--- _id: '7464' abstract: - lang: eng text: 'Retrovirus assembly is driven by the multidomain structural protein Gag. Interactions between the capsid domains (CA) of Gag result in Gag multimerization, leading to an immature virus particle that is formed by a protein lattice based on dimeric, trimeric, and hexameric protein contacts. Among retroviruses the inter- and intra-hexamer contacts differ, especially in the N-terminal sub-domain of CA (CANTD). For HIV-1 the cellular molecule inositol hexakisphosphate (IP6) interacts with and stabilizes the immature hexamer, and is required for production of infectious virus particles. We have used in vitro assembly, cryo-electron tomography and subtomogram averaging, atomistic molecular dynamics simulations and mutational analyses to study the HIV-related lentivirus equine infectious anemia virus (EIAV). In particular, we sought to understand the structural conservation of the immature lentivirus lattice and the role of IP6 in EIAV assembly. Similar to HIV-1, IP6 strongly promoted in vitro assembly of EIAV Gag proteins into virus-like particles (VLPs), which took three morphologically highly distinct forms: narrow tubes, wide tubes, and spheres. Structural characterization of these VLPs to sub-4Å resolution unexpectedly showed that all three morphologies are based on an immature lattice with preserved key structural components, highlighting the structural versatility of CA to form immature assemblies. A direct comparison between EIAV and HIV revealed that both lentiviruses maintain similar immature interfaces, which are established by both conserved and non-conserved residues. In both EIAV and HIV-1, IP6 regulates immature assembly via conserved lysine residues within the CACTD and SP. Lastly, we demonstrate that IP6 stimulates in vitro assembly of immature particles of several other retroviruses in the lentivirus genus, suggesting a conserved role for IP6 in lentiviral assembly.' acknowledged_ssus: - _id: ScienComp article_number: e1008277 article_processing_charge: No article_type: original author: - first_name: Robert A. full_name: Dick, Robert A. last_name: Dick - first_name: Chaoyi full_name: Xu, Chaoyi last_name: Xu - first_name: Dustin R. full_name: Morado, Dustin R. last_name: Morado - first_name: Vladyslav full_name: Kravchuk, Vladyslav id: 4D62F2A6-F248-11E8-B48F-1D18A9856A87 last_name: Kravchuk orcid: 0000-0001-9523-9089 - first_name: Clifton L. full_name: Ricana, Clifton L. last_name: Ricana - first_name: Terri D. full_name: Lyddon, Terri D. last_name: Lyddon - first_name: Arianna M. full_name: Broad, Arianna M. last_name: Broad - first_name: J. Ryan full_name: Feathers, J. Ryan last_name: Feathers - first_name: Marc C. full_name: Johnson, Marc C. last_name: Johnson - first_name: Volker M. full_name: Vogt, Volker M. last_name: Vogt - first_name: Juan R. full_name: Perilla, Juan R. last_name: Perilla - first_name: John A. G. full_name: Briggs, John A. G. last_name: Briggs - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 citation: ama: Dick RA, Xu C, Morado DR, et al. Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. PLOS Pathogens. 2020;16(1). doi:10.1371/journal.ppat.1008277 apa: Dick, R. A., Xu, C., Morado, D. R., Kravchuk, V., Ricana, C. L., Lyddon, T. D., … Schur, F. K. (2020). Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. PLOS Pathogens. Public Library of Science. https://doi.org/10.1371/journal.ppat.1008277 chicago: Dick, Robert A., Chaoyi Xu, Dustin R. Morado, Vladyslav Kravchuk, Clifton L. Ricana, Terri D. Lyddon, Arianna M. Broad, et al. “Structures of Immature EIAV Gag Lattices Reveal a Conserved Role for IP6 in Lentivirus Assembly.” PLOS Pathogens. Public Library of Science, 2020. https://doi.org/10.1371/journal.ppat.1008277. ieee: R. A. Dick et al., “Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly,” PLOS Pathogens, vol. 16, no. 1. Public Library of Science, 2020. ista: Dick RA, Xu C, Morado DR, Kravchuk V, Ricana CL, Lyddon TD, Broad AM, Feathers JR, Johnson MC, Vogt VM, Perilla JR, Briggs JAG, Schur FK. 2020. Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. PLOS Pathogens. 16(1), e1008277. mla: Dick, Robert A., et al. “Structures of Immature EIAV Gag Lattices Reveal a Conserved Role for IP6 in Lentivirus Assembly.” PLOS Pathogens, vol. 16, no. 1, e1008277, Public Library of Science, 2020, doi:10.1371/journal.ppat.1008277. short: R.A. Dick, C. Xu, D.R. Morado, V. Kravchuk, C.L. Ricana, T.D. Lyddon, A.M. Broad, J.R. Feathers, M.C. Johnson, V.M. Vogt, J.R. Perilla, J.A.G. Briggs, F.K. Schur, PLOS Pathogens 16 (2020). date_created: 2020-02-06T18:47:17Z date_published: 2020-01-27T00:00:00Z date_updated: 2023-10-17T12:29:34Z day: '27' ddc: - '570' department: - _id: FlSc doi: 10.1371/journal.ppat.1008277 external_id: isi: - '000510746400010' pmid: - '31986188' file: - access_level: open_access checksum: a297f54d1fef0efe4789ca00f37f241e content_type: application/pdf creator: dernst date_created: 2020-02-11T10:07:28Z date_updated: 2020-07-14T12:47:59Z file_id: '7484' file_name: 2020_PLOSPatho_Dick.pdf file_size: 4551246 relation: main_file file_date_updated: 2020-07-14T12:47:59Z has_accepted_license: '1' intvolume: ' 16' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26736D6A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31445 name: Structural conservation and diversity in retroviral capsid publication: PLOS Pathogens publication_identifier: issn: - 1553-7374 publication_status: published publisher: Public Library of Science quality_controlled: '1' related_material: record: - id: '9723' relation: research_data status: deleted scopus_import: '1' status: public title: Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2020' ... --- _id: '7212' abstract: - lang: eng text: The fixation probability of a single mutant invading a population of residents is among the most widely-studied quantities in evolutionary dynamics. Amplifiers of natural selection are population structures that increase the fixation probability of advantageous mutants, compared to well-mixed populations. Extensive studies have shown that many amplifiers exist for the Birth-death Moran process, some of them substantially increasing the fixation probability or even guaranteeing fixation in the limit of large population size. On the other hand, no amplifiers are known for the death-Birth Moran process, and computer-assisted exhaustive searches have failed to discover amplification. In this work we resolve this disparity, by showing that