapter describes a detailed protocol for the preparation of a neuronal cell culture in which giant calyx-type synaptic terminals are formed. This chapter also presents detailed protocols for utilizing the main technical advantages provided by such a preparation, namely, labeling and imaging of synaptic organelles and electrophysiological recordings directly from presynaptic terminals. alternative_title: - Methods in Molecular Biology article_processing_charge: No author: - first_name: Dimitar full_name: Dimitrov, Dimitar last_name: Dimitrov - first_name: Laurent full_name: Guillaud, Laurent last_name: Guillaud - first_name: Kohgaku full_name: Eguchi, Kohgaku id: 2B7846DC-F248-11E8-B48F-1D18A9856A87 last_name: Eguchi orcid: 0000-0002-6170-2546 - first_name: Tomoyuki full_name: Takahashi, Tomoyuki last_name: Takahashi citation: ama: 'Dimitrov D, Guillaud L, Eguchi K, Takahashi T. Culture of mouse giant central nervous system synapses and application for imaging and electrophysiological analyses. In: Skaper SD, ed. Neurotrophic Factors. Vol 1727. Springer; 2018:201-215. doi:10.1007/978-1-4939-7571-6_15' apa: Dimitrov, D., Guillaud, L., Eguchi, K., & Takahashi, T. (2018). Culture of mouse giant central nervous system synapses and application for imaging and electrophysiological analyses. In S. D. Skaper (Ed.), Neurotrophic Factors (Vol. 1727, pp. 201–215). Springer. https://doi.org/10.1007/978-1-4939-7571-6_15 chicago: Dimitrov, Dimitar, Laurent Guillaud, Kohgaku Eguchi, and Tomoyuki Takahashi. “Culture of Mouse Giant Central Nervous System Synapses and Application for Imaging and Electrophysiological Analyses.” In Neurotrophic Factors, edited by Stephen D. Skaper, 1727:201–15. Springer, 2018. https://doi.org/10.1007/978-1-4939-7571-6_15. ieee: D. Dimitrov, L. Guillaud, K. Eguchi, and T. Takahashi, “Culture of mouse giant central nervous system synapses and application for imaging and electrophysiological analyses,” in Neurotrophic Factors, vol. 1727, S. D. Skaper, Ed. Springer, 2018, pp. 201–215. ista: 'Dimitrov D, Guillaud L, Eguchi K, Takahashi T. 2018.Culture of mouse giant central nervous system synapses and application for imaging and electrophysiological analyses. In: Neurotrophic Factors. Methods in Molecular Biology, vol. 1727, 201–215.' mla: Dimitrov, Dimitar, et al. “Culture of Mouse Giant Central Nervous System Synapses and Application for Imaging and Electrophysiological Analyses.” Neurotrophic Factors, edited by Stephen D. Skaper, vol. 1727, Springer, 2018, pp. 201–15, doi:10.1007/978-1-4939-7571-6_15. short: D. Dimitrov, L. Guillaud, K. Eguchi, T. Takahashi, in:, S.D. Skaper (Ed.), Neurotrophic Factors, Springer, 2018, pp. 201–215. date_created: 2018-12-11T11:47:11Z date_published: 2018-01-01T00:00:00Z date_updated: 2021-01-12T08:03:05Z day: '01' ddc: - '570' department: - _id: RySh doi: 10.1007/978-1-4939-7571-6_15 editor: - first_name: Stephen D. full_name: Skaper, Stephen D. last_name: Skaper external_id: pmid: - '29222783' file: - access_level: open_access checksum: 8aa174ca65a56fbb19e9f88cff3ac3fd content_type: application/pdf creator: dernst date_created: 2019-11-19T07:47:43Z date_updated: 2020-07-14T12:47:09Z file_id: '7046' file_name: 2018_NeurotrophicFactors_Dimitrov.pdf file_size: 787407 relation: main_file file_date_updated: 2020-07-14T12:47:09Z has_accepted_license: '1' intvolume: ' 1727' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 201 - 215 pmid: 1 publication: Neurotrophic Factors publication_status: published publisher: Springer publist_id: '7252' quality_controlled: '1' scopus_import: 1 status: public title: Culture of mouse giant central nervous system synapses and application for imaging and electrophysiological analyses type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1727 year: '2018' ... --- _id: '59' abstract: - lang: eng text: Graph-based games are an important tool in computer science. They have applications in synthesis, verification, refinement, and far beyond. We review graphbased games with objectives on infinite plays. We give definitions and algorithms to solve the games and to give a winning strategy. The objectives we consider are mostly Boolean, but we also look at quantitative graph-based games and their objectives. Synthesis aims to turn temporal logic specifications into correct reactive systems. We explain the reduction of synthesis to graph-based games (or equivalently tree automata) using synthesis of LTL specifications as an example. We treat the classical approach that uses determinization of parity automata and more modern approaches. author: - first_name: Roderick full_name: Bloem, Roderick last_name: Bloem - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Barbara full_name: Jobstmann, Barbara last_name: Jobstmann citation: ama: 'Bloem R, Chatterjee K, Jobstmann B. Graph games and reactive synthesis. In: Henzinger TA, Clarke EM, Veith H, Bloem R, eds. Handbook of Model Checking. 1st ed. Springer; 2018:921-962. doi:10.1007/978-3-319-10575-8_27' apa: Bloem, R., Chatterjee, K., & Jobstmann, B. (2018). Graph games and reactive synthesis. In T. A. Henzinger, E. M. Clarke, H. Veith, & R. Bloem (Eds.), Handbook of Model Checking (1st ed., pp. 921–962). Springer. https://doi.org/10.1007/978-3-319-10575-8_27 chicago: Bloem, Roderick, Krishnendu Chatterjee, and Barbara Jobstmann. “Graph Games and Reactive Synthesis.” In Handbook of Model Checking, edited by Thomas A Henzinger, Edmund M. Clarke, Helmut Veith, and Roderick Bloem, 1st ed., 921–62. Springer, 2018. https://doi.org/10.1007/978-3-319-10575-8_27. ieee: R. Bloem, K. Chatterjee, and B. Jobstmann, “Graph games and reactive synthesis,” in Handbook of Model Checking, 1st ed., T. A. Henzinger, E. M. Clarke, H. Veith, and R. Bloem, Eds. Springer, 2018, pp. 921–962. ista: 'Bloem R, Chatterjee K, Jobstmann B. 2018.Graph games and reactive synthesis. In: Handbook of Model Checking. , 921–962.' mla: Bloem, Roderick, et al. “Graph Games and Reactive Synthesis.” Handbook of Model Checking, edited by Thomas A Henzinger et al., 1st ed., Springer, 2018, pp. 921–62, doi:10.1007/978-3-319-10575-8_27. short: R. Bloem, K. Chatterjee, B. Jobstmann, in:, T.A. Henzinger, E.M. Clarke, H. Veith, R. Bloem (Eds.), Handbook of Model Checking, 1st ed., Springer, 2018, pp. 921–962. date_created: 2018-12-11T11:44:24Z date_published: 2018-05-19T00:00:00Z date_updated: 2021-01-12T08:05:10Z day: '19' department: - _id: KrCh doi: 10.1007/978-3-319-10575-8_27 edition: '1' editor: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Edmund M. full_name: Clarke, Edmund M. last_name: Clarke - first_name: Helmut full_name: Veith, Helmut last_name: Veith - first_name: Roderick full_name: Bloem, Roderick last_name: Bloem language: - iso: eng month: '05' oa_version: None page: 921 - 962 publication: Handbook of Model Checking publication_identifier: isbn: - 978-3-319-10574-1 publication_status: published publisher: Springer publist_id: '7995' quality_controlled: '1' scopus_import: 1 status: public title: Graph games and reactive synthesis type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '60' abstract: - lang: eng text: Model checking is a computer-assisted method for the analysis of dynamical systems that can be modeled by state-transition systems. Drawing from research traditions in mathematical logic, programming languages, hardware design, and theoretical computer science, model checking is now widely used for the verification of hardware and software in industry. This chapter is an introduction and short survey of model checking. The chapter aims to motivate and link the individual chapters of the handbook, and to provide context for readers who are not familiar with model checking. author: - first_name: Edmund full_name: Clarke, Edmund last_name: Clarke - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Helmut full_name: Veith, Helmut last_name: Veith citation: ama: 'Clarke E, Henzinger TA, Veith H. Introduction to model checking. In: Henzinger TA, ed. Handbook of Model Checking. Handbook of Model Checking. Springer; 2018:1-26. doi:10.1007/978-3-319-10575-8_1' apa: Clarke, E., Henzinger, T. A., & Veith, H. (2018). Introduction to model checking. In T. A. Henzinger (Ed.), Handbook of Model Checking (pp. 1–26). Springer. https://doi.org/10.1007/978-3-319-10575-8_1 chicago: Clarke, Edmund, Thomas A Henzinger, and Helmut Veith. “Introduction to Model Checking.” In Handbook of Model Checking, edited by Thomas A Henzinger, 1–26. Handbook of Model Checking. Springer, 2018. https://doi.org/10.1007/978-3-319-10575-8_1. ieee: E. Clarke, T. A. Henzinger, and H. Veith, “Introduction to model checking,” in Handbook of Model Checking, T. A. Henzinger, Ed. Springer, 2018, pp. 1–26. ista: 'Clarke E, Henzinger TA, Veith H. 2018.Introduction to model checking. In: Handbook of Model Checking. , 1–26.' mla: Clarke, Edmund, et al. “Introduction to Model Checking.” Handbook of Model Checking, edited by Thomas A Henzinger, Springer, 2018, pp. 1–26, doi:10.1007/978-3-319-10575-8_1. short: E. Clarke, T.A. Henzinger, H. Veith, in:, T.A. Henzinger (Ed.), Handbook of Model Checking, Springer, 2018, pp. 1–26. date_created: 2018-12-11T11:44:25Z date_published: 2018-05-19T00:00:00Z date_updated: 2021-01-12T08:05:35Z day: '19' department: - _id: ToHe doi: 10.1007/978-3-319-10575-8_1 editor: - first_name: Thomas A full_name: Henzinger, Thomas A last_name: Henzinger language: - iso: eng month: '05' oa_version: None page: 1 - 26 publication: Handbook of Model Checking publication_status: published publisher: Springer publist_id: '7994' quality_controlled: '1' scopus_import: 1 series_title: Handbook of Model Checking status: public title: Introduction to model checking type: book_chapter user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '6354' abstract: - lang: eng text: Blood platelets are critical for hemostasis and thrombosis, but also play diverse roles during immune responses. We have recently reported that platelets migrate at sites of infection in vitro and in vivo. Importantly, platelets use their ability to migrate to collect and bundle fibrin (ogen)-bound bacteria accomplishing efficient intravascular bacterial trapping. Here, we describe a method that allows analyzing platelet migration in vitro, focusing on their ability to collect bacteria and trap bacteria under flow. acknowledgement: ' FöFoLe project 947 (F.G.), the Friedrich-Baur-Stiftung project 41/16 (F.G.)' article_number: e3018 author: - first_name: Shuxia full_name: Fan, Shuxia last_name: Fan - first_name: Michael full_name: Lorenz, Michael last_name: Lorenz - first_name: Steffen full_name: Massberg, Steffen last_name: Massberg - first_name: Florian R full_name: Gärtner, Florian R id: 397A88EE-F248-11E8-B48F-1D18A9856A87 last_name: Gärtner orcid: 0000-0001-6120-3723 citation: ama: Fan S, Lorenz M, Massberg S, Gärtner FR. Platelet migration and bacterial trapping assay under flow. Bio-Protocol. 2018;8(18). doi:10.21769/bioprotoc.3018 apa: Fan, S., Lorenz, M., Massberg, S., & Gärtner, F. R. (2018). Platelet migration and bacterial trapping assay under flow. Bio-Protocol. Bio-Protocol. https://doi.org/10.21769/bioprotoc.3018 chicago: Fan, Shuxia, Michael Lorenz, Steffen Massberg, and Florian R Gärtner. “Platelet Migration and Bacterial Trapping Assay under Flow.” Bio-Protocol. Bio-Protocol, 2018. https://doi.org/10.21769/bioprotoc.3018. ieee: S. Fan, M. Lorenz, S. Massberg, and F. R. Gärtner, “Platelet migration and bacterial trapping assay under flow,” Bio-Protocol, vol. 8, no. 18. Bio-Protocol, 2018. ista: Fan S, Lorenz M, Massberg S, Gärtner FR. 2018. Platelet migration and bacterial trapping assay under flow. Bio-Protocol. 8(18), e3018. mla: Fan, Shuxia, et al. “Platelet Migration and Bacterial Trapping Assay under Flow.” Bio-Protocol, vol. 8, no. 18, e3018, Bio-Protocol, 2018, doi:10.21769/bioprotoc.3018. short: S. Fan, M. Lorenz, S. Massberg, F.R. Gärtner, Bio-Protocol 8 (2018). date_created: 2019-04-29T09:40:33Z date_published: 2018-09-20T00:00:00Z date_updated: 2021-01-12T08:07:12Z day: '20' ddc: - '570' department: - _id: MiSi doi: 10.21769/bioprotoc.3018 ec_funded: 1 file: - access_level: open_access checksum: d4588377e789da7f360b553ae02c5119 content_type: application/pdf creator: dernst date_created: 2019-04-30T08:04:33Z date_updated: 2020-07-14T12:47:28Z file_id: '6360' file_name: 2018_BioProtocol_Fan.pdf file_size: 2928337 relation: main_file file_date_updated: 2020-07-14T12:47:28Z has_accepted_license: '1' intvolume: ' 8' issue: '18' keyword: - Platelets - Cell migration - Bacteria - Shear flow - Fibrinogen - E. coli language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 260AA4E2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '747687' name: Mechanical Adaptation of Lamellipodial Actin Networks in Migrating Cells publication: Bio-Protocol publication_identifier: issn: - 2331-8325 publication_status: published publisher: Bio-Protocol quality_controlled: '1' status: public title: Platelet migration and bacterial trapping assay under flow tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2018' ... --- _id: '6459' author: - first_name: Barbara full_name: Petritsch, Barbara id: 406048EC-F248-11E8-B48F-1D18A9856A87 last_name: Petritsch orcid: 0000-0003-2724-4614 citation: ama: Petritsch B. Open Access at IST Austria 2009-2017. IST Austria; 2018. doi:10.5281/zenodo.1410279 apa: 'Petritsch, B. (2018). Open Access at IST Austria 2009-2017. Presented at the Open-Access-Tage, Graz, Austria: IST Austria. https://doi.org/10.5281/zenodo.1410279' chicago: Petritsch, Barbara. Open Access at IST Austria 2009-2017. IST Austria, 2018. https://doi.org/10.5281/zenodo.1410279. ieee: B. Petritsch, Open Access at IST Austria 2009-2017. IST Austria, 2018. ista: Petritsch B. 2018. Open Access at IST Austria 2009-2017, IST Austria,p. mla: Petritsch, Barbara. Open Access at IST Austria 2009-2017. IST Austria, 2018, doi:10.5281/zenodo.1410279. short: B. Petritsch, Open Access at IST Austria 2009-2017, IST Austria, 2018. conference: end_date: 2018-09-26 location: Graz, Austria name: Open-Access-Tage start_date: 2018-09-24 date_created: 2019-05-16T07:27:14Z date_published: 2018-09-24T00:00:00Z date_updated: 2020-07-14T23:06:21Z day: '24' ddc: - '020' department: - _id: E-Lib doi: 10.5281/zenodo.1410279 file: - access_level: open_access checksum: 9063ab4d10ea93353c3a03bbf53fbcf1 content_type: application/pdf creator: dernst date_created: 2019-05-16T07:26:25Z date_updated: 2020-07-14T12:47:30Z