any amplification under death-Birth updating is necessarily bounded and transient. Our boundedness result states that even if a population structure does amplify selection, the resulting fixation probability is close to that of the well-mixed population. Our transience result states that for any population structure there exists a threshold r⋆ such that the population structure ceases to amplify selection if the mutant fitness advantage r is larger than r⋆. Finally, we also extend the above results to δ-death-Birth updating, which is a combination of Birth-death and death-Birth updating. On the positive side, we identify population structures that maintain amplification for a wide range of values r and δ. These results demonstrate that amplification of natural selection depends on the specific mechanisms of the evolutionary process. article_number: e1007494 article_processing_charge: No article_type: original author: - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin A. full_name: Nowak, Martin A. last_name: Nowak citation: ama: Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. Limits on amplifiers of natural selection under death-Birth updating. PLoS computational biology. 2020;16. doi:10.1371/journal.pcbi.1007494 apa: Tkadlec, J., Pavlogiannis, A., Chatterjee, K., & Nowak, M. A. (2020). Limits on amplifiers of natural selection under death-Birth updating. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1007494 chicago: Tkadlec, Josef, Andreas Pavlogiannis, Krishnendu Chatterjee, and Martin A. Nowak. “Limits on Amplifiers of Natural Selection under Death-Birth Updating.” PLoS Computational Biology. Public Library of Science, 2020. https://doi.org/10.1371/journal.pcbi.1007494. ieee: J. Tkadlec, A. Pavlogiannis, K. Chatterjee, and M. A. Nowak, “Limits on amplifiers of natural selection under death-Birth updating,” PLoS computational biology, vol. 16. Public Library of Science, 2020. ista: Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. 2020. Limits on amplifiers of natural selection under death-Birth updating. PLoS computational biology. 16, e1007494. mla: Tkadlec, Josef, et al. “Limits on Amplifiers of Natural Selection under Death-Birth Updating.” PLoS Computational Biology, vol. 16, e1007494, Public Library of Science, 2020, doi:10.1371/journal.pcbi.1007494. short: J. Tkadlec, A. Pavlogiannis, K. Chatterjee, M.A. Nowak, PLoS Computational Biology 16 (2020). date_created: 2019-12-23T13:45:11Z date_published: 2020-01-17T00:00:00Z date_updated: 2023-10-17T12:29:47Z day: '17' ddc: - '000' department: - _id: KrCh doi: 10.1371/journal.pcbi.1007494 ec_funded: 1 external_id: arxiv: - '1906.02785' isi: - '000510916500025' file: - access_level: open_access checksum: ce32ee2d2f53aed832f78bbd47e882df content_type: application/pdf creator: dernst date_created: 2020-02-03T07:32:42Z date_updated: 2020-07-14T12:47:53Z file_id: '7441' file_name: 2020_PlosCompBio_Tkadlec.pdf file_size: 1817531 relation: main_file file_date_updated: 2020-07-14T12:47:53Z has_accepted_license: '1' intvolume: ' 16' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory publication: PLoS computational biology publication_identifier: eissn: - '15537358' publication_status: published publisher: Public Library of Science quality_controlled: '1' related_material: record: - id: '7196' relation: part_of_dissertation status: public scopus_import: '1' status: public title: Limits on amplifiers of natural selection under death-Birth updating tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2020' ... --- _id: '7196' abstract: - lang: eng text: 'In this thesis we study certain mathematical aspects of evolution. The two primary forces that drive an evolutionary process are mutation and selection. Mutation generates new variants in a population. Selection chooses among the variants depending on the reproductive rates of individuals. Evolutionary processes are intrinsically random – a new mutation that is initially present in the population at low frequency can go extinct, even if it confers a reproductive advantage. The overall rate of evolution is largely determined by two quantities: the probability that an invading advantageous mutation spreads through the population (called fixation probability) and the time until it does so (called fixation time). Both those quantities crucially depend not only on the strength of the invading mutation but also on the population structure. In this thesis, we aim to understand how the underlying population structure affects the overall rate of evolution. Specifically, we study population structures that increase the fixation probability of advantageous mutants (called amplifiers of selection). Broadly speaking, our results are of three different types: We present various strong amplifiers, we identify regimes under which only limited amplification is feasible, and we propose population structures that provide different tradeoffs between high fixation probability and short fixation time.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 citation: ama: Tkadlec J. A role of graphs in evolutionary processes. 2020. doi:10.15479/AT:ISTA:7196 apa: Tkadlec, J. (2020). A role of graphs in evolutionary processes. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7196 chicago: Tkadlec, Josef. “A Role of Graphs in Evolutionary Processes.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7196. ieee: J. Tkadlec, “A role of graphs in evolutionary processes,” Institute of Science and Technology Austria, 2020. ista: Tkadlec J. 2020. A role of graphs in evolutionary processes. Institute of Science and Technology Austria. mla: Tkadlec, Josef. A Role of Graphs in Evolutionary Processes. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7196. short: J. Tkadlec, A Role of Graphs in Evolutionary Processes, Institute of Science and Technology Austria, 2020. date_created: 2019-12-20T12:26:36Z date_published: 2020-01-12T00:00:00Z date_updated: 2023-10-17T12:29:46Z day: '12' ddc: - '519' degree_awarded: PhD department: - _id: KrCh - _id: GradSch doi: 10.15479/AT:ISTA:7196 file: - access_level: closed checksum: 451f8e64b0eb26bf297644ac72bfcbe9 content_type: application/zip creator: jtkadlec date_created: 2020-01-12T11:49:49Z date_updated: 2020-07-14T12:47:52Z file_id: '7255' file_name: thesis.zip file_size: 21100497 relation: source_file - access_level: open_access checksum: d8c44cbc4f939c49a8efc9d4b8bb3985 content_type: application/pdf creator: dernst date_created: 2020-01-28T07:32:42Z date_updated: 2020-07-14T12:47:52Z file_id: '7367' file_name: 2020_Tkadlec_Thesis.pdf file_size: 11670983 relation: main_file file_date_updated: 2020-07-14T12:47:52Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '144' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7210' relation: dissertation_contains status: public - id: '5751' relation: dissertation_contains status: public - id: '7212' relation: dissertation_contains status: public status: public supervisor: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X title: A role of graphs in evolutionary processes type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '9198' abstract: - lang: eng text: "The optimization of multilayer neural networks typically leads to a solution\r\nwith zero training error, yet the landscape can exhibit spurious local minima\r\nand the minima can be disconnected. In this paper, we shed light on this\r\nphenomenon: we show that the combination of stochastic gradient descent (SGD)\r\nand over-parameterization makes the landscape of multilayer neural networks\r\napproximately connected and thus more favorable to optimization. More\r\nspecifically, we prove that SGD solutions are connected via a piecewise linear\r\npath, and the increase in loss along this path vanishes as the number of\r\nneurons grows large. This result is a consequence of the fact that the\r\nparameters found by SGD are increasingly dropout stable as the network becomes\r\nwider. We show that, if we remove part of the neurons (and suitably rescale the\r\nremaining ones), the change in loss is independent of the total number of\r\nneurons, and it depends only on how many neurons are left. Our results exhibit\r\na mild dependence on the input dimension: they are dimension-free for two-layer\r\nnetworks and depend linearly on the dimension for multilayer networks. We\r\nvalidate our theoretical findings with numerical experiments for different\r\narchitectures and classification tasks." acknowledgement: M. Mondelli was partially supported by the 2019 LopezLoreta Prize. The authors thank Phan-Minh Nguyen for helpful discussions and the IST Distributed Algorithms and Systems Lab for providing computational resources. article_processing_charge: No author: - first_name: Alexander full_name: Shevchenko, Alexander last_name: Shevchenko - first_name: Marco full_name: Mondelli, Marco id: 27EB676C-8706-11E9-9510-7717E6697425 last_name: Mondelli orcid: 0000-0002-3242-7020 citation: ama: 'Shevchenko A, Mondelli M. Landscape connectivity and dropout stability of SGD solutions for over-parameterized neural networks. In: Proceedings of the 37th International Conference on Machine Learning. Vol 119. ML Research Press; 2020:8773-8784.' apa: Shevchenko, A., & Mondelli, M. (2020). Landscape connectivity and dropout stability of SGD solutions for over-parameterized neural networks. In Proceedings of the 37th International Conference on Machine Learning (Vol. 119, pp. 8773–8784). ML Research Press. chicago: Shevchenko, Alexander, and Marco Mondelli. “Landscape Connectivity and Dropout Stability of SGD Solutions for Over-Parameterized Neural Networks.” In Proceedings of the 37th International Conference on Machine Learning, 119:8773–84. ML Research Press, 2020. ieee: A. Shevchenko and M. Mondelli, “Landscape connectivity and dropout stability of SGD solutions for over-parameterized neural networks,” in Proceedings of the 37th International Conference on Machine Learning, 2020, vol. 119, pp. 8773–8784. ista: Shevchenko A, Mondelli M. 2020. Landscape connectivity and dropout stability of SGD solutions for over-parameterized neural networks. Proceedings of the 37th International Conference on Machine Learning. vol. 119, 8773–8784. mla: Shevchenko, Alexander, and Marco Mondelli. “Landscape Connectivity and Dropout Stability of SGD Solutions for Over-Parameterized Neural Networks.” Proceedings of the 37th International Conference on Machine Learning, vol. 119, ML Research Press, 2020, pp. 8773–84. short: A. Shevchenko, M. Mondelli, in:, Proceedings of the 37th International Conference on Machine Learning, ML Research Press, 2020, pp. 8773–8784. date_created: 2021-02-25T09:36:22Z date_published: 2020-07-13T00:00:00Z date_updated: 2023-10-17T12:43:19Z day: '13' ddc: - '000' department: - _id: MaMo external_id: arxiv: - '1912.10095' file: - access_level: open_access checksum: f042c8d4316bd87c6361aa76f1fbdbbe content_type: application/pdf creator: dernst date_created: 2021-03-02T15:38:14Z date_updated: 2021-03-02T15:38:14Z file_id: '9217' file_name: 2020_PMLR_Shevchenko.pdf file_size: 5336380 relation: main_file success: 1 file_date_updated: 2021-03-02T15:38:14Z has_accepted_license: '1' intvolume: ' 119' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 8773-8784 project: - _id: 059876FA-7A3F-11EA-A408-12923DDC885E name: Prix Lopez-Loretta 2019 - Marco Mondelli publication: Proceedings of the 37th International Conference on Machine Learning publication_status: published publisher: ML Research Press quality_controlled: '1' status: public title: Landscape connectivity and dropout stability of SGD solutions for over-parameterized neural networks type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 119 year: '2020' ... --- _id: '9157' abstract: - lang: eng text: Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted mean curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1], this yields the derivative of the morphometric expression of the solvation free energy. acknowledgement: "The authors of this paper thank Roland Roth for suggesting the analysis of the weighted\r\ncurvature derivatives for the purpose of improving molecular dynamics simulations and for his continued encouragement. They also thank Patrice Koehl for the implementation of the formulas and for his encouragement and advise along the road. Finally, they thank two anonymous reviewers for their constructive criticism.\r\nThis project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 78818 Alpha). It is also partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF)." article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: Akopyan A, Edelsbrunner H. The weighted mean curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. 2020;8(1):51-67. doi:10.1515/cmb-2020-0100 apa: Akopyan, A., & Edelsbrunner, H. (2020). The weighted mean curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. De Gruyter. https://doi.org/10.1515/cmb-2020-0100 chicago: Akopyan, Arseniy, and Herbert Edelsbrunner. “The Weighted Mean Curvature Derivative of a Space-Filling Diagram.” Computational and Mathematical Biophysics. De Gruyter, 2020. https://doi.org/10.1515/cmb-2020-0100. ieee: A. Akopyan and H. Edelsbrunner, “The weighted mean curvature derivative of a space-filling diagram,” Computational and Mathematical Biophysics, vol. 8, no. 1. De Gruyter, pp. 51–67, 2020. ista: Akopyan A, Edelsbrunner H. 2020. The weighted mean curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. 8(1), 51–67. mla: Akopyan, Arseniy, and Herbert Edelsbrunner. “The Weighted Mean Curvature Derivative of a Space-Filling Diagram.” Computational and Mathematical Biophysics, vol. 8, no. 1, De Gruyter, 2020, pp. 51–67, doi:10.1515/cmb-2020-0100. short: A. Akopyan, H. Edelsbrunner, Computational and Mathematical Biophysics 8 (2020) 51–67. date_created: 2021-02-17T15:13:01Z date_published: 2020-06-20T00:00:00Z date_updated: 2023-10-17T12:34:51Z day: '20' ddc: - '510' department: - _id: HeEd doi: 10.1515/cmb-2020-0100 ec_funded: 1 file: - access_level: open_access checksum: cea41de9937d07a3b927d71ee8b4e432 content_type: application/pdf creator: dernst date_created: 2021-02-19T13:56:24Z date_updated: 2021-02-19T13:56:24Z file_id: '9171' file_name: 2020_CompMathBiophysics_Akopyan2.pdf file_size: 562359 relation: main_file success: 1 file_date_updated: 2021-02-19T13:56:24Z has_accepted_license: '1' intvolume: ' 8' issue: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 51-67 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Computational and Mathematical Biophysics publication_identifier: issn: - 2544-7297 publication_status: published publisher: De Gruyter quality_controlled: '1' status: public title: The weighted mean curvature derivative of a space-filling diagram tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2020' ... --- _id: '9156' abstract: - lang: eng text: The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy. acknowledgement: "The authors of this paper thank Roland Roth for suggesting the analysis of theweighted\r\ncurvature derivatives for the purpose of improving molecular dynamics simulations. They also thank Patrice Koehl for the implementation of the formulas and for his encouragement and advise along the road. Finally, they thank two anonymous reviewers for their constructive criticism.\r\nThis project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 78818 Alpha). It is also partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF)." article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: Akopyan A, Edelsbrunner H. The weighted Gaussian curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. 2020;8(1):74-88. doi:10.1515/cmb-2020-0101 apa: Akopyan, A., & Edelsbrunner, H. (2020). The weighted Gaussian curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. De Gruyter. https://doi.org/10.1515/cmb-2020-0101 chicago: Akopyan, Arseniy, and Herbert Edelsbrunner. “The Weighted Gaussian Curvature Derivative of a Space-Filling Diagram.” Computational and Mathematical Biophysics. De Gruyter, 2020. https://doi.org/10.1515/cmb-2020-0101. ieee: A. Akopyan and H. Edelsbrunner, “The weighted Gaussian curvature derivative of a space-filling diagram,” Computational and Mathematical Biophysics, vol. 8, no. 1. De Gruyter, pp. 74–88, 2020. ista: Akopyan A, Edelsbrunner H. 2020. The weighted Gaussian curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. 8(1), 74–88. mla: Akopyan, Arseniy, and Herbert Edelsbrunner. “The Weighted Gaussian Curvature Derivative of a Space-Filling Diagram.” Computational and Mathematical Biophysics, vol. 8, no. 1, De Gruyter, 2020, pp. 74–88, doi:10.1515/cmb-2020-0101. short: A. Akopyan, H. Edelsbrunner, Computational and Mathematical Biophysics 8 (2020) 74–88. date_created: 2021-02-17T15:12:44Z date_published: 2020-07-21T00:00:00Z date_updated: 2023-10-17T12:35:10Z day: '21' ddc: - '510' department: - _id: HeEd doi: 10.1515/cmb-2020-0101 ec_funded: 1 external_id: arxiv: - '1908.06777' file: - access_level: open_access checksum: ca43a7440834eab6bbea29c59b56ef3a content_type: application/pdf creator: dernst date_created: 2021-02-19T13:33:19Z date_updated: 2021-02-19T13:33:19Z file_id: '9170' file_name: 2020_CompMathBiophysics_Akopyan.pdf file_size: 707452 relation: main_file success: 1 file_date_updated: 2021-02-19T13:33:19Z has_accepted_license: '1' intvolume: ' 8' issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 74-88 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Computational and Mathematical Biophysics publication_identifier: issn: - 2544-7297 publication_status: published publisher: De Gruyter quality_controlled: '1' status: public title: The weighted Gaussian curvature derivative of a space-filling diagram tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2020' ... --- _id: '8973' abstract: - lang: eng text: We consider the symmetric simple exclusion process in Zd with quenched bounded dynamic random conductances and prove its hydrodynamic limit in path space. The main tool is the connection, due to the self-duality of the process, between the invariance principle for single particles starting from all points and the macroscopic behavior of the density field. While the hydrodynamic limit at fixed macroscopic times is obtained via a generalization to the time-inhomogeneous context of the strategy introduced in [41], in order to prove tightness for the sequence of empirical density fields we develop a new criterion based on the notion of uniform conditional stochastic continuity, following [50]. In conclusion, we show that uniform elliptic dynamic conductances provide an example of environments in which the so-called arbitrary starting point invariance principle may be derived from the invariance principle of a single particle starting from the origin. Therefore, our hydrodynamics result applies to the examples of quenched environments considered in, e.g., [1], [3], [6] in combination with the hypothesis of uniform ellipticity. acknowledgement: "We warmly thank S.R.S. Varadhan for many enlightening discussions at an early stage of this work. We are indebted to Francesca Collet for fruitful discussions and constant support all throughout this work. We thank Simone Floreani\r\nand Alberto Chiarini for helpful conversations on the final part of this paper as well as both referees for their careful reading and for raising relevant issues on some weak points contained in a previous version of this manuscript; we believe this helped us to improve it.