file_id: '6460' file_name: Poster_Beitrag_125_Petritsch.pdf file_size: 1967778 relation: main_file file_date_updated: 2020-07-14T12:47:30Z has_accepted_license: '1' keyword: - Open Access - Publication Analysis language: - iso: eng month: '09' oa: 1 oa_version: Published Version publication_status: published publisher: IST Austria status: public title: Open Access at IST Austria 2009-2017 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference_poster user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '6525' abstract: - lang: eng text: This chapter finds an agreement of equivariant indices of semi-classical homomorphisms between pairwise mirror branes in the GL2 Higgs moduli space on a Riemann surface. On one side of the agreement, components of the Lagrangian brane of U(1,1) Higgs bundles, whose mirror was proposed by Hitchin to be certain even exterior powers of the hyperholomorphic Dirac bundle on the SL2 Higgs moduli space, are present. The agreement arises from a mysterious functional equation. This gives strong computational evidence for Hitchin’s proposal. author: - first_name: Tamás full_name: Hausel, Tamás id: 4A0666D8-F248-11E8-B48F-1D18A9856A87 last_name: Hausel - first_name: Anton full_name: Mellit, Anton id: 388D3134-F248-11E8-B48F-1D18A9856A87 last_name: Mellit - first_name: Du full_name: Pei, Du last_name: Pei citation: ama: 'Hausel T, Mellit A, Pei D. Mirror symmetry with branes by equivariant verlinde formulas. In: Geometry and Physics: Volume I. Oxford University Press; 2018:189-218. doi:10.1093/oso/9780198802013.003.0009' apa: 'Hausel, T., Mellit, A., & Pei, D. (2018). Mirror symmetry with branes by equivariant verlinde formulas. In Geometry and Physics: Volume I (pp. 189–218). Oxford University Press. https://doi.org/10.1093/oso/9780198802013.003.0009' chicago: 'Hausel, Tamás, Anton Mellit, and Du Pei. “Mirror Symmetry with Branes by Equivariant Verlinde Formulas.” In Geometry and Physics: Volume I, 189–218. Oxford University Press, 2018. https://doi.org/10.1093/oso/9780198802013.003.0009.' ieee: 'T. Hausel, A. Mellit, and D. Pei, “Mirror symmetry with branes by equivariant verlinde formulas,” in Geometry and Physics: Volume I, Oxford University Press, 2018, pp. 189–218.' ista: 'Hausel T, Mellit A, Pei D. 2018.Mirror symmetry with branes by equivariant verlinde formulas. In: Geometry and Physics: Volume I. , 189–218.' mla: 'Hausel, Tamás, et al. “Mirror Symmetry with Branes by Equivariant Verlinde Formulas.” Geometry and Physics: Volume I, Oxford University Press, 2018, pp. 189–218, doi:10.1093/oso/9780198802013.003.0009.' short: 'T. Hausel, A. Mellit, D. Pei, in:, Geometry and Physics: Volume I, Oxford University Press, 2018, pp. 189–218.' date_created: 2019-06-06T12:42:01Z date_published: 2018-01-01T00:00:00Z date_updated: 2021-01-12T08:07:52Z day: '01' department: - _id: TaHa doi: 10.1093/oso/9780198802013.003.0009 language: - iso: eng month: '01' oa_version: None page: 189-218 publication: 'Geometry and Physics: Volume I' publication_identifier: isbn: - '9780198802013' - '9780191840500' publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: 1 status: public title: Mirror symmetry with branes by equivariant verlinde formulas type: book_chapter user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '690' abstract: - lang: eng text: We consider spectral properties and the edge universality of sparse random matrices, the class of random matrices that includes the adjacency matrices of the Erdős–Rényi graph model G(N, p). We prove a local law for the eigenvalue density up to the spectral edges. Under a suitable condition on the sparsity, we also prove that the rescaled extremal eigenvalues exhibit GOE Tracy–Widom fluctuations if a deterministic shift of the spectral edge due to the sparsity is included. For the adjacency matrix of the Erdős–Rényi graph this establishes the Tracy–Widom fluctuations of the second largest eigenvalue when p is much larger than N−2/3 with a deterministic shift of order (Np)−1. article_number: 543-616 author: - first_name: Jii full_name: Lee, Jii last_name: Lee - first_name: Kevin full_name: Schnelli, Kevin id: 434AD0AE-F248-11E8-B48F-1D18A9856A87 last_name: Schnelli orcid: 0000-0003-0954-3231 citation: ama: Lee J, Schnelli K. Local law and Tracy–Widom limit for sparse random matrices. Probability Theory and Related Fields. 2018;171(1-2). doi:10.1007/s00440-017-0787-8 apa: Lee, J., & Schnelli, K. (2018). Local law and Tracy–Widom limit for sparse random matrices. Probability Theory and Related Fields. Springer. https://doi.org/10.1007/s00440-017-0787-8 chicago: Lee, Jii, and Kevin Schnelli. “Local Law and Tracy–Widom Limit for Sparse Random Matrices.” Probability Theory and Related Fields. Springer, 2018. https://doi.org/10.1007/s00440-017-0787-8. ieee: J. Lee and K. Schnelli, “Local law and Tracy–Widom limit for sparse random matrices,” Probability Theory and Related Fields, vol. 171, no. 1–2. Springer, 2018. ista: Lee J, Schnelli K. 2018. Local law and Tracy–Widom limit for sparse random matrices. Probability Theory and Related Fields. 171(1–2), 543–616. mla: Lee, Jii, and Kevin Schnelli. “Local Law and Tracy–Widom Limit for Sparse Random Matrices.” Probability Theory and Related Fields, vol. 171, no. 1–2, 543–616, Springer, 2018, doi:10.1007/s00440-017-0787-8. short: J. Lee, K. Schnelli, Probability Theory and Related Fields 171 (2018). date_created: 2018-12-11T11:47:56Z date_published: 2018-06-14T00:00:00Z date_updated: 2021-01-12T08:09:33Z day: '14' department: - _id: LaEr doi: 10.1007/s00440-017-0787-8 ec_funded: 1 external_id: arxiv: - '1605.08767' intvolume: ' 171' issue: 1-2 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1605.08767 month: '06' oa: 1 oa_version: Preprint project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication: Probability Theory and Related Fields publication_status: published publisher: Springer publist_id: '7017' quality_controlled: '1' scopus_import: 1 status: public title: Local law and Tracy–Widom limit for sparse random matrices type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 171 year: '2018' ... --- _id: '703' abstract: - lang: eng text: We consider the NP-hard problem of MAP-inference for undirected discrete graphical models. We propose a polynomial time and practically efficient algorithm for finding a part of its optimal solution. Specifically, our algorithm marks some labels of the considered graphical model either as (i) optimal, meaning that they belong to all optimal solutions of the inference problem; (ii) non-optimal if they provably do not belong to any solution. With access to an exact solver of a linear programming relaxation to the MAP-inference problem, our algorithm marks the maximal possible (in a specified sense) number of labels. We also present a version of the algorithm, which has access to a suboptimal dual solver only and still can ensure the (non-)optimality for the marked labels, although the overall number of the marked labels may decrease. We propose an efficient implementation, which runs in time comparable to a single run of a suboptimal dual solver. Our method is well-scalable and shows state-of-the-art results on computational benchmarks from machine learning and computer vision. author: - first_name: Alexander full_name: Shekhovtsov, Alexander last_name: Shekhovtsov - first_name: Paul full_name: Swoboda, Paul id: 446560C6-F248-11E8-B48F-1D18A9856A87 last_name: Swoboda - first_name: Bogdan full_name: Savchynskyy, Bogdan last_name: Savchynskyy citation: ama: Shekhovtsov A, Swoboda P, Savchynskyy B. Maximum persistency via iterative relaxed inference with graphical models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018;40(7):1668-1682. doi:10.1109/TPAMI.2017.2730884 apa: Shekhovtsov, A., Swoboda, P., & Savchynskyy, B. (2018). Maximum persistency via iterative relaxed inference with graphical models. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. https://doi.org/10.1109/TPAMI.2017.2730884 chicago: Shekhovtsov, Alexander, Paul Swoboda, and Bogdan Savchynskyy. “Maximum Persistency via Iterative Relaxed Inference with Graphical Models.” IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE, 2018. https://doi.org/10.1109/TPAMI.2017.2730884. ieee: A. Shekhovtsov, P. Swoboda, and B. Savchynskyy, “Maximum persistency via iterative relaxed inference with graphical models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 7. IEEE, pp. 1668–1682, 2018. ista: Shekhovtsov A, Swoboda P, Savchynskyy B. 2018. Maximum persistency via iterative relaxed inference with graphical models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 40(7), 1668–1682. mla: Shekhovtsov, Alexander, et al. “Maximum Persistency via Iterative Relaxed Inference with Graphical Models.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 7, IEEE, 2018, pp. 1668–82, doi:10.1109/TPAMI.2017.2730884. short: A. Shekhovtsov, P. Swoboda, B. Savchynskyy, IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (2018) 1668–1682. date_created: 2018-12-11T11:48:01Z date_published: 2018-07-01T00:00:00Z date_updated: 2021-01-12T08:11:32Z day: '01' department: - _id: VlKo doi: 10.1109/TPAMI.2017.2730884 external_id: arxiv: - '1508.07902' intvolume: ' 40' issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1508.07902 month: '07' oa: 1 oa_version: Preprint page: 1668-1682 publication: IEEE Transactions on Pattern Analysis and Machine Intelligence publication_identifier: issn: - '01628828' publication_status: published publisher: IEEE publist_id: '6992' quality_controlled: '1' scopus_import: 1 status: public title: Maximum persistency via iterative relaxed inference with graphical models type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 40 year: '2018' ... --- _id: '7116' abstract: - lang: eng text: 'Training deep learning models has received tremendous research interest recently. In particular, there has been intensive research on reducing the communication cost of training when using multiple computational devices, through reducing the precision of the underlying data representation. Naturally, such methods induce system trade-offs—lowering communication precision could de-crease communication overheads and improve scalability; but, on the other hand, it can also reduce the accuracy of training. In this paper, we study this trade-off space, and ask:Can low-precision communication consistently improve the end-to-end performance of training modern neural networks, with no accuracy loss?From the performance point of view, the answer to this question may appear deceptively easy: compressing communication through low precision should help when the ratio between communication and computation is high. However, this answer is less straightforward when we try to generalize this principle across various neural network architectures (e.g., AlexNet vs. ResNet),number of GPUs (e.g., 2 vs. 8 GPUs), machine configurations(e.g., EC2 instances vs. NVIDIA DGX-1), communication primitives (e.g., MPI vs. NCCL), and even different GPU architectures(e.g., Kepler vs. Pascal). Currently, it is not clear how a realistic realization of all these factors maps to the speed up provided by low-precision communication. In this paper, we conduct an empirical study to answer this question and report the insights.' article_processing_charge: No author: - first_name: Demjan full_name: Grubic, Demjan last_name: Grubic - first_name: Leo full_name: Tam, Leo last_name: Tam - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Ce full_name: Zhang, Ce last_name: Zhang citation: ama: 'Grubic D, Tam L, Alistarh D-A, Zhang C. Synchronous multi-GPU training for deep learning with low-precision communications: An empirical study. In: Proceedings of the 21st International Conference on Extending Database Technology. OpenProceedings; 2018:145-156. doi:10.5441/002/EDBT.2018.14' apa: 'Grubic, D., Tam, L., Alistarh, D.-A., & Zhang, C. (2018). Synchronous multi-GPU training for deep learning with low-precision communications: An empirical study. In Proceedings of the 21st International Conference on Extending Database Technology (pp. 145–156). Vienna, Austria: OpenProceedings. https://doi.org/10.5441/002/EDBT.2018.14' chicago: 'Grubic, Demjan, Leo Tam, Dan-Adrian Alistarh, and Ce Zhang. “Synchronous Multi-GPU Training for Deep Learning with Low-Precision Communications: An Empirical Study.” In Proceedings of the 21st International Conference on Extending Database Technology, 145–56. OpenProceedings, 2018. https://doi.org/10.5441/002/EDBT.2018.14.' ieee: 'D. Grubic, L. Tam, D.-A. Alistarh, and C. Zhang, “Synchronous multi-GPU training for deep learning with low-precision communications: An empirical study,” in Proceedings of the 21st International Conference on Extending Database Technology, Vienna, Austria, 2018, pp. 145–156.' ista: 'Grubic D, Tam L, Alistarh D-A, Zhang C. 2018. Synchronous multi-GPU training for deep learning with low-precision communications: An empirical study. Proceedings of the 21st International Conference on Extending Database Technology. EDBT: Conference on Extending Database Technology, 145–156.' mla: 'Grubic, Demjan, et al. “Synchronous Multi-GPU Training for Deep Learning with Low-Precision Communications: An Empirical Study.” Proceedings of the 21st International Conference on Extending Database Technology, OpenProceedings, 2018, pp. 145–56, doi:10.5441/002/EDBT.2018.14.' short: D. Grubic, L. Tam, D.