\r\nPart of this work was done during the authors’ stay at the Institut Henri Poincaré (UMS 5208 CNRS-Sorbonne Université) – Centre Emile Borel during the trimester Stochastic Dynamics Out of Equilibrium. The authors thank this institution for hospitality and support (through LabEx CARMIN, ANR-10-LABX-59-01). F.S. thanks laboratoire\r\nMAP5 of Université de Paris, and E.S. thanks Delft University, for financial support and hospitality. F.S. acknowledges NWO for financial support via the TOP1 grant 613.001.552 as well as funding from the European Union’s Horizon 2020 research and innovation programme under the Marie-Skłodowska-Curie grant agreement No. 754411. This research has been conducted within the FP2M federation (CNRS FR 2036)." article_number: '138' article_processing_charge: No article_type: original author: - first_name: Frank full_name: Redig, Frank last_name: Redig - first_name: Ellen full_name: Saada, Ellen last_name: Saada - first_name: Federico full_name: Sau, Federico id: E1836206-9F16-11E9-8814-AEFDE5697425 last_name: Sau citation: ama: 'Redig F, Saada E, Sau F. Symmetric simple exclusion process in dynamic environment: Hydrodynamics. Electronic Journal of Probability. 2020;25. doi:10.1214/20-EJP536' apa: 'Redig, F., Saada, E., & Sau, F. (2020). Symmetric simple exclusion process in dynamic environment: Hydrodynamics. Electronic Journal of Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/20-EJP536' chicago: 'Redig, Frank, Ellen Saada, and Federico Sau. “Symmetric Simple Exclusion Process in Dynamic Environment: Hydrodynamics.” Electronic Journal of Probability. Institute of Mathematical Statistics, 2020. https://doi.org/10.1214/20-EJP536.' ieee: 'F. Redig, E. Saada, and F. Sau, “Symmetric simple exclusion process in dynamic environment: Hydrodynamics,” Electronic Journal of Probability, vol. 25. Institute of Mathematical Statistics, 2020.' ista: 'Redig F, Saada E, Sau F. 2020. Symmetric simple exclusion process in dynamic environment: Hydrodynamics. Electronic Journal of Probability. 25, 138.' mla: 'Redig, Frank, et al. “Symmetric Simple Exclusion Process in Dynamic Environment: Hydrodynamics.” Electronic Journal of Probability, vol. 25, 138, Institute of Mathematical Statistics, 2020, doi:10.1214/20-EJP536.' short: F. Redig, E. Saada, F. Sau, Electronic Journal of Probability 25 (2020). date_created: 2020-12-27T23:01:17Z date_published: 2020-10-21T00:00:00Z date_updated: 2023-10-17T12:51:56Z day: '21' ddc: - '510' department: - _id: JaMa doi: 10.1214/20-EJP536 ec_funded: 1 external_id: arxiv: - '1811.01366' isi: - '000591737500001' file: - access_level: open_access checksum: d75359b9814e78d57c0a481b7cde3751 content_type: application/pdf creator: dernst date_created: 2020-12-28T08:24:08Z date_updated: 2020-12-28T08:24:08Z file_id: '8976' file_name: 2020_ElectronJProbab_Redig.pdf file_size: 696653 relation: main_file success: 1 file_date_updated: 2020-12-28T08:24:08Z has_accepted_license: '1' intvolume: ' 25' isi: 1 language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Electronic Journal of Probability publication_identifier: eissn: - 1083-6489 publication_status: published publisher: ' Institute of Mathematical Statistics' quality_controlled: '1' scopus_import: '1' status: public title: 'Symmetric simple exclusion process in dynamic environment: Hydrodynamics' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2020' ... --- _id: '179' abstract: - lang: eng text: An asymptotic formula is established for the number of rational points of bounded anticanonical height which lie on a certain Zariski dense subset of the biprojective hypersurface x1y21+⋯+x4y24=0 in ℙ3×ℙ3. This confirms the modified Manin conjecture for this variety, in which the removal of a thin set of rational points is allowed. article_processing_charge: No article_type: original author: - first_name: Timothy D full_name: Browning, Timothy D id: 35827D50-F248-11E8-B48F-1D18A9856A87 last_name: Browning orcid: 0000-0002-8314-0177 - first_name: Roger full_name: Heath Brown, Roger last_name: Heath Brown citation: ama: Browning TD, Heath Brown R. Density of rational points on a quadric bundle in ℙ3×ℙ3. Duke Mathematical Journal. 2020;169(16):3099-3165. doi:10.1215/00127094-2020-0031 apa: Browning, T. D., & Heath Brown, R. (2020). Density of rational points on a quadric bundle in ℙ3×ℙ3. Duke Mathematical Journal. Duke University Press. https://doi.org/10.1215/00127094-2020-0031 chicago: Browning, Timothy D, and Roger Heath Brown. “Density of Rational Points on a Quadric Bundle in ℙ3×ℙ3.” Duke Mathematical Journal. Duke University Press, 2020. https://doi.org/10.1215/00127094-2020-0031. ieee: T. D. Browning and R. Heath Brown, “Density of rational points on a quadric bundle in ℙ3×ℙ3,” Duke Mathematical Journal, vol. 169, no. 16. Duke University Press, pp. 3099–3165, 2020. ista: Browning TD, Heath Brown R. 2020. Density of rational points on a quadric bundle in ℙ3×ℙ3. Duke Mathematical Journal. 169(16), 3099–3165. mla: Browning, Timothy D., and Roger Heath Brown. “Density of Rational Points on a Quadric Bundle in ℙ3×ℙ3.” Duke Mathematical Journal, vol. 169, no. 16, Duke University Press, 2020, pp. 3099–165, doi:10.1215/00127094-2020-0031. short: T.D. Browning, R. Heath Brown, Duke Mathematical Journal 169 (2020) 3099–3165. date_created: 2018-12-11T11:45:02Z date_published: 2020-09-10T00:00:00Z date_updated: 2023-10-17T12:51:10Z day: '10' department: - _id: TiBr doi: 10.1215/00127094-2020-0031 external_id: arxiv: - '1805.10715' isi: - '000582676300002' intvolume: ' 169' isi: 1 issue: '16' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1805.10715 month: '09' oa: 1 oa_version: Preprint page: 3099-3165 publication: Duke Mathematical Journal publication_identifier: issn: - 0012-7094 publication_status: published publisher: Duke University Press quality_controlled: '1' status: public title: Density of rational points on a quadric bundle in ℙ3×ℙ3 type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 169 year: '2020' ... --- _id: '9814' abstract: - lang: eng text: Data and mathematica notebooks for plotting figures from Language learning with communication between learners article_processing_charge: No author: - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Ibsen-Jensen R, Tkadlec J, Chatterjee K, Nowak M. Data and mathematica notebooks for plotting figures from language learning with communication between learners from language acquisition with communication between learners. 2020. doi:10.6084/m9.figshare.5973013.v1 apa: Ibsen-Jensen, R., Tkadlec, J., Chatterjee, K., & Nowak, M. (2020). Data and mathematica notebooks for plotting figures from language learning with communication between learners from language acquisition with communication between learners. Royal Society. https://doi.org/10.6084/m9.figshare.5973013.v1 chicago: Ibsen-Jensen, Rasmus, Josef Tkadlec, Krishnendu Chatterjee, and Martin Nowak. “Data and Mathematica Notebooks for Plotting Figures from Language Learning with Communication between Learners from Language Acquisition with Communication between Learners.” Royal Society, 2020. https://doi.org/10.6084/m9.figshare.5973013.v1. ieee: R. Ibsen-Jensen, J. Tkadlec, K. Chatterjee, and M. Nowak, “Data and mathematica notebooks for plotting figures from language learning with communication between learners from language acquisition with communication between learners.” Royal Society, 2020. ista: Ibsen-Jensen R, Tkadlec J, Chatterjee K, Nowak M. 2020. Data and mathematica notebooks for plotting figures from language learning with communication between learners from language acquisition with communication between learners, Royal Society, 10.6084/m9.figshare.5973013.v1. mla: Ibsen-Jensen, Rasmus, et al. Data and Mathematica Notebooks for Plotting Figures from Language Learning with Communication between Learners from Language Acquisition with Communication between Learners. Royal Society, 2020, doi:10.6084/m9.figshare.5973013.v1. short: R. Ibsen-Jensen, J. Tkadlec, K. Chatterjee, M. Nowak, (2020). date_created: 2021-08-06T13:09:57Z date_published: 2020-10-15T00:00:00Z date_updated: 2023-10-18T06:36:00Z day: '15' department: - _id: KrCh doi: 10.6084/m9.figshare.5973013.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.5973013.v1 month: '10' oa: 1 oa_version: Published Version publisher: Royal Society related_material: record: - id: '198' relation: used_in_publication status: public status: public title: Data and mathematica notebooks for plotting figures from language learning with communication between learners from language acquisition with communication between learners type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '8285' abstract: - lang: eng text: We demonstrate the utility of optical cavity generated spin-squeezed states in free space atomic fountain clocks in ensembles of 390 000 87Rb atoms. Fluorescence imaging, correlated to an initial quantum nondemolition measurement, is used for population spectroscopy after the atoms are released from a confining lattice. For a free fall time of 4 milliseconds, we resolve a single-shot phase sensitivity of 814(61) microradians, which is 5.8(0.6) decibels (dB) below the quantum projection limit. We observe that this squeezing is preserved as the cloud expands to a roughly 200  μm radius and falls roughly 300  μm in free space. Ramsey spectroscopy with 240 000 atoms at a 3.6 ms Ramsey time results in a single-shot fractional frequency stability of 8.4(0.2)×10−12, 3.8(0.2) dB below the quantum projection limit. The sensitivity and stability are limited by the technical noise in the fluorescence detection protocol and the microwave system, respectively. acknowledgement: This work is supported by the Office of Naval Research (N00014-16-1-2927- A00003), Vannevar Bush Faculty Fellowship (N00014-16-1-2812- P00005), Department of Energy (DE-SC0019174- 0001), and Defense Threat Reduction Agency (HDTRA1-15-1-0017- P00005). article_number: '043202' article_processing_charge: No article_type: original author: - first_name: Benjamin K. full_name: Malia, Benjamin K. last_name: Malia - first_name: Julián full_name: Martínez-Rincón, Julián last_name: Martínez-Rincón - first_name: Yunfan full_name: Wu, Yunfan last_name: Wu - first_name: Onur full_name: Hosten, Onur id: 4C02D85E-F248-11E8-B48F-1D18A9856A87 last_name: Hosten orcid: 0000-0002-2031-204X - first_name: Mark A. full_name: Kasevich, Mark A. last_name: Kasevich citation: ama: Malia BK, Martínez-Rincón J, Wu Y, Hosten O, Kasevich MA. Free space Ramsey spectroscopy in rubidium with noise below the quantum projection limit. Physical Review Letters. 2020;125(4). doi:10.1103/PhysRevLett.125.043202 apa: Malia, B. K., Martínez-Rincón, J., Wu, Y., Hosten, O., & Kasevich, M. A. (2020). Free space Ramsey spectroscopy in rubidium with noise below the quantum projection limit. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.125.043202 chicago: Malia, Benjamin K., Julián Martínez-Rincón, Yunfan Wu, Onur Hosten, and Mark A. Kasevich. “Free Space Ramsey Spectroscopy in Rubidium with Noise below the Quantum Projection Limit.” Physical Review Letters. American Physical Society, 2020. https://doi.org/10.1103/PhysRevLett.125.043202. ieee: B. K. Malia, J. Martínez-Rincón, Y. Wu, O. Hosten, and M. A. Kasevich, “Free space Ramsey spectroscopy in rubidium with noise below the quantum projection limit,” Physical Review Letters, vol. 125, no. 4. American Physical Society, 2020. ista: Malia BK, Martínez-Rincón J, Wu Y, Hosten O, Kasevich MA. 2020. Free space Ramsey spectroscopy in rubidium with noise below the quantum projection limit. Physical Review Letters. 125(4), 043202. mla: Malia, Benjamin K., et al. “Free Space Ramsey Spectroscopy in Rubidium with Noise below the Quantum Projection Limit.” Physical Review Letters, vol. 125, no. 4, 043202, American Physical Society, 2020, doi:10.1103/PhysRevLett.125.043202. short: B.K. Malia, J. Martínez-Rincón, Y. Wu, O. Hosten, M.A. Kasevich, Physical Review Letters 125 (2020). date_created: 2020-08-24T06:24:04Z date_published: 2020-07-24T00:00:00Z date_updated: 2023-10-18T08:38:35Z day: '24' department: - _id: OnHo doi: 10.1103/PhysRevLett.125.043202 external_id: arxiv: - '1912.10218' isi: - '000552227400008' pmid: - '32794788' intvolume: ' 125' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.10218 month: '07' oa: 1 oa_version: Preprint pmid: 1 publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Free space Ramsey spectroscopy in rubidium with noise below the quantum projection limit type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 125 year: '2020' ... --- _id: '10328' abstract: - lang: eng text: We discus noise channels in coherent electro-optic up-conversion between microwave and optical fields, in particular due to optical heating. We also report on a novel configuration, which promises to be flexible and highly efficient. alternative_title: - OSA Technical Digest article_number: QTu8A.1 article_processing_charge: No author: - first_name: Nicholas J. full_name: Lambert, Nicholas