-A. Alistarh, C. Zhang, in:, Proceedings of the 21st International Conference on Extending Database Technology, OpenProceedings, 2018, pp. 145–156. conference: end_date: 2018-03-29 location: Vienna, Austria name: 'EDBT: Conference on Extending Database Technology' start_date: 2018-03-26 date_created: 2019-11-26T14:19:11Z date_published: 2018-03-26T00:00:00Z date_updated: 2023-02-23T12:59:17Z day: '26' ddc: - '000' department: - _id: DaAl doi: 10.5441/002/EDBT.2018.14 file: - access_level: open_access checksum: ec979b56abc71016d6e6adfdadbb4afe content_type: application/pdf creator: dernst date_created: 2019-11-26T14:23:04Z date_updated: 2020-07-14T12:47:49Z file_id: '7118' file_name: 2018_OpenProceedings_Grubic.pdf file_size: 1603204 relation: main_file file_date_updated: 2020-07-14T12:47:49Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 145-156 publication: Proceedings of the 21st International Conference on Extending Database Technology publication_identifier: isbn: - '9783893180783' issn: - 2367-2005 publication_status: published publisher: OpenProceedings quality_controlled: '1' scopus_import: 1 status: public title: 'Synchronous multi-GPU training for deep learning with low-precision communications: An empirical study' tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '7407' abstract: - lang: eng text: 'Proofs of space (PoS) [Dziembowski et al., CRYPTO''15] are proof systems where a prover can convince a verifier that he "wastes" disk space. PoS were introduced as a more ecological and economical replacement for proofs of work which are currently used to secure blockchains like Bitcoin. In this work we investigate extensions of PoS which allow the prover to embed useful data into the dedicated space, which later can be recovered. Our first contribution is a security proof for the original PoS from CRYPTO''15 in the random oracle model (the original proof only applied to a restricted class of adversaries which can store a subset of the data an honest prover would store). When this PoS is instantiated with recent constructions of maximally depth robust graphs, our proof implies basically optimal security. As a second contribution we show three different extensions of this PoS where useful data can be embedded into the space required by the prover. Our security proof for the PoS extends (non-trivially) to these constructions. We discuss how some of these variants can be used as proofs of catalytic space (PoCS), a notion we put forward in this work, and which basically is a PoS where most of the space required by the prover can be used to backup useful data. Finally we discuss how one of the extensions is a candidate construction for a proof of replication (PoR), a proof system recently suggested in the Filecoin whitepaper. ' alternative_title: - LIPIcs article_processing_charge: No author: - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 citation: ama: 'Pietrzak KZ. Proofs of catalytic space. In: 10th Innovations in Theoretical Computer Science  Conference (ITCS 2019). Vol 124. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018:59:1-59:25. doi:10.4230/LIPICS.ITCS.2019.59' apa: 'Pietrzak, K. Z. (2018). Proofs of catalytic space. In 10th Innovations in Theoretical Computer Science  Conference (ITCS 2019) (Vol. 124, p. 59:1-59:25). San Diego, CA, United States: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.ITCS.2019.59' chicago: Pietrzak, Krzysztof Z. “Proofs of Catalytic Space.” In 10th Innovations in Theoretical Computer Science  Conference (ITCS 2019), 124:59:1-59:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPICS.ITCS.2019.59. ieee: K. Z. Pietrzak, “Proofs of catalytic space,” in 10th Innovations in Theoretical Computer Science  Conference (ITCS 2019), San Diego, CA, United States, 2018, vol. 124, p. 59:1-59:25. ista: 'Pietrzak KZ. 2018. Proofs of catalytic space. 10th Innovations in Theoretical Computer Science  Conference (ITCS 2019). ITCS: Innovations in theoretical Computer Science Conference, LIPIcs, vol. 124, 59:1-59:25.' mla: Pietrzak, Krzysztof Z. “Proofs of Catalytic Space.” 10th Innovations in Theoretical Computer Science  Conference (ITCS 2019), vol. 124, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 59:1-59:25, doi:10.4230/LIPICS.ITCS.2019.59. short: K.Z. Pietrzak, in:, 10th Innovations in Theoretical Computer Science  Conference (ITCS 2019), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 59:1-59:25. conference: end_date: 2019-01-12 location: San Diego, CA, United States name: 'ITCS: Innovations in theoretical Computer Science Conference' start_date: 2019-01-10 date_created: 2020-01-30T09:16:05Z date_published: 2018-12-31T00:00:00Z date_updated: 2021-01-12T08:13:26Z day: '31' ddc: - '000' department: - _id: KrPi doi: 10.4230/LIPICS.ITCS.2019.59 ec_funded: 1 file: - access_level: open_access checksum: 5cebb7f7849a3beda898f697d755dd96 content_type: application/pdf creator: dernst date_created: 2020-02-04T08:17:52Z date_updated: 2020-07-14T12:47:57Z file_id: '7443' file_name: 2018_LIPIcs_Pietrzak.pdf file_size: 822884 relation: main_file file_date_updated: 2020-07-14T12:47:57Z has_accepted_license: '1' intvolume: ' 124' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2018/194 month: '12' oa: 1 oa_version: Published Version page: 59:1-59:25 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: 10th Innovations in Theoretical Computer Science Conference (ITCS 2019) publication_identifier: isbn: - 978-3-95977-095-8 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: 1 status: public title: Proofs of catalytic space tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 124 year: '2018' ... --- _id: '6001' abstract: - lang: eng text: "The concurrent memory reclamation problem is that of devising a way for a deallocating thread to verify that no other concurrent threads hold references to a memory block being deallocated. To date, in the absence of automatic garbage collection, there is no satisfactory solution to this problem; existing tracking methods like hazard pointers, reference counters, or epoch-based techniques like RCU are either prohibitively expensive or require significant programming expertise to the extent that implementing them efficiently can be worthy of a publication. None of the existing techniques are automatic or even semi-automated.\r\nIn this article, we take a new approach to concurrent memory reclamation. Instead of manually tracking access to memory locations as done in techniques like hazard pointers, or restricting shared accesses to specific epoch boundaries as in RCU, our algorithm, called ThreadScan, leverages operating system signaling to automatically detect which memory locations are being accessed by concurrent threads.\r\nInitial empirical evidence shows that ThreadScan scales surprisingly well and requires negligible programming effort beyond the standard use of Malloc and Free." article_number: '18' author: - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: William full_name: Leiserson, William last_name: Leiserson - first_name: Alexander full_name: Matveev, Alexander last_name: Matveev - first_name: Nir full_name: Shavit, Nir last_name: Shavit citation: ama: 'Alistarh D-A, Leiserson W, Matveev A, Shavit N. ThreadScan: Automatic and scalable memory reclamation. ACM Transactions on Parallel Computing. 2018;4(4). doi:10.1145/3201897' apa: 'Alistarh, D.-A., Leiserson, W., Matveev, A., & Shavit, N. (2018). ThreadScan: Automatic and scalable memory reclamation. ACM Transactions on Parallel Computing. Association for Computing Machinery. https://doi.org/10.1145/3201897' chicago: 'Alistarh, Dan-Adrian, William Leiserson, Alexander Matveev, and Nir Shavit. “ThreadScan: Automatic and Scalable Memory Reclamation.” ACM Transactions on Parallel Computing. Association for Computing Machinery, 2018. https://doi.org/10.1145/3201897.' ieee: 'D.-A. Alistarh, W. Leiserson, A. Matveev, and N. Shavit, “ThreadScan: Automatic and scalable memory reclamation,” ACM Transactions on Parallel Computing, vol. 4, no. 4. Association for Computing Machinery, 2018.' ista: 'Alistarh D-A, Leiserson W, Matveev A, Shavit N. 2018. ThreadScan: Automatic and scalable memory reclamation. ACM Transactions on Parallel Computing. 4(4), 18.' mla: 'Alistarh, Dan-Adrian, et al. “ThreadScan: Automatic and Scalable Memory Reclamation.” ACM Transactions on Parallel Computing, vol. 4, no. 4, 18, Association for Computing Machinery, 2018, doi:10.1145/3201897.' short: D.-A. Alistarh, W. Leiserson, A. Matveev, N. Shavit, ACM Transactions on Parallel Computing 4 (2018). date_created: 2019-02-14T13:24:11Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-02-23T13:17:54Z day: '01' department: - _id: DaAl doi: 10.1145/3201897 intvolume: ' 4' issue: '4' language: - iso: eng month: '09' oa_version: None publication: ACM Transactions on Parallel Computing publication_identifier: issn: - 2329-4949 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: record: - id: '779' relation: earlier_version status: public scopus_import: 1 status: public title: 'ThreadScan: Automatic and scalable memory reclamation' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2018' ... --- _id: '7812' abstract: - lang: eng text: Deep neural networks (DNNs) continue to make significant advances, solving tasks from image classification to translation or reinforcement learning. One aspect of the field receiving considerable attention is efficiently executing deep models in resource-constrained environments, such as mobile or embedded devices. This paper focuses on this problem, and proposes two new compression methods, which jointly leverage weight quantization and distillation of larger teacher networks into smaller student networks. The first method we propose is called quantized distillation and leverages distillation during the training process, by incorporating distillation loss, expressed with respect to the teacher, into the training of a student network whose weights are quantized to a limited set of levels. The second method, differentiable quantization, optimizes the location of quantization points through stochastic gradient descent, to better fit the behavior of the teacher model. We validate both methods through experiments on convolutional and recurrent architectures. We show that quantized shallow students can reach similar accuracy levels to full-precision teacher models, while providing order of magnitude compression, and inference speedup that is linear in the depth reduction. In sum, our results enable DNNs for resource-constrained environments to leverage architecture and accuracy advances developed on more powerful devices. article_processing_charge: No author: - first_name: Antonio full_name: Polino, Antonio last_name: Polino - first_name: Razvan full_name: Pascanu, Razvan last_name: Pascanu - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Polino A, Pascanu R, Alistarh D-A. Model compression via distillation and quantization. In: 6th International Conference on Learning Representations. ; 2018.' apa: Polino, A., Pascanu, R., & Alistarh, D.-A. (2018). Model compression via distillation and quantization. In 6th International Conference on Learning Representations. Vancouver, Canada. chicago: Polino, Antonio, Razvan Pascanu, and Dan-Adrian Alistarh. “Model Compression via Distillation and Quantization.” In 6th International Conference on Learning Representations, 2018. ieee: A. Polino, R. Pascanu, and D.-A. Alistarh, “Model compression via distillation and quantization,” in 6th International Conference on Learning Representations, Vancouver, Canada, 2018. ista: 'Polino A, Pascanu R, Alistarh D-A. 2018. Model compression via distillation and quantization. 6th International Conference on Learning Representations. ICLR: International Conference on Learning Representations.' mla: Polino, Antonio, et al. “Model Compression via Distillation and Quantization.” 6th International Conference on Learning Representations, 2018. short: A. Polino, R. Pascanu, D.-A. Alistarh, in:, 6th International Conference on Learning Representations, 2018. conference: end_date: 2018-05-03 location: Vancouver, Canada name: 'ICLR: International Conference on Learning Representations' start_date: 2018-04-30 date_created: 2020-05-10T22:00:51Z date_published: 2018-05-01T00:00:00Z date_updated: 2023-02-23T13:18:41Z day: '01' ddc: - '000' department: - _id: DaAl external_id: arxiv: - '1802.05668' file: - access_level: open_access checksum: a4336c167978e81891970e4e4517a8c3 content_type: application/pdf creator: dernst date_created: 2020-05-26T13:02:00Z date_updated: 2020-07-14T12:48:03Z file_id: '7894' file_name: 2018_ICLR_Polino.pdf file_size: 308339 relation: main_file file_date_updated: 2020-07-14T12:48:03Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version publication: 6th International Conference on Learning Representations publication_status: published quality_controlled: '1' scopus_import: 1 status: public title: Model compression via distillation and quantization type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '8547' abstract: - lang: eng text: The cerebral cortex contains multiple hierarchically organized areas with distinctive cytoarchitectonical patterns, but the cellular mechanisms underlying the emergence of this diversity remain unclear. Here, we have quantitatively investigated the neuronal output of individual progenitor cells in the ventricular zone of the developing mouse neocortex using a combination of methods that together circumvent the biases and limitations of individual approaches. We found that individual cortical progenitor cells show a high degree of stochasticity and generate pyramidal cell lineages that adopt a wide range of laminar configurations. Mathematical modelling these lineage data suggests that a small number of progenitor cell populations, each generating pyramidal cells following different stochastic developmental programs, suffice to generate the heterogenous complement of pyramidal cell lineages that collectively build the complex cytoarchitecture of the neocortex. acknowledgement: We thank I. Andrew and S.E. Bae for excellent technical assistance, F. Gage for plasmids, and K. Nave (Nex-Cre) for mouse colonies. We thank members of the Marín and Rico laboratories for stimulating discussions and ideas. Our research on this topic is supported by grants from the European Research Council (ERC-2017-AdG 787355 to O.M and ERC2016-CoG 725780 to S.H.) and Wellcome Trust (103714MA) to O.M. L.L. was the recipient of an EMBO long-term postdoctoral fellowship, R.B. received support from FWF Lise-Meitner program (M 2416) and F.K.W. was supported by an EMBO postdoctoral fellowship and is currently a Marie Skłodowska-Curie Fellow from the European Commission under the H2020 Programme. article_processing_charge: No author: - first_name: Alfredo full_name: Llorca, Alfredo last_name: Llorca - first_name: Gabriele full_name: Ciceri, Gabriele last_name: Ciceri - first_name: Robert J full_name: Beattie, Robert J id: 2E26DF60-F248-11E8-B48F-1D18A9856A87 last_name: Beattie orcid: 0000-0002-8483-8753 - first_name: Fong K. full_name: Wong, Fong K. last_name: Wong - first_name: Giovanni full_name: Diana, Giovanni last_name: Diana - first_name: Eleni full_name: Serafeimidou, Eleni last_name: Serafeimidou - first_name: Marian full_name: Fernández-Otero, Marian last_name: Fernández-Otero - first_name: Carmen full_name: Streicher, Carmen id: 36BCB99C-F248-11E8-B48F-1D18A9856A87 last_name: Streicher - first_name: Sebastian J. full_name: Arnold, Sebastian J. last_name: Arnold - first_name: Martin full_name: Meyer, Martin last_name: Meyer - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Miguel full_name: Maravall, Miguel last_name: Maravall - first_name: Oscar full_name: Marín, Oscar last_name: Marín citation: ama: Llorca A, Ciceri G, Beattie RJ, et al. Heterogeneous progenitor cell behaviors underlie the assembly of neocortical cytoarchitecture. bioRxiv. doi:10.1101/494088 apa: Llorca, A., Ciceri, G., Beattie, R. J., Wong, F. K., Diana, G., Serafeimidou, E., … Marín, O. (n.d.). Heterogeneous progenitor cell behaviors underlie the assembly of neocortical cytoarchitecture. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/494088 chicago: Llorca, Alfredo, Gabriele Ciceri, Robert J Beattie, Fong K. Wong, Giovanni Diana, Eleni Serafeimidou, Marian Fernández-Otero, et al. “Heterogeneous Progenitor Cell Behaviors Underlie the Assembly of Neocortical Cytoarchitecture.” BioRxiv. Cold Spring Harbor Laboratory, n.d. https://doi.org/10.1101/494088. ieee: A. Llorca et al., “Heterogeneous progenitor cell behaviors underlie the assembly of neocortical cytoarchitecture,” bioRxiv. Cold Spring Harbor Laboratory. ista: Llorca A, Ciceri G, Beattie RJ, Wong FK, Diana G, Serafeimidou E, Fernández-Otero M, Streicher C, Arnold SJ, Meyer M, Hippenmeyer S, Maravall M, Marín O. Heterogeneous progenitor cell behaviors underlie the assembly of neocortical cytoarchitecture. bioRxiv, 10.1101/494088. mla: Llorca, Alfredo, et al. “Heterogeneous Progenitor Cell Behaviors Underlie the Assembly of Neocortical Cytoarchitecture.” BioRxiv, Cold Spring Harbor Laboratory, doi:10.1101/494088. short: A. Llorca, G. Ciceri, R.J. Beattie, F.K. Wong, G. Diana, E. Serafeimidou, M. Fernández-Otero, C. Streicher, S.J. Arnold, M. Meyer, S. Hippenmeyer, M. Maravall, O. Marín, BioRxiv (n.d.). date_created: 2020-09-21T12:01:50Z date_published: 2018-12-13T00:00:00Z date_updated: 2021-01-12T08:20:00Z day: '13' department: - _id: SiHi doi: 10.1101/494088 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/494088 month: '12' oa: 1 oa_version: Preprint project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development - _id: 264E56E2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02416 name: Molecular Mechanisms Regulating Gliogenesis in the Cerebral Cortex publication: bioRxiv publication_status: submitted publisher: Cold Spring Harbor Laboratory status: public title: Heterogeneous progenitor cell behaviors underlie the assembly of neocortical cytoarchitecture type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '86' abstract: - lang: eng text: Responsiveness—the requirement that every request to a system be eventually handled—is one of the fundamental liveness properties of a reactive system. Average response time is a quantitative measure for the responsiveness requirement used commonly in performance evaluation. We show how average response time can be computed on state-transition graphs, on Markov chains, and on game graphs. In all three cases, we give polynomial-time algorithms. acknowledgement: 'This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23, S11407-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award), ERC Start grant (279307: Graph Games), Vienna Science and Technology Fund (WWTF) through project ICT15-003 and by the National Science Centre (NCN), Poland under grant 2014/15/D/ST6/04543.' alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop citation: ama: 'Chatterjee K, Henzinger TA, Otop J. Computing average response time. In: Lohstroh M, Derler P, Sirjani M, eds. Principles of Modeling. Vol 10760. Springer; 2018:143-161. doi:10.1007/978-3-319-95246-8_9' apa: Chatterjee, K., Henzinger, T. A., & Otop, J. (2018). Computing average response time. In M. Lohstroh, P. Derler, & M. Sirjani (Eds.), Principles of Modeling (Vol. 10760, pp. 143–161). Springer. https://doi.org/10.1007/978-3-319-95246-8_9 chicago: Chatterjee, Krishnendu, Thomas A Henzinger, and Jan Otop. “Computing Average Response Time.” In Principles of Modeling, edited by Marten Lohstroh, Patricia Derler, and Marjan Sirjani, 10760:143–61. Springer, 2018. https://doi.org/10.1007/978-3-319-95246-8_9. ieee: K. Chatterjee, T. A. Henzinger, and J. Otop, “Computing average response time,” in Principles of Modeling, vol. 10760, M. Lohstroh, P. Derler, and M. Sirjani, Eds. Springer, 2018, pp. 143–161. ista: 'Chatterjee K, Henzinger TA, Otop J. 2018.Computing average response time. In: Principles of Modeling. LNCS, vol. 10760, 143–161.' mla: Chatterjee, Krishnendu, et al. “Computing Average Response Time.” Principles of Modeling, edited by Marten Lohstroh et al., vol. 10760, Springer, 2018, pp. 143–61, doi:10.1007/978-3-319-95246-8_9. short: K. Chatterjee, T.A. Henzinger, J. Otop, in:, M. Lohstroh, P. Derler, M. Sirjani (Eds.), Principles of Modeling, Springer, 2018, pp. 143–161. date_created: 2018-12-11T11:44:33Z date_published: 2018-07-20T00:00:00Z date_updated: 2021-01-12T08:20:14Z day: '20' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.1007/978-3-319-95246-8_9 ec_funded: 1 editor: - first_name: Marten full_name: Lohstroh, Marten last_name: Lohstroh - first_name: Patricia full_name: Derler, Patricia last_name: Derler - first_name: Marjan full_name: Sirjani, Marjan last_name: Sirjani file: - access_level: open_access checksum: 9995c6ce6957333baf616fc4f20be597 content_type: application/pdf creator: dernst date_created: 2019-11-19T08:22:18Z date_updated: 2020-07-14T12:48:14Z file_id: '7053' file_name: 2018_PrinciplesModeling_Chatterjee.pdf file_size: 516307 relation: main_file file_date_updated: 2020-07-14T12:48:14Z has_accepted_license: '1' intvolume: ' 10760' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 143 - 161 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification publication: Principles of Modeling publication_status: published publisher: Springer publist_id: '7968' quality_controlled: '1' scopus_import: 1 status: public title: Computing average response time type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10760 year: '2018' ... --- _id: '9229' alternative_title: - Molecular and cellular neuroscience article_processing_charge: No article_type: letter_note author: - first_name: Johann G full_name: Danzl, Johann G id: 42EFD3B6-F248-11E8-B48F-1D18A9856A87 last_name: Danzl orcid: 0000-0001-8559-3973 citation: ama: Danzl JG. Diffraction-unlimited optical imaging for synaptic physiology. Opera Medica et Physiologica. 2018;4(S1):11. doi:10.20388/omp2018.00s1.001 apa: Danzl, J. G. (2018). Diffraction-unlimited optical imaging for synaptic physiology. Opera Medica et Physiologica. Lobachevsky State University of Nizhny Novgorod. https://doi.org/10.20388/omp2018.00s1.001 chicago: Danzl, Johann G. “Diffraction-Unlimited Optical Imaging for Synaptic Physiology.” Opera Medica et Physiologica. Lobachevsky State University of Nizhny Novgorod, 2018. https://doi.org/10.20388/omp2018.00s1.001. ieee: J. G. Danzl, “Diffraction-unlimited optical imaging for synaptic physiology,” Opera Medica et Physiologica, vol. 4, no. S1. Lobachevsky State University of Nizhny Novgorod, p. 11, 2018. ista: Danzl JG. 2018. Diffraction-unlimited optical imaging for synaptic physiology. Opera Medica et Physiologica. 4(S1), 11. mla: Danzl, Johann G. “Diffraction-Unlimited Optical Imaging for Synaptic Physiology.” Opera Medica et Physiologica, vol. 4, no. S1, Lobachevsky State University of Nizhny Novgorod, 2018, p. 11, doi:10.20388/omp2018.00s1.001. short: J.G. Danzl, Opera Medica et Physiologica 4 (2018) 11. date_created: 2021-03-07T23:01:25Z date_published: 2018-06-30T00:00:00Z date_updated: 2021-12-03T07:31:05Z day: '30' department: - _id: JoDa doi: 10.20388/omp2018.00s1.001 intvolume: ' 4' issue: S1 language: - iso: eng main_file_link: - open_access: '1' url: http://operamedphys.org/content/molecular-and-cellular-neuroscience month: '06' oa: 1 oa_version: Published Version page: '11' publication: Opera Medica et Physiologica publication_identifier: eissn: - 2500-2295 issn: - 2500-2287 publication_status: published publisher: Lobachevsky State University of Nizhny Novgorod quality_controlled: '1' scopus_import: '1' status: public title: Diffraction-unlimited optical imaging for synaptic physiology type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 4 year: '2018' ... --- _id: '6005' abstract: - lang: eng text: Network games are widely used as a model for selfish resource-allocation problems. In the classicalmodel, each player selects a path connecting her source and target vertices. The cost of traversingan edge depends on theload; namely, number of players that traverse it. Thus, it abstracts the factthat different users may use a resource at different times and for different durations, which playsan important role in determining the costs of the users in reality. For example, when transmittingpackets in a communication network, routing traffic in a road network, or processing a task in aproduction system, actual sharing and congestion of resources crucially depends on time.In [13], we introducedtimed network games, which add a time component to network games.Each vertexvin the network is associated with a cost function, mapping the load onvto theprice that a player pays for staying invfor one time unit with this load. Each edge in thenetwork is guarded by the time intervals in which it can be traversed, which forces the players tospend time in the vertices. In this work we significantly extend the way time can be referred toin timed network games. In the model we study, the network is equipped withclocks, and, as intimed automata, edges are guarded by constraints on the values of the clocks, and their traversalmay involve a reset of some clocks. We argue that the stronger model captures many realisticnetworks. The addition of clocks breaks the techniques we developed in [13] and we developnew techniques in order to show that positive results on classic network games carry over to thestronger timed setting. alternative_title: - LIPIcs article_number: '23' article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Shibashis full_name: Guha, Shibashis last_name: Guha - first_name: Orna full_name: Kupferman, Orna last_name: Kupferman citation: ama: 'Avni G, Guha S, Kupferman O. Timed network games with clocks. In: Vol 117. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018. doi:10.4230/LIPICS.MFCS.2018.23' apa: 'Avni, G., Guha, S., & Kupferman, O. (2018). Timed network games with clocks (Vol. 117). Presented at the MFCS: Mathematical Foundations of Computer Science, Liverpool, United Kingdom: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.MFCS.2018.23' chicago: Avni, Guy, Shibashis Guha, and Orna Kupferman. “Timed Network Games with Clocks,” Vol. 117. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPICS.MFCS.2018.23. ieee: 'G. Avni, S. Guha, and O. Kupferman, “Timed network games with clocks,” presented at the MFCS: Mathematical Foundations of Computer Science, Liverpool, United Kingdom, 2018, vol. 117.' ista: 'Avni G, Guha S, Kupferman O. 2018. Timed network games with clocks. MFCS: Mathematical Foundations of Computer Science, LIPIcs, vol. 117, 23.' mla: Avni, Guy, et al. Timed Network Games with Clocks. Vol. 117, 23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, doi:10.4230/LIPICS.MFCS.2018.23. short: G. Avni, S. Guha, O. Kupferman, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. conference: end_date: 2018-08-31 location: Liverpool, United Kingdom name: 'MFCS: Mathematical Foundations of Computer Science' start_date: 2018-08-27 date_created: 2019-02-14T14:12:09Z date_published: 2018-08-01T00:00:00Z date_updated: 2023-02-23T14:02:58Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPICS.MFCS.2018.23 file: - access_level: open_access checksum: 41ab2ae9b63f5eb49fa995250c0ba128 content_type: application/pdf creator: dernst date_created: 2019-02-14T14:22:04Z date_updated: 2020-07-14T12:47:15Z file_id: '6007' file_name: 2018_LIPIcs_Avni.pdf file_size: 542889 relation: main_file file_date_updated: 2020-07-14T12:47:15Z has_accepted_license: '1' intvolume: ' 117' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory publication_identifier: issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' related_material: record: - id: '963' relation: earlier_version status: public scopus_import: '1' status: public title: Timed network games with clocks tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 117 year: '2018' ... --- _id: '315' abstract: - lang: eng text: 'More than 100 years after Grigg’s influential analysis of species’ borders, the causes of limits to species’ ranges still represent a puzzle that has never been understood with clarity. The topic has become especially important recently as many scientists have become interested in the potential for species’ ranges to shift in response to climate change—and yet nearly all of those studies fail to recognise or incorporate evolutionary genetics in a way that relates to theoretical developments. I show that range margins can be understood based on just two measurable parameters: (i) the fitness cost of dispersal—a measure of environmental heterogeneity—and (ii) the strength of genetic drift, which reduces genetic diversity. Together, these two parameters define an ‘expansion threshold’: adaptation fails when genetic drift reduces genetic diversity below that required for adaptation to a heterogeneous environment. When the key parameters drop below this expansion threshold locally, a sharp range margin forms. When they drop below this threshold throughout the species’ range, adaptation collapses everywhere, resulting in either extinction or formation of a fragmented metapopulation. Because the effects of dispersal differ fundamentally with dimension, the second parameter—the strength of genetic drift—is qualitatively different compared to a linear habitat. In two-dimensional habitats, genetic drift becomes effectively independent of selection. It decreases with ‘neighbourhood size’—the number of individuals accessible by dispersal within one generation. Moreover, in contrast to earlier predictions, which neglected evolution of genetic variance and/or stochasticity in two dimensions, dispersal into small marginal populations aids adaptation. This is because the reduction of both genetic and demographic stochasticity has a stronger effect than the cost of dispersal through increased maladaptation. The expansion threshold thus provides a novel, theoretically justified, and testable prediction for formation of the range margin and collapse of the species’ range.' article_number: e2005372 author: - first_name: Jitka full_name: Polechova, Jitka id: 3BBFB084-F248-11E8-B48F-1D18A9856A87 last_name: Polechova orcid: 0000-0003-0951-3112 citation: ama: Polechova J. Is the sky the limit? On the expansion threshold of a species’ range. PLoS Biology. 2018;16(6). doi:10.1371/journal.pbio.2005372 apa: Polechova, J. (2018). Is the sky the limit? On the expansion threshold of a species’ range. PLoS Biology. Public Library of Science. https://doi.org/10.1371/journal.pbio.2005372 chicago: Polechova, Jitka. “Is the Sky the Limit? On the Expansion Threshold of a Species’ Range.” PLoS Biology. Public Library of Science, 2018. https://doi.org/10.1371/journal.pbio.2005372. ieee: J. Polechova, “Is the sky the limit? On the expansion threshold of a species’ range,” PLoS Biology, vol. 16, no. 6. Public Library of Science, 2018. ista: Polechova J. 2018. Is the sky the limit? On the expansion threshold of a species’ range. PLoS Biology. 16(6), e2005372. mla: Polechova, Jitka. “Is the Sky the Limit? On the Expansion Threshold of a Species’ Range.” PLoS Biology, vol. 16, no. 6, e2005372, Public Library of Science, 2018, doi:10.1371/journal.pbio.2005372. short: J. Polechova, PLoS Biology 16 (2018). date_created: 2018-12-11T11:45:46Z date_published: 2018-06-15T00:00:00Z date_updated: 2023-02-23T14:10:16Z day: '15' ddc: - '576' department: - _id: NiBa doi: 10.1371/journal.pbio.2005372 file: - access_level: open_access checksum: 908c52751bba30c55ed36789e5e4c84d content_type: application/pdf creator: dernst date_created: 2019-01-22T08:30:03Z date_updated: 2020-07-14T12:46:01Z file_id: '5870' file_name: 2017_PLOS_Polechova.pdf file_size: 6968201 relation: main_file file_date_updated: 2020-07-14T12:46:01Z has_accepted_license: '1' intvolume: ' 16' issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: PLoS Biology publication_identifier: issn: - '15449173' publication_status: published publisher: Public Library of Science publist_id: '7550' quality_controlled: '1' related_material: record: - id: '9839' relation: research_data status: public scopus_import: 1 status: public title: Is the sky the limit? On the expansion threshold of a species’ range tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2018' ... --- _id: '186' abstract: - lang: eng text: 'A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The ℤ2-genus of a graph G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. An unpublished result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus contains as a minor a projective t × t grid or one of the following so-called t-Kuratowski graphs: K3, t, or t copies of K5 or K3,3 sharing at most 2 common vertices. We show that the ℤ2-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its ℤ2-genus, solving a problem posed by Schaefer and Štefankovič, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces.' alternative_title: - LIPIcs article_processing_charge: No author: - first_name: Radoslav full_name: Fulek, Radoslav id: 39F3FFE4-F248-11E8-B48F-1D18A9856A87 last_name: Fulek orcid: 0000-0001-8485-1774 - first_name: Jan full_name: Kynčl, Jan last_name: Kynčl citation: ama: 'Fulek R, Kynčl J. The ℤ2-Genus of Kuratowski minors. In: Vol 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018:40.1-40.14. doi:10.4230/LIPIcs.SoCG.2018.40' apa: 'Fulek, R., & Kynčl, J. (2018). The ℤ2-Genus of Kuratowski minors (Vol. 99, p. 40.1-40.14). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.40' chicago: Fulek, Radoslav, and Jan Kynčl. “The ℤ2-Genus of Kuratowski Minors,” 99:40.1-40.14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.SoCG.2018.40. ieee: 'R. Fulek and J. Kynčl, “The ℤ2-Genus of Kuratowski minors,” presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary, 2018, vol. 99, p. 40.1-40.14.' ista: 'Fulek R, Kynčl J. 2018. The ℤ2-Genus of Kuratowski minors. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 99, 40.1-40.14.' mla: Fulek, Radoslav, and Jan Kynčl. The ℤ2-Genus of Kuratowski Minors. Vol. 99, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 40.1-40.14, doi:10.4230/LIPIcs.SoCG.2018.40. short: R. Fulek, J. Kynčl, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 40.1-40.14. conference: end_date: 2018-06-14 location: Budapest, Hungary name: 'SoCG: Symposium on Computational Geometry' start_date: 2018-06-11 date_created: 2018-12-11T11:45:05Z date_published: 2018-06-11T00:00:00Z date_updated: 2023-08-14T12:43:51Z day: '11' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2018.40 external_id: arxiv: - '1803.05085' intvolume: ' 99' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1803.05085 month: '06' oa: 1 oa_version: Submitted Version page: 40.1 - 40.14 project: - _id: 261FA626-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02281 name: Eliminating intersections in drawings of graphs publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '7734' quality_controlled: '1' related_material: record: - id: '11593' relation: later_version status: public scopus_import: '1' status: public title: The ℤ2-Genus of Kuratowski minors type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2018' ... --- _id: '433' abstract: - lang: eng text: 'A thrackle is a graph drawn in the plane so that every pair of its edges meet exactly once: either at a common end vertex or in a proper crossing. We prove that any thrackle of n vertices has at most 1.3984n edges. Quasi-thrackles are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an odd number of times. It is also shown that the maximum number of edges of a quasi-thrackle on n vertices is 3/2(n-1), and that this bound is best possible for infinitely many values of n.' alternative_title: - LNCS author: - first_name: Radoslav full_name: Fulek, Radoslav id: 39F3FFE4-F248-11E8-B48F-1D18A9856A87 last_name: Fulek orcid: 0000-0001-8485-1774 - first_name: János full_name: Pach, János last_name: Pach citation: ama: 'Fulek R, Pach J. Thrackles: An improved upper bound. In: Vol 10692. Springer; 2018:160-166. doi:10.1007/978-3-319-73915-1_14' apa: 'Fulek, R., & Pach, J. (2018). Thrackles: An improved upper bound (Vol. 10692, pp. 160–166). Presented at the GD 2017: Graph Drawing and Network Visualization, Boston, MA, United States: Springer. https://doi.org/10.1007/978-3-319-73915-1_14' chicago: 'Fulek, Radoslav, and János Pach. “Thrackles: An Improved Upper Bound,” 10692:160–66. Springer, 2018. https://doi.org/10.1007/978-3-319-73915-1_14.' ieee: 'R. Fulek and J. Pach, “Thrackles: An improved upper bound,” presented at the GD 2017: Graph Drawing and Network Visualization, Boston, MA, United States, 2018, vol. 10692, pp. 160–166.' ista: 'Fulek R, Pach J. 2018. Thrackles: An improved upper bound. GD 2017: Graph Drawing and Network Visualization, LNCS, vol. 10692, 160–166.' mla: 'Fulek, Radoslav, and János Pach. Thrackles: An Improved Upper Bound. Vol. 10692, Springer, 2018, pp. 160–66, doi:10.1007/978-3-319-73915-1_14.' short: R. Fulek, J. Pach, in:, Springer, 2018, pp. 160–166. conference: end_date: 2017-09-27 location: Boston, MA, United States name: 'GD 2017: Graph Drawing and Network Visualization' start_date: 201-09-25 date_created: 2018-12-11T11:46:27Z date_published: 2018-01-21T00:00:00Z date_updated: 2023-08-24T14:39:32Z day: '21' department: - _id: UlWa doi: 10.1007/978-3-319-73915-1_14 external_id: arxiv: - '1708.08037' intvolume: ' 10692' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1708.08037 month: '01' oa: 1 oa_version: Submitted Version page: 160 - 166 publication_status: published publisher: Springer publist_id: '7390' quality_controlled: '1' related_material: record: - id: '5857' relation: later_version status: public scopus_import: 1 status: public title: 'Thrackles: An improved upper bound' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10692 year: '2018' ... --- _id: '9837' abstract: - lang: eng text: Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients. article_processing_charge: No author: - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Pragya full_name: Chaube, Pragya last_name: Chaube - first_name: Hernán E. full_name: Morales, Hernán E. last_name: Morales - first_name: Tomas full_name: Larsson, Tomas last_name: Larsson - first_name: Alan R. full_name: Lemmon, Alan R. last_name: Lemmon - first_name: Emily M. full_name: Lemmon, Emily M. last_name: Lemmon - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Marina full_name: Panova, Marina last_name: Panova - first_name: Mark full_name: Ravinet, Mark last_name: Ravinet - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: 'Faria R, Chaube P, Morales HE, et al. Data from: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. 2018. doi:10.5061/dryad.72cg113' apa: 'Faria, R., Chaube, P., Morales, H. E., Larsson, T., Lemmon, A. R., Lemmon, E. M., … Butlin, R. K. (2018). Data from: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. Dryad. https://doi.org/10.5061/dryad.72cg113' chicago: 'Faria, Rui, Pragya Chaube, Hernán E. Morales, Tomas Larsson, Alan R. Lemmon, Emily M. Lemmon, Marina Rafajlović, et al. “Data from: Multiple Chromosomal Rearrangements in a Hybrid Zone between Littorina Saxatilis Ecotypes.” Dryad, 2018. https://doi.org/10.5061/dryad.72cg113.' ieee: 'R. Faria et al., “Data from: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes.” Dryad, 2018.' ista: 'Faria R, Chaube P, Morales HE, Larsson T, Lemmon AR, Lemmon EM, Rafajlović M, Panova M, Ravinet M, Johannesson K, Westram AM, Butlin RK. 2018. Data from: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes, Dryad, 10.5061/dryad.72cg113.' mla: 'Faria, Rui, et al. Data from: Multiple Chromosomal Rearrangements in a Hybrid Zone between Littorina Saxatilis Ecotypes. Dryad, 2018, doi:10.5061/dryad.72cg113.' short: R. Faria, P. Chaube, H.E. Morales, T. Larsson, A.R. Lemmon, E.M. Lemmon, M. Rafajlović, M. Panova, M. Ravinet, K. Johannesson, A.M. Westram, R.K. Butlin, (2018). date_created: 2021-08-09T12:46:39Z date_published: 2018-10-09T00:00:00Z date_updated: 2023-08-24T14:50:26Z day: '09' department: - _id: NiBa doi: 10.5061/dryad.72cg113 main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.72cg113 month: '10' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '6095' relation: used_in_publication status: public status: public title: 'Data from: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2018' ... --- _id: '5457' abstract: - lang: eng text: "We consider the problem of expected cost analysis over nondeterministic probabilistic programs, which aims at automated methods for analyzing the resource-usage of such programs. Previous approaches for this problem could only handle nonnegative bounded costs. However, in many scenarios, such as queuing networks or analysis of cryptocurrency protocols, both positive and negative costs are necessary and the costs are unbounded as well.\r\n\r\nIn this work, we present a sound and efficient approach to obtain polynomial bounds on the expected accumulated cost of nondeterministic probabilistic programs. Our approach can handle (a) general positive and negative costs with bounded updates in variables; and (b) nonnegative costs with general updates to variables. We show that several natural examples which could not be handled by previous approaches are captured in our framework.\r\n\r\nMoreover, our approach leads to an efficient polynomial-time algorithm, while no previous approach for cost analysis of probabilistic programs could guarantee polynomial runtime. Finally, we show the effectiveness of our approach by presenting experimental results on a variety of programs, motivated by real-world applications, for which we efficiently synthesize tight resource-usage bounds." alternative_title: - IST Austria Technical Report author: - first_name: '1' full_name: Anonymous, 1 last_name: Anonymous - first_name: '2' full_name: Anonymous, 2 last_name: Anonymous - first_name: '3' full_name: Anonymous, 3 last_name: Anonymous - first_name: '4' full_name: Anonymous, 4 last_name: Anonymous - first_name: '5' full_name: Anonymous, 5 last_name: Anonymous - first_name: '6' full_name: Anonymous, 6 last_name: Anonymous citation: ama: Anonymous 1, Anonymous 2, Anonymous 3, Anonymous 4, Anonymous 5, Anonymous 6. Cost Analysis of Nondeterministic Probabilistic Programs. IST Austria; 2018. apa: Anonymous, 1, Anonymous, 2, Anonymous, 3, Anonymous, 4, Anonymous, 5, & Anonymous, 6. (2018). Cost analysis of nondeterministic probabilistic programs. IST Austria. chicago: Anonymous, 1, 2 Anonymous, 3 Anonymous, 4 Anonymous, 5 Anonymous, and 6 Anonymous. Cost Analysis of Nondeterministic Probabilistic Programs. IST Austria, 2018. ieee: 1 Anonymous, 2 Anonymous, 3 Anonymous, 4 Anonymous, 5 Anonymous, and 6 Anonymous, Cost analysis of nondeterministic probabilistic programs. IST Austria, 2018. ista: Anonymous 1, Anonymous 2, Anonymous 3, Anonymous 4, Anonymous 5, Anonymous 6. 2018. Cost analysis of nondeterministic probabilistic programs, IST Austria, 27p. mla: Anonymous, 1, et al. Cost Analysis of Nondeterministic Probabilistic Programs. IST Austria, 2018. short: 1 Anonymous, 2 Anonymous, 3 Anonymous, 4 Anonymous, 5 Anonymous, 6 Anonymous, Cost Analysis of Nondeterministic Probabilistic Programs, IST Austria, 2018. date_created: 2018-12-12T11:39:26Z date_published: 2018-11-11T00:00:00Z date_updated: 2023-08-25T08:07:48Z day: '11' ddc: - '000' file: - access_level: open_access checksum: ba3adafd36fe200385ccda583063b9eb content_type: application/pdf creator: system date_created: 2018-12-12T11:53:32Z date_updated: 2020-07-14T12:47:00Z file_id: '5493' file_name: IST-2018-1066-v1+1_techreport.pdf file_size: 4202966 relation: main_file - access_level: closed checksum: 6cf3a19164bb8e5048a9c8c84dfd9fa3 content_type: text/plain creator: dernst date_created: 2019-05-10T13:22:12Z date_updated: 2020-07-14T12:47:00Z file_id: '6402' file_name: authors-names.txt file_size: 322 relation: main_file file_date_updated: 2020-07-14T12:47:00Z has_accepted_license: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: '27' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '1066' related_material: record: - id: '6175' relation: later_version status: public scopus_import: 1 status: public title: Cost analysis of nondeterministic probabilistic programs type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '10864' abstract: - lang: eng text: We prove that every congruence distributive variety has directed Jónsson terms, and every congruence modular variety has directed Gumm terms. The directed terms we construct witness every case of absorption witnessed by the original Jónsson or Gumm terms. This result is equivalent to a pair of claims about absorption for admissible preorders in congruence distributive and congruence modular varieties, respectively. For finite algebras, these absorption theorems have already seen significant applications, but until now, it was not clear if the theorems hold for general algebras as well. Our method also yields a novel proof of a result by P. Lipparini about the existence of a chain of terms (which we call Pixley terms) in varieties that are at the same time congruence distributive and k-permutable for some k. acknowledgement: The second author was supported by National Science Center grant DEC-2011-/01/B/ST6/01006. article_processing_charge: No author: - first_name: Alexandr full_name: Kazda, Alexandr id: 3B32BAA8-F248-11E8-B48F-1D18A9856A87 last_name: Kazda - first_name: Marcin full_name: Kozik, Marcin last_name: Kozik - first_name: Ralph full_name: McKenzie, Ralph last_name: McKenzie - first_name: Matthew full_name: Moore, Matthew last_name: Moore citation: ama: 'Kazda A, Kozik M, McKenzie R, Moore M. Absorption and directed Jónsson terms. In: Czelakowski J, ed. Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science. Vol 16. OCTR. Cham: Springer Nature; 2018:203-220. doi:10.1007/978-3-319-74772-9_7' apa: 'Kazda, A., Kozik, M., McKenzie, R., & Moore, M. (2018). Absorption and directed Jónsson terms. In J. Czelakowski (Ed.), Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science (Vol. 16, pp. 203–220). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-74772-9_7' chicago: 'Kazda, Alexandr, Marcin Kozik, Ralph McKenzie, and Matthew Moore. “Absorption and Directed Jónsson Terms.” In Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science, edited by J Czelakowski, 16:203–20. OCTR. Cham: Springer Nature, 2018. https://doi.org/10.1007/978-3-319-74772-9_7.' ieee: 'A. Kazda, M. Kozik, R. McKenzie, and M. Moore, “Absorption and directed Jónsson terms,” in Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science, vol. 16, J. Czelakowski, Ed. Cham: Springer Nature, 2018, pp. 203–220.' ista: 'Kazda A, Kozik M, McKenzie R, Moore M. 2018.Absorption and directed Jónsson terms. In: Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science. vol. 16, 203–220.' mla: Kazda, Alexandr, et al. “Absorption and Directed Jónsson Terms.” Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science, edited by J Czelakowski, vol. 16, Springer Nature, 2018, pp. 203–20, doi:10.1007/978-3-319-74772-9_7. short: A. Kazda, M. Kozik, R. McKenzie, M. Moore, in:, J. Czelakowski (Ed.), Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science, Springer Nature, Cham, 2018, pp. 203–220. date_created: 2022-03-18T10:30:32Z date_published: 2018-03-21T00:00:00Z date_updated: 2023-09-05T15:37:18Z day: '21' department: - _id: VlKo doi: 10.1007/978-3-319-74772-9_7 editor: - first_name: J full_name: Czelakowski, J last_name: Czelakowski external_id: arxiv: - '1502.01072' intvolume: ' 16' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1502.01072 month: '03' oa: 1 oa_version: Preprint page: 203-220 place: Cham publication: Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science publication_identifier: eisbn: - '9783319747729' eissn: - 2211-2766 isbn: - '9783319747712' issn: - 2211-2758 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: OCTR status: public title: Absorption and directed Jónsson terms type: book_chapter user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 16 year: '2018' ... --- _id: '184' abstract: - lang: eng text: We prove that for every d ≥ 2, deciding if a pure, d-dimensional, simplicial complex is shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj and Klee in 1978. Our reduction also yields that for every d ≥ 2 and k ≥ 0, deciding if a pure, d-dimensional, simplicial complex is k-decomposable is NP-hard. For d ≥ 3, both problems remain NP-hard when restricted to contractible pure d-dimensional complexes. acknowledgement: 'Partially supported by the project EMBEDS II (CZ: 7AMB17FR029, FR: 38087RM) of Czech-French collaboration.' alternative_title: - Leibniz International Proceedings in Information, LIPIcs author: - first_name: Xavier full_name: Goaoc, Xavier last_name: Goaoc - first_name: Pavel full_name: Paták, Pavel last_name: Paták - first_name: Zuzana full_name: Patakova, Zuzana id: 48B57058-F248-11E8-B48F-1D18A9856A87 last_name: Patakova orcid: 0000-0002-3975-1683 - first_name: Martin full_name: Tancer, Martin id: 38AC689C-F248-11E8-B48F-1D18A9856A87 last_name: Tancer orcid: 0000-0002-1191-6714 - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 citation: ama: 'Goaoc X, Paták P, Patakova Z, Tancer M, Wagner U. Shellability is NP-complete. In: Vol 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018:41:1-41:16. doi:10.4230/LIPIcs.SoCG.2018.41' apa: 'Goaoc, X., Paták, P., Patakova, Z., Tancer, M., & Wagner, U. (2018). Shellability is NP-complete (Vol. 99, p. 41:1-41:16). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.41' chicago: Goaoc, Xavier, Pavel Paták, Zuzana Patakova, Martin Tancer, and Uli Wagner. “Shellability Is NP-Complete,” 99:41:1-41:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.SoCG.2018.41. ieee: 'X. Goaoc, P. Paták, Z. Patakova, M. Tancer, and U. Wagner, “Shellability is NP-complete,” presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary, 2018, vol. 99, p. 41:1-41:16.' ista: 'Goaoc X, Paták P, Patakova Z, Tancer M, Wagner U. 2018. Shellability is NP-complete. SoCG: Symposium on Computational Geometry, Leibniz International Proceedings in Information, LIPIcs, vol. 99, 41:1-41:16.' mla: Goaoc, Xavier, et al. Shellability Is NP-Complete. Vol. 99, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 41:1-41:16, doi:10.4230/LIPIcs.SoCG.2018.41. short: X. Goaoc, P. Paták, Z. Patakova, M. Tancer, U. Wagner, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 41:1-41:16. conference: end_date: 2018-06-14 location: Budapest, Hungary name: 'SoCG: Symposium on Computational Geometry' start_date: 2018-06-11 date_created: 2018-12-11T11:45:04Z date_published: 2018-06-11T00:00:00Z date_updated: 2023-09-06T11:10:57Z day: '11' ddc: - '516' - '000' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2018.41 file: - access_level: open_access checksum: d12bdd60f04a57307867704b5f930afd content_type: application/pdf creator: dernst date_created: 2018-12-17T16:35:02Z date_updated: 2020-07-14T12:45:18Z file_id: '5725' file_name: 2018_LIPIcs_Goaoc.pdf file_size: 718414 relation: main_file file_date_updated: 2020-07-14T12:45:18Z has_accepted_license: '1' intvolume: ' 99' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 41:1 - 41:16 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '7736' quality_controlled: '1' related_material: record: - id: '7108' relation: later_version status: public scopus_import: 1 status: public title: Shellability is NP-complete tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2018' ... --- _id: '285' abstract: - lang: eng text: In graph theory, as well as in 3-manifold topology, there exist several width-type parameters to describe how "simple" or "thin" a given graph or 3-manifold is. These parameters, such as pathwidth or treewidth for graphs, or the concept of thin position for 3-manifolds, play an important role when studying algorithmic problems; in particular, there is a variety of problems in computational 3-manifold topology - some of them known to be computationally hard in general - that become solvable in polynomial time as soon as the dual graph of the input triangulation has bounded treewidth. In view of these algorithmic results, it is natural to ask whether every 3-manifold admits a triangulation of bounded treewidth. We show that this is not the case, i.e., that there exists an infinite family of closed 3-manifolds not admitting triangulations of bounded pathwidth or treewidth (the latter implies the former, but we present two separate proofs). We derive these results from work of Agol and of Scharlemann and Thompson, by exhibiting explicit connections between the topology of a 3-manifold M on the one hand and width-type parameters of the dual graphs of triangulations of M on the other hand, answering a question that had been raised repeatedly by researchers in computational 3-manifold topology. In particular, we show that if a closed, orientable, irreducible, non-Haken 3-manifold M has a triangulation of treewidth (resp. pathwidth) k then the Heegaard genus of M is at most 48(k+1) (resp. 4(3k+1)). acknowledgement: Research of the second author was supported by the Einstein Foundation (project “Einstein Visiting Fellow Santos”) and by the Simons Foundation (“Simons Visiting Professors” program). alternative_title: - LIPIcs article_number: '46' article_processing_charge: No author: - first_name: Kristóf full_name: Huszár, Kristóf id: 33C26278-F248-11E8-B48F-1D18A9856A87 last_name: Huszár orcid: 0000-0002-5445-5057 - first_name: Jonathan full_name: Spreer, Jonathan last_name: Spreer - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 citation: ama: 'Huszár K, Spreer J, Wagner U. On the treewidth of triangulated 3-manifolds. In: Vol 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018. doi:10.4230/LIPIcs.SoCG.2018.46' apa: 'Huszár, K., Spreer, J., & Wagner, U. (2018). On the treewidth of triangulated 3-manifolds (Vol. 99). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.46' chicago: Huszár, Kristóf, Jonathan Spreer, and Uli Wagner. “On the Treewidth of Triangulated 3-Manifolds,” Vol. 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.SoCG.2018.46. ieee: 'K. Huszár, J. Spreer, and U. Wagner, “On the treewidth of triangulated 3-manifolds,” presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary, 2018, vol. 99.' ista: 'Huszár K, Spreer J, Wagner U. 2018. On the treewidth of triangulated 3-manifolds. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 99, 46.' mla: Huszár, Kristóf, et al. On the Treewidth of Triangulated 3-Manifolds. Vol. 99, 46, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, doi:10.4230/LIPIcs.SoCG.2018.46. short: K. Huszár, J. Spreer, U. Wagner, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. conference: end_date: 2018-06-14 location: Budapest, Hungary name: 'SoCG: Symposium on Computational Geometry' start_date: 2018-06-11 date_created: 2018-12-11T11:45:37Z date_published: 2018-06-01T00:00:00Z date_updated: 2023-09-06T11:13:41Z day: '01' ddc: - '516' - '000' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2018.46 external_id: arxiv: - '1712.00434' file: - access_level: open_access checksum: 530d084116778135d5bffaa317479cac content_type: application/pdf creator: dernst date_created: 2018-12-17T15:32:38Z date_updated: 2020-07-14T12:45:51Z file_id: '5713' file_name: 2018_LIPIcs_Huszar.pdf file_size: 642522 relation: main_file file_date_updated: 2020-07-14T12:45:51Z has_accepted_license: '1' intvolume: ' 99' language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version publication_identifier: issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '7614' quality_controlled: '1' related_material: record: - id: '7093' relation: later_version status: public scopus_import: 1 status: public title: On the treewidth of triangulated 3-manifolds tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2018' ... --- _id: '13059' abstract: - lang: eng text: "This dataset contains a GitHub repository containing all the data, analysis, Nextflow workflows and Jupyter notebooks to replicate the manuscript titled \"Fast and accurate large multiple sequence alignments with a root-to-leaf regressive method\".\r\nIt also contains the Multiple Sequence Alignments (MSAs) generated and well as the main figures and tables from the manuscript.\r\nThe repository is also available at GitHub (https://github.com/cbcrg/dpa-analysis) release `v1.2`.\r\nFor details on how to use the regressive alignment algorithm, see the T-Coffee software suite (https://github.com/cbcrg/tcoffee)." article_processing_charge: No author: - first_name: Edgar full_name: Garriga, Edgar last_name: Garriga - first_name: Paolo full_name: di Tommaso, Paolo last_name: di Tommaso - first_name: Cedrik full_name: Magis, Cedrik last_name: Magis - first_name: Ionas full_name: Erb, Ionas last_name: Erb - first_name: Leila full_name: Mansouri, Leila last_name: Mansouri - first_name: Athanasios full_name: Baltzis, Athanasios last_name: Baltzis - first_name: Hafid full_name: Laayouni, Hafid last_name: Laayouni - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Evan full_name: Floden, Evan last_name: Floden - first_name: Cedric full_name: Notredame, Cedric last_name: Notredame citation: ama: Garriga E, di Tommaso P, Magis C, et al. Fast and accurate large multiple sequence alignments with a root-to-leaf regressive method. 