J. last_name: Lambert - first_name: Sonia full_name: Mobassem, Sonia last_name: Mobassem - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Harald G.L. full_name: Schwefel, Harald G.L. last_name: Schwefel citation: ama: 'Lambert NJ, Mobassem S, Rueda Sanchez AR, Schwefel HGL. New designs and noise channels in electro-optic microwave to optical up-conversion. In: OSA Quantum 2.0 Conference. Optica Publishing Group; 2020. doi:10.1364/QUANTUM.2020.QTu8A.1' apa: 'Lambert, N. J., Mobassem, S., Rueda Sanchez, A. R., & Schwefel, H. G. L. (2020). New designs and noise channels in electro-optic microwave to optical up-conversion. In OSA Quantum 2.0 Conference. Washington, DC, United States: Optica Publishing Group. https://doi.org/10.1364/QUANTUM.2020.QTu8A.1' chicago: Lambert, Nicholas J., Sonia Mobassem, Alfredo R Rueda Sanchez, and Harald G.L. Schwefel. “New Designs and Noise Channels in Electro-Optic Microwave to Optical up-Conversion.” In OSA Quantum 2.0 Conference. Optica Publishing Group, 2020. https://doi.org/10.1364/QUANTUM.2020.QTu8A.1. ieee: N. J. Lambert, S. Mobassem, A. R. Rueda Sanchez, and H. G. L. Schwefel, “New designs and noise channels in electro-optic microwave to optical up-conversion,” in OSA Quantum 2.0 Conference, Washington, DC, United States, 2020. ista: 'Lambert NJ, Mobassem S, Rueda Sanchez AR, Schwefel HGL. 2020. New designs and noise channels in electro-optic microwave to optical up-conversion. OSA Quantum 2.0 Conference. OSA: Optical Society of America, OSA Technical Digest, , QTu8A.1.' mla: Lambert, Nicholas J., et al. “New Designs and Noise Channels in Electro-Optic Microwave to Optical up-Conversion.” OSA Quantum 2.0 Conference, QTu8A.1, Optica Publishing Group, 2020, doi:10.1364/QUANTUM.2020.QTu8A.1. short: N.J. Lambert, S. Mobassem, A.R. Rueda Sanchez, H.G.L. Schwefel, in:, OSA Quantum 2.0 Conference, Optica Publishing Group, 2020. conference: end_date: 2020-09-17 location: Washington, DC, United States name: 'OSA: Optical Society of America' start_date: 2020-09-14 date_created: 2021-11-21T23:01:31Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-10-18T08:32:34Z day: '01' department: - _id: JoFi doi: 10.1364/QUANTUM.2020.QTu8A.1 language: - iso: eng month: '01' oa_version: None publication: OSA Quantum 2.0 Conference publication_identifier: isbn: - 9-781-5575-2820-9 publication_status: published publisher: Optica Publishing Group quality_controlled: '1' scopus_import: '1' status: public title: New designs and noise channels in electro-optic microwave to optical up-conversion type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '9633' abstract: - lang: eng text: The search for biologically faithful synaptic plasticity rules has resulted in a large body of models. They are usually inspired by – and fitted to – experimental data, but they rarely produce neural dynamics that serve complex functions. These failures suggest that current plasticity models are still under-constrained by existing data. Here, we present an alternative approach that uses meta-learning to discover plausible synaptic plasticity rules. Instead of experimental data, the rules are constrained by the functions they implement and the structure they are meant to produce. Briefly, we parameterize synaptic plasticity rules by a Volterra expansion and then use supervised learning methods (gradient descent or evolutionary strategies) to minimize a problem-dependent loss function that quantifies how effectively a candidate plasticity rule transforms an initially random network into one with the desired function. We first validate our approach by re-discovering previously described plasticity rules, starting at the single-neuron level and “Oja’s rule”, a simple Hebbian plasticity rule that captures the direction of most variability of inputs to a neuron (i.e., the first principal component). We expand the problem to the network level and ask the framework to find Oja’s rule together with an anti-Hebbian rule such that an initially random two-layer firing-rate network will recover several principal components of the input space after learning. Next, we move to networks of integrate-and-fire neurons with plastic inhibitory afferents. We train for rules that achieve a target firing rate by countering tuned excitation. Our algorithm discovers a specific subset of the manifold of rules that can solve this task. Our work is a proof of principle of an automated and unbiased approach to unveil synaptic plasticity rules that obey biological constraints and can solve complex functions. acknowledgement: We would like to thank Chaitanya Chintaluri, Georgia Christodoulou, Bill Podlaski and Merima Šabanovic for useful discussions and comments. This work was supported by a Wellcome Trust ´ Senior Research Fellowship (214316/Z/18/Z), a BBSRC grant (BB/N019512/1), an ERC consolidator Grant (SYNAPSEEK), a Leverhulme Trust Project Grant (RPG-2016-446), and funding from École Polytechnique, Paris. article_processing_charge: No author: - first_name: Basile J full_name: Confavreux, Basile J id: C7610134-B532-11EA-BD9F-F5753DDC885E last_name: Confavreux - first_name: Friedemann full_name: Zenke, Friedemann last_name: Zenke - first_name: Everton J. full_name: Agnes, Everton J. last_name: Agnes - first_name: Timothy full_name: Lillicrap, Timothy last_name: Lillicrap - first_name: Tim P full_name: Vogels, Tim P id: CB6FF8D2-008F-11EA-8E08-2637E6697425 last_name: Vogels orcid: 0000-0003-3295-6181 citation: ama: 'Confavreux BJ, Zenke F, Agnes EJ, Lillicrap T, Vogels TP. A meta-learning approach to (re)discover plasticity rules that carve a desired function into a neural network. In: Advances in Neural Information Processing Systems. Vol 33. ; 2020:16398-16408.' apa: Confavreux, B. J., Zenke, F., Agnes, E. J., Lillicrap, T., & Vogels, T. P. (2020). A meta-learning approach to (re)discover plasticity rules that carve a desired function into a neural network. In Advances in Neural Information Processing Systems (Vol. 33, pp. 16398–16408). Vancouver, Canada. chicago: Confavreux, Basile J, Friedemann Zenke, Everton J. Agnes, Timothy Lillicrap, and Tim P Vogels. “A Meta-Learning Approach to (Re)Discover Plasticity Rules That Carve a Desired Function into a Neural Network.” In Advances in Neural Information Processing Systems, 33:16398–408, 2020. ieee: B. J. Confavreux, F. Zenke, E. J. Agnes, T. Lillicrap, and T. P. Vogels, “A meta-learning approach to (re)discover plasticity rules that carve a desired function into a neural