2018. doi:10.5281/ZENODO.2025846 apa: Garriga, E., di Tommaso, P., Magis, C., Erb, I., Mansouri, L., Baltzis, A., … Notredame, C. (2018). Fast and accurate large multiple sequence alignments with a root-to-leaf regressive method. Zenodo. https://doi.org/10.5281/ZENODO.2025846 chicago: Garriga, Edgar, Paolo di Tommaso, Cedrik Magis, Ionas Erb, Leila Mansouri, Athanasios Baltzis, Hafid Laayouni, Fyodor Kondrashov, Evan Floden, and Cedric Notredame. “Fast and Accurate Large Multiple Sequence Alignments with a Root-to-Leaf Regressive Method.” Zenodo, 2018. https://doi.org/10.5281/ZENODO.2025846. ieee: E. Garriga et al., “Fast and accurate large multiple sequence alignments with a root-to-leaf regressive method.” Zenodo, 2018. ista: Garriga E, di Tommaso P, Magis C, Erb I, Mansouri L, Baltzis A, Laayouni H, Kondrashov F, Floden E, Notredame C. 2018. Fast and accurate large multiple sequence alignments with a root-to-leaf regressive method, Zenodo, 10.5281/ZENODO.2025846. mla: Garriga, Edgar, et al. Fast and Accurate Large Multiple Sequence Alignments with a Root-to-Leaf Regressive Method. Zenodo, 2018, doi:10.5281/ZENODO.2025846. short: E. Garriga, P. di Tommaso, C. Magis, I. Erb, L. Mansouri, A. Baltzis, H. Laayouni, F. Kondrashov, E. Floden, C. Notredame, (2018). date_created: 2023-05-23T16:08:20Z date_published: 2018-12-07T00:00:00Z date_updated: 2023-09-06T14:32:51Z day: '07' ddc: - '570' department: - _id: FyKo doi: 10.5281/ZENODO.2025846 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.3271452 month: '12' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '7181' relation: used_in_publication status: public status: public title: Fast and accurate large multiple sequence alignments with a root-to-leaf regressive method tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '49' abstract: - lang: eng text: Nowadays, quantum computation is receiving more and more attention as an alternative to the classical way of computing. For realizing a quantum computer, different devices are investigated as potential quantum bits. In this thesis, the focus is on Ge hut wires, which turned out to be promising candidates for implementing hole spin quantum bits. The advantages of Ge as a material system are the low hyperfine interaction for holes and the strong spin orbit coupling, as well as the compatibility with the highly developed CMOS processes in industry. In addition, Ge can also be isotopically purified which is expected to boost the spin coherence times. The strong spin orbit interaction for holes in Ge on the one hand enables the full electrical control of the quantum bit and on the other hand should allow short spin manipulation times. Starting with a bare Si wafer, this work covers the entire process reaching from growth over the fabrication and characterization of hut wire devices up to the demonstration of hole spin resonance. From experiments with single quantum dots, a large g-factor anisotropy between the in-plane and the out-of-plane direction was found. A comparison to a theoretical model unveiled the heavy-hole character of the lowest energy states. The second part of the thesis addresses double quantum dot devices, which were realized by adding two gate electrodes to a hut wire. In such devices, Pauli spin blockade was observed, which can serve as a read-out mechanism for spin quantum bits. Applying oscillating electric fields in spin blockade allowed the demonstration of continuous spin rotations and the extraction of a lower bound for the spin dephasing time. Despite the strong spin orbit coupling in Ge, the obtained value for the dephasing time is comparable to what has been recently reported for holes in Si. All in all, the presented results point out the high potential of Ge hut wires as a platform for long-lived, fast and fully electrically tunable hole spin quantum bits. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Hannes full_name: Watzinger, Hannes id: 35DF8E50-F248-11E8-B48F-1D18A9856A87 last_name: Watzinger citation: ama: Watzinger H. Ge hut wires - from growth to hole spin resonance. 2018. doi:10.15479/AT:ISTA:th_1033 apa: Watzinger, H. (2018). Ge hut wires - from growth to hole spin resonance. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1033 chicago: Watzinger, Hannes. “Ge Hut Wires - from Growth to Hole Spin Resonance.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1033. ieee: H. Watzinger, “Ge hut wires - from growth to hole spin resonance,” Institute of Science and Technology Austria, 2018. ista: Watzinger H. 2018. Ge hut wires - from growth to hole spin resonance. Institute of Science and Technology Austria. mla: Watzinger, Hannes. Ge Hut Wires - from Growth to Hole Spin Resonance. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1033. short: H. Watzinger, Ge Hut Wires - from Growth to Hole Spin Resonance, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:21Z date_published: 2018-07-30T00:00:00Z date_updated: 2023-09-07T12:27:43Z day: '30' ddc: - '530' degree_awarded: PhD department: - _id: GeKa doi: 10.15479/AT:ISTA:th_1033 file: - access_level: open_access checksum: b653b5216251f938ddbeafd1de88667c content_type: application/pdf creator: dernst date_created: 2019-04-09T07:13:28Z date_updated: 2020-07-14T12:46:35Z file_id: '6249' file_name: 2018_Thesis_Watzinger.pdf file_size: 85539748 relation: main_file - access_level: closed checksum: 39bcf8de7ac5b1bb516b11ce2f966785 content_type: application/zip creator: dernst date_created: 2019-04-09T07:13:27Z date_updated: 2020-07-14T12:46:35Z file_id: '6250' file_name: 2018_Thesis_Watzinger_source.zip file_size: 21830697 relation: source_file file_date_updated: 2020-07-14T12:46:35Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '77' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8005' pubrep_id: '1033' status: public supervisor: - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X title: Ge hut wires - from growth to hole spin resonance tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '201' abstract: - lang: eng text: 'We describe arrangements of three-dimensional spheres from a geometrical and topological point of view. Real data (fitting this setup) often consist of soft spheres which show certain degree of deformation while strongly packing against each other. In this context, we answer the following questions: If we model a soft packing of spheres by hard spheres that are allowed to overlap, can we measure the volume in the overlapped areas? Can we be more specific about the overlap volume, i.e. quantify how much volume is there covered exactly twice, three times, or k times? What would be a good optimization criteria that rule the arrangement of soft spheres while making a good use of the available space? Fixing a particular criterion, what would be the optimal sphere configuration? The first result of this thesis are short formulas for the computation of volumes covered by at least k of the balls. The formulas exploit information contained in the order-k Voronoi diagrams and its closely related Level-k complex. The used complexes lead to a natural generalization into poset diagrams, a theoretical formalism that contains the order-k and degree-k diagrams as special cases. In parallel, we define different criteria to determine what could be considered an optimal arrangement from a geometrical point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and 3D where the ball centers lie on a lattice. As a last step, we use tools from computational topology on real physical data, to show the potentials of higher-order diagrams in the description of melting crystals. The results of the experiments leaves us with an open window to apply the theories developed in this thesis in real applications.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham citation: ama: Iglesias Ham M. Multiple covers with balls. 2018. doi:10.15479/AT:ISTA:th_1026 apa: Iglesias Ham, M. (2018). Multiple covers with balls. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1026 chicago: Iglesias Ham, Mabel. “Multiple Covers with Balls.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1026. ieee: M. Iglesias Ham, “Multiple covers with balls,” Institute of Science and Technology Austria, 2018. ista: Iglesias Ham M. 2018. Multiple covers with balls. Institute of Science and Technology Austria. mla: Iglesias Ham, Mabel. Multiple Covers with Balls. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1026. short: M. Iglesias Ham, Multiple Covers with Balls, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:10Z date_published: 2018-06-11T00:00:00Z date_updated: 2023-09-07T12:25:32Z day: '11' ddc: - '514' - '516' degree_awarded: PhD department: - _id: HeEd doi: 10.15479/AT:ISTA:th_1026 file: - access_level: closed checksum: dd699303623e96d1478a6ae07210dd05 content_type: application/zip creator: kschuh date_created: 2019-02-05T07:43:31Z date_updated: 2020-07-14T12:45:24Z file_id: '5918' file_name: IST-2018-1025-v2+5_ist-thesis-iglesias-11June2018(1).zip file_size: 11827713 relation: source_file - access_level: open_access checksum: ba163849a190d2b41d66fef0e4983294 content_type: application/pdf creator: kschuh date_created: 2019-02-05T07:43:45Z date_updated: 2020-07-14T12:45:24Z file_id: '5919' file_name: IST-2018-1025-v2+4_ThesisIglesiasFinal11June2018.pdf file_size: 4783846 relation: main_file file_date_updated: 2020-07-14T12:45:24Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '171' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7712' pubrep_id: '1026' status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: Multiple covers with balls type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '68' abstract: - lang: eng text: The most common assumption made in statistical learning theory is the assumption of the independent and identically distributed (i.i.d.) data. While being very convenient mathematically, it is often very clearly violated in practice. This disparity between the machine learning theory and applications underlies a growing demand in the development of algorithms that learn from dependent data and theory that can provide generalization guarantees similar to the independent situations. This thesis is dedicated to two variants of dependencies that can arise in practice. One is a dependence on the level of samples in a single learning task. Another dependency type arises in the multi-task setting when the tasks are dependent on each other even though the data for them can be i.i.d. In both cases we model the data (samples or tasks) as stochastic processes and introduce new algorithms for both settings that take into account and exploit the resulting dependencies. We prove the theoretical guarantees on the performance of the introduced algorithms under different evaluation criteria and, in addition, we compliment the theoretical study by the empirical one, where we evaluate some of the algorithms on two real world datasets to highlight their practical applicability. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Alexander full_name: Zimin, Alexander id: 37099E9C-F248-11E8-B48F-1D18A9856A87 last_name: Zimin citation: ama: Zimin A. Learning from dependent data. 2018. doi:10.15479/AT:ISTA:TH1048 apa: Zimin, A. (2018). Learning from dependent data. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH1048 chicago: Zimin, Alexander. “Learning from Dependent Data.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH1048. ieee: A. Zimin, “Learning from dependent data,” Institute of Science and Technology Austria, 2018. ista: Zimin A. 2018. Learning from dependent data. Institute of Science and Technology Austria. mla: Zimin, Alexander. Learning from Dependent Data. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH1048. short: A. Zimin, Learning from Dependent Data, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:27Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-09-07T12:29:07Z day: '01' ddc: - '004' - '519' degree_awarded: PhD department: - _id: ChLa doi: 10.15479/AT:ISTA:TH1048 ec_funded: 1 file: - access_level: open_access checksum: e849dd40a915e4d6c5572b51b517f098 content_type: application/pdf creator: dernst date_created: 2019-04-09T07:32:47Z date_updated: 2020-07-14T12:47:40Z file_id: '6253' file_name: 2018_Thesis_Zimin.pdf file_size: 1036137 relation: main_file - access_level: closed checksum: da092153cec55c97461bd53c45c5d139 content_type: application/zip creator: dernst date_created: 2019-04-09T07:32:47Z date_updated: 2020-07-14T12:47:40Z file_id: '6254' file_name: 2018_Thesis_Zimin_Source.zip file_size: 637490 relation: source_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '92' project: - _id: 2532554C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '308036' name: Lifelong Learning of Visual Scene Understanding publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7986' pubrep_id: '1048' status: public supervisor: - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 title: Learning from dependent data type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '83' abstract: - lang: eng text: "A proof system is a protocol between a prover and a verifier over a common input in which an honest prover convinces the verifier of the validity of true statements. Motivated by the success of decentralized cryptocurrencies, exemplified by Bitcoin, the focus of this thesis will be on proof systems which found applications in some sustainable alternatives to Bitcoin, such as the Spacemint and Chia cryptocurrencies. In particular, we focus on proofs of space and proofs of sequential work.\r\nProofs of space (PoSpace) were suggested as more ecological, economical, and egalitarian alternative to the energy-wasteful proof-of-work mining of Bitcoin. However, the state-of-the-art constructions of PoSpace are based on sophisticated graph pebbling lower bounds, and are therefore complex. Moreover, when these PoSpace are used in cryptocurrencies like Spacemint, miners can only start mining after ensuring that a commitment to their space is already added in a special transaction to the blockchain. Proofs of sequential work (PoSW) are proof systems in which a prover, upon receiving a statement x and a time parameter T, computes a proof which convinces the verifier that T time units had passed since x was received. Whereas Spacemint assumes synchrony to retain some interesting Bitcoin dynamics, Chia requires PoSW with unique proofs, i.e., PoSW in which it is hard to come up with more than one accepting proof for any true statement. In this thesis we construct simple and practically-efficient PoSpace and PoSW. When using our PoSpace in cryptocurrencies, miners can start mining on the fly, like in Bitcoin, and unlike current constructions of PoSW, which either achieve efficient verification of sequential work, or faster-than-recomputing verification of correctness of proofs, but not both at the same time, ours achieve the best of these two worlds." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Hamza M full_name: Abusalah, Hamza M id: 40297222-F248-11E8-B48F-1D18A9856A87 last_name: Abusalah citation: ama: Abusalah HM. Proof systems for sustainable decentralized cryptocurrencies. 2018. doi:10.15479/AT:ISTA:TH_1046 apa: Abusalah, H. M. (2018). Proof systems for sustainable decentralized cryptocurrencies. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1046 chicago: Abusalah, Hamza M. “Proof Systems for Sustainable Decentralized Cryptocurrencies.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1046. ieee: H. M. Abusalah, “Proof systems for sustainable decentralized cryptocurrencies,” Institute of Science and Technology Austria, 2018. ista: Abusalah HM. 2018. Proof systems for sustainable decentralized cryptocurrencies. Institute of Science and Technology Austria. mla: Abusalah, Hamza M. Proof Systems for Sustainable Decentralized Cryptocurrencies. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH_1046. short: H.M. Abusalah, Proof Systems for Sustainable Decentralized Cryptocurrencies, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:32Z date_published: 2018-09-05T00:00:00Z date_updated: 2023-09-07T12:30:23Z day: '05' ddc: - '004' degree_awarded: PhD department: - _id: KrPi doi: 10.15479/AT:ISTA:TH_1046 ec_funded: 1 file: - access_level: open_access checksum: c4b5f7d111755d1396787f41886fc674 content_type: application/pdf creator: dernst date_created: 2019-04-09T06:43:41Z date_updated: 2020-07-14T12:48:11Z file_id: '6245' file_name: 2018_Thesis_Abusalah.pdf file_size: 876241 relation: main_file - access_level: closed checksum: 0f382ac56b471c48fd907d63eb87dafe content_type: application/x-gzip creator: dernst date_created: 2019-04-09T06:43:41Z date_updated: 2020-07-14T12:48:11Z file_id: '6246' file_name: 2018_Thesis_Abusalah_source.tar.gz file_size: 2029190 relation: source_file file_date_updated: 2020-07-14T12:48:11Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '59' project: - _id: 258C570E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '259668' name: Provable Security for Physical Cryptography - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7971' pubrep_id: '1046' related_material: record: - id: '1229' relation: part_of_dissertation status: public - id: '1235' relation: part_of_dissertation status: public - id: '1236' relation: part_of_dissertation status: public - id: '559' relation: part_of_dissertation status: public status: public supervisor: - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 title: Proof systems for sustainable decentralized cryptocurrencies type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '197' abstract: - lang: eng text: Modern computer vision systems heavily rely on statistical machine learning models, which typically require large amounts of labeled data to be learned reliably. Moreover, very recently computer vision research widely adopted techniques for representation learning, which further increase the demand for labeled data. However, for many important practical problems there is relatively small amount of labeled data available, so it is problematic to leverage full potential of the representation learning methods. One way to overcome this obstacle is to invest substantial resources into producing large labelled datasets. Unfortunately, this can be prohibitively expensive in practice. In this thesis we focus on the alternative way of tackling the aforementioned issue. We concentrate on methods, which make use of weakly-labeled or even unlabeled data. Specifically, the first half of the thesis is dedicated to the semantic image segmentation task. We develop a technique, which achieves competitive segmentation performance and only requires annotations in a form of global image-level labels instead of dense segmentation masks. Subsequently, we present a new methodology, which further improves segmentation performance by leveraging tiny additional feedback from a human annotator. By using our methods practitioners can greatly reduce the amount of data annotation effort, which is required to learn modern image segmentation models. In the second half of the thesis we focus on methods for learning from unlabeled visual data. We study a family of autoregressive models for modeling structure of natural images and discuss potential applications of these models. Moreover, we conduct in-depth study of one of these applications, where we develop the state-of-the-art model for the probabilistic image colorization task. acknowledgement: I also gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPUs used for this research. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Alexander full_name: Kolesnikov, Alexander id: 2D157DB6-F248-11E8-B48F-1D18A9856A87 last_name: Kolesnikov citation: ama: Kolesnikov A. Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. 2018. doi:10.15479/AT:ISTA:th_1021 apa: Kolesnikov, A. (2018). Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1021 chicago: Kolesnikov, Alexander. “Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1021. ieee: A. Kolesnikov, “Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images,” Institute of Science and Technology Austria, 2018. ista: Kolesnikov A. 2018. Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. Institute of Science and Technology Austria. mla: Kolesnikov, Alexander. Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1021. short: A. Kolesnikov, Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:09Z date_published: 2018-05-25T00:00:00Z date_updated: 2023-09-07T12:51:46Z day: '25' ddc: - '004' degree_awarded: PhD department: - _id: ChLa doi: 10.15479/AT:ISTA:th_1021 ec_funded: 1 file: - access_level: open_access checksum: bc678e02468d8ebc39dc7267dfb0a1c4 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:57Z date_updated: 2020-07-14T12:45:22Z file_id: '5113' file_name: IST-2018-1021-v1+1_thesis-unsigned-pdfa.pdf file_size: 12918758 relation: main_file - access_level: closed checksum: bc66973b086da5a043f1162dcfb1fde4 content_type: application/zip creator: dernst date_created: 2019-04-05T09:34:49Z date_updated: 2020-07-14T12:45:22Z file_id: '6225' file_name: 2018_Thesis_Kolesnikov_source.zip file_size: 55973760 relation: source_file file_date_updated: 2020-07-14T12:45:22Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '113' project: - _id: 2532554C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '308036' name: Lifelong Learning of Visual Scene Understanding publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7718' pubrep_id: '1021' status: public supervisor: - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 title: Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '6774' abstract: - lang: eng text: "A central problem of algebraic topology is to understand the homotopy groups \ \U0001D70B\U0001D451(\U0001D44B) of a topological space X. For the computational version of the problem, it is well known that there is no algorithm to decide whether the fundamental group \U0001D70B1(\U0001D44B) of a given finite simplicial complex X is trivial. On the other hand, there are several algorithms that, given a finite simplicial complex X that is simply connected (i.e., with \U0001D70B1(\U0001D44B) \ trivial), compute the higher homotopy group \U0001D70B\U0001D451(\U0001D44B) \ for any given \U0001D451≥2 . However, these algorithms come with a caveat: They compute the isomorphism type of \U0001D70B\U0001D451(\U0001D44B) , \U0001D451≥2 \ as an abstract finitely generated abelian group given by generators and relations, but they work with very implicit representations of the elements of \U0001D70B\U0001D451(\U0001D44B) . Converting elements of this abstract group into explicit geometric maps from the d-dimensional sphere \U0001D446\U0001D451 to X has been one of the main unsolved problems in the emerging field of computational homotopy theory. Here we present an algorithm that, given a simply connected space X, computes \U0001D70B\U0001D451(\U0001D44B) \ and represents its elements as simplicial maps from a suitable triangulation of the d-sphere \U0001D446\U0001D451 to X. For fixed d, the algorithm runs in time exponential in size(\U0001D44B) , the number of simplices of X. Moreover, we prove that this is optimal: For every fixed \U0001D451≥2 , we construct a family of simply connected spaces X such that for any simplicial map representing a generator of \U0001D70B\U0001D451(\U0001D44B) , the size of the triangulation of \U0001D446\U0001D451 on which the map is defined, is exponential in size(\U0001D44B) ." article_type: original author: - first_name: Marek full_name: Filakovský, Marek id: 3E8AF77E-F248-11E8-B48F-1D18A9856A87 last_name: Filakovský - first_name: Peter full_name: Franek, Peter id: 473294AE-F248-11E8-B48F-1D18A9856A87 last_name: Franek orcid: 0000-0001-8878-8397 - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 - first_name: Stephan Y full_name: Zhechev, Stephan Y id: 3AA52972-F248-11E8-B48F-1D18A9856A87 last_name: Zhechev citation: ama: Filakovský M, Franek P, Wagner U, Zhechev SY. Computing simplicial representatives of homotopy group elements. Journal of Applied and Computational Topology. 2018;2(3-4):177-231. doi:10.1007/s41468-018-0021-5 apa: Filakovský, M., Franek, P., Wagner, U., & Zhechev, S. Y. (2018). Computing simplicial representatives of homotopy group elements. Journal of Applied and Computational Topology. Springer. https://doi.org/10.1007/s41468-018-0021-5 chicago: Filakovský, Marek, Peter Franek, Uli Wagner, and Stephan Y Zhechev. “Computing Simplicial Representatives of Homotopy Group Elements.” Journal of Applied and Computational Topology. Springer, 2018. https://doi.org/10.1007/s41468-018-0021-5. ieee: M. Filakovský, P. Franek, U. Wagner, and S. Y. Zhechev, “Computing simplicial representatives of homotopy group elements,” Journal of Applied and Computational Topology, vol. 2, no. 3–4. Springer, pp. 177–231, 2018. ista: Filakovský M, Franek P, Wagner U, Zhechev SY. 2018. Computing simplicial representatives of homotopy group elements. Journal of Applied and Computational Topology. 2(3–4), 177–231. mla: Filakovský, Marek, et al. “Computing Simplicial Representatives of Homotopy Group Elements.” Journal of Applied and Computational Topology, vol. 2, no. 3–4, Springer, 2018, pp. 177–231, doi:10.1007/s41468-018-0021-5. short: M. Filakovský, P. Franek, U. Wagner, S.Y. Zhechev, Journal of Applied and Computational Topology 2 (2018) 177–231. date_created: 2019-08-08T06:47:40Z date_published: 2018-12-01T00:00:00Z date_updated: 2023-09-07T13:10:36Z day: '01' ddc: - '514' department: - _id: UlWa doi: 10.1007/s41468-018-0021-5 file: - access_level: open_access checksum: cf9e7fcd2a113dd4828774fc75cdb7e8 content_type: application/pdf creator: dernst date_created: 2019-08-08T06:55:21Z date_updated: 2020-07-14T12:47:40Z file_id: '6775' file_name: 2018_JourAppliedComputTopology_Filakovsky.pdf file_size: 1056278 relation: main_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' intvolume: ' 2' issue: 3-4 language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 177-231 project: - _id: 25F8B9BC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M01980 name: Robust invariants of Nonlinear Systems - _id: 3AC91DDA-15DF-11EA-824D-93A3E7B544D1 call_identifier: FWF name: FWF Open Access Fund publication: Journal of Applied and Computational Topology publication_identifier: eissn: - 2367-1734 issn: - 2367-1726 publication_status: published publisher: Springer quality_controlled: '1' related_material: record: - id: '6681' relation: dissertation_contains status: public status: public title: Computing simplicial representatives of homotopy group elements tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2018' ... --- _id: '133' abstract: - lang: eng text: Synchronous programs are easy to specify because the side effects of an operation are finished by the time the invocation of the operation returns to the caller. Asynchronous programs, on the other hand, are difficult to specify because there are side effects due to pending computation scheduled as a result of the invocation of an operation. They are also difficult to verify because of the large number of possible interleavings of concurrent computation threads. We present synchronization, a new proof rule that simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Modular verification is enabled via pending asynchronous calls in atomic summaries, and a complementary proof rule that eliminates pending asynchronous calls when components and their specifications are composed. We evaluate synchronization in the context of a multi-layer refinement verification methodology on a collection of benchmark programs. alternative_title: - LIPIcs article_number: '21' author: - first_name: Bernhard full_name: Kragl, Bernhard id: 320FC952-F248-11E8-B48F-1D18A9856A87 last_name: Kragl orcid: 0000-0001-7745-9117 - first_name: Shaz full_name: Qadeer, Shaz last_name: Qadeer - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: 'Kragl B, Qadeer S, Henzinger TA. Synchronizing the asynchronous. In: Vol 118. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018. doi:10.4230/LIPIcs.CONCUR.2018.21' apa: 'Kragl, B., Qadeer, S., & Henzinger, T. A. (2018). Synchronizing the asynchronous (Vol. 118). Presented at the CONCUR: International Conference on Concurrency Theory, Beijing, China: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2018.21' chicago: Kragl, Bernhard, Shaz Qadeer, and Thomas A Henzinger. “Synchronizing the Asynchronous,” Vol. 118. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.CONCUR.2018.21. ieee: 'B. Kragl, S. Qadeer, and T. A. Henzinger, “Synchronizing the asynchronous,” presented at the CONCUR: International Conference on Concurrency Theory, Beijing, China, 2018, vol. 118.' ista: 'Kragl B, Qadeer S, Henzinger TA. 2018. Synchronizing the asynchronous. CONCUR: International Conference on Concurrency Theory, LIPIcs, vol. 118, 21.' mla: Kragl, Bernhard, et al. Synchronizing the Asynchronous. Vol. 118, 21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, doi:10.4230/LIPIcs.CONCUR.2018.21. short: B. Kragl, S. Qadeer, T.A. Henzinger, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. conference: end_date: 2018-09-07 location: Beijing, China name: 'CONCUR: International Conference on Concurrency Theory' start_date: 2018-09-04 date_created: 2018-12-11T11:44:48Z date_published: 2018-08-13T00:00:00Z date_updated: 2023-09-07T13:18:00Z day: '13' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2018.21 file: - access_level: open_access checksum: c90895f4c5fafc18ddc54d1c8848077e content_type: application/pdf creator: system date_created: 2018-12-12T10:18:46Z date_updated: 2020-07-14T12:44:44Z file_id: '5368' file_name: IST-2018-853-v2+2_concur2018.pdf file_size: 745438 relation: main_file file_date_updated: 2020-07-14T12:44:44Z has_accepted_license: '1' intvolume: ' 118' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F5A88A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Moderne Concurrency Paradigms publication_identifier: issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '7790' pubrep_id: '1039' quality_controlled: '1' related_material: record: - id: '6426' relation: earlier_version status: public - id: '8332' relation: dissertation_contains status: public scopus_import: 1 status: public title: Synchronizing the asynchronous tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 118 year: '2018' ...