network,” in Advances in Neural Information Processing Systems, Vancouver, Canada, 2020, vol. 33, pp. 16398–16408. ista: 'Confavreux BJ, Zenke F, Agnes EJ, Lillicrap T, Vogels TP. 2020. A meta-learning approach to (re)discover plasticity rules that carve a desired function into a neural network. Advances in Neural Information Processing Systems. NeurIPS: Conference on Neural Information Processing Systems vol. 33, 16398–16408.' mla: Confavreux, Basile J., et al. “A Meta-Learning Approach to (Re)Discover Plasticity Rules That Carve a Desired Function into a Neural Network.” Advances in Neural Information Processing Systems, vol. 33, 2020, pp. 16398–408. short: B.J. Confavreux, F. Zenke, E.J. Agnes, T. Lillicrap, T.P. Vogels, in:, Advances in Neural Information Processing Systems, 2020, pp. 16398–16408. conference: end_date: 2020-12-12 location: Vancouver, Canada name: 'NeurIPS: Conference on Neural Information Processing Systems' start_date: 2020-12-06 date_created: 2021-07-04T22:01:27Z date_published: 2020-12-06T00:00:00Z date_updated: 2023-10-18T09:20:55Z day: '06' department: - _id: TiVo ec_funded: 1 intvolume: ' 33' language: - iso: eng main_file_link: - open_access: '1' url: https://proceedings.neurips.cc/paper/2020/hash/bdbd5ebfde4934142c8a88e7a3796cd5-Abstract.html month: '12' oa: 1 oa_version: Published Version page: 16398-16408 project: - _id: c084a126-5a5b-11eb-8a69-d75314a70a87 grant_number: 214316/Z/18/Z name: What’s in a memory? Spatiotemporal dynamics in strongly coupled recurrent neuronal networks. - _id: 0aacfa84-070f-11eb-9043-d7eb2c709234 call_identifier: H2020 grant_number: '819603' name: Learning the shape of synaptic plasticity rules for neuronal architectures and function through machine learning. publication: Advances in Neural Information Processing Systems publication_identifier: issn: - 1049-5258 publication_status: published quality_controlled: '1' related_material: link: - relation: is_continued_by url: https://doi.org/10.1101/2020.10.24.353409 record: - id: '14422' relation: dissertation_contains status: public scopus_import: '1' status: public title: A meta-learning approach to (re)discover plasticity rules that carve a desired function into a neural network type: conference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 33 year: '2020' ... --- _id: '8943' abstract: - lang: eng text: The widely used non-steroidal anti-inflammatory drugs (NSAIDs) are derivatives of the phytohormone salicylic acid (SA). SA is well known to regulate plant immunity and development, whereas there have been few reports focusing on the effects of NSAIDs in plants. Our studies here reveal that NSAIDs exhibit largely overlapping physiological activities to SA in the model plant Arabidopsis. NSAID treatments lead to shorter and agravitropic primary roots and inhibited lateral root organogenesis. Notably, in addition to the SA-like action, which in roots involves binding to the protein phosphatase 2A (PP2A), NSAIDs also exhibit PP2A-independent effects. Cell biological and biochemical analyses reveal that many NSAIDs bind directly to and inhibit the chaperone activity of TWISTED DWARF1, thereby regulating actin cytoskeleton dynamics and subsequent endosomal trafficking. Our findings uncover an unexpected bioactivity of human pharmaceuticals in plants and provide insights into the molecular mechanism underlying the cellular action of this class of anti-inflammatory compounds. acknowledged_ssus: - _id: LifeSc - _id: Bio acknowledgement: "We thank Drs. Sebastian Bednarek (University of Wisconsin-Madison), Niko Geldner (University of Lausanne), and Karin Schumacher (Heidelberg University) for kindly sharing published Arabidopsis lines; Dr. Satoshi Naramoto for the pPIN2::PIN2-GFP; pVHA-a1::VHA-a1-mRFP reporter; the staff at the Life Science Facility and Bioimaging Facility, Monika Hrtyan, and Dorota Jaworska at IST Austria for technical support; and Drs. Su Tang (Texas A&M University),\r\nMelinda Abas (BOKU), Eva Benkova´ (IST Austria), Christian Luschnig (BOKU), Bartel Vanholme (Gent University), and the Friml group for valuable discussions. The research leading to these findings was funded by the European Union’s Horizon 2020 program (ERC grant agreement no. 742985, to J.F.), the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no.\r\n291734, the Swiss National Funds (31003A_165877, to M.G.), the Ministry of Education, Youth, and Sports of the Czech Republic (project no. CZ.02.1.01/0.0/0.0/16_019/0000738, EU Operational Programme ‘‘Research, development and education and Centre for Plant Experimental Biology’’), and the EU Operational Programme Prague - Competitiveness (project no. CZ.2.16/3.1.00/21519). S.T. was funded by a European Molecular Biology Organization (EMBO) long-term postdoctoral fellowship (ALTF 723-2015). X.Z. was partly supported by a PhD scholarship from the China Scholarship Council." article_number: '108463' article_processing_charge: Yes article_type: original author: - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Martin full_name: Di Donato, Martin last_name: Di Donato - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Petr full_name: Klíma, Petr last_name: Klíma - first_name: Jie full_name: Liu, Jie last_name: Liu - first_name: Aurélien full_name: Bailly, Aurélien last_name: Bailly - first_name: Noel full_name: Ferro, Noel last_name: Ferro - first_name: Jan full_name: Petrášek, Jan last_name: Petrášek - first_name: Markus full_name: Geisler, Markus last_name: Geisler - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Tan S, Di Donato M, Glanc M, et al. Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development. Cell Reports. 2020;33(9). doi:10.1016/j.celrep.2020.108463 apa: Tan, S., Di Donato, M., Glanc, M., Zhang, X., Klíma, P., Liu, J., … Friml, J. (2020). Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development. Cell Reports. Elsevier. https://doi.org/10.1016/j.celrep.2020.108463 chicago: Tan, Shutang, Martin Di Donato, Matous Glanc, Xixi Zhang, Petr Klíma, Jie Liu, Aurélien Bailly, et al. “Non-Steroidal Anti-Inflammatory Drugs Target TWISTED DWARF1-Regulated Actin Dynamics and Auxin Transport-Mediated Plant Development.” Cell Reports. Elsevier, 2020. https://doi.org/10.1016/j.celrep.2020.108463. ieee: S. Tan et al., “Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development,” Cell Reports, vol. 33, no. 9. Elsevier, 2020. ista: Tan S, Di Donato M, Glanc M, Zhang X, Klíma P, Liu J, Bailly A, Ferro N, Petrášek J, Geisler M, Friml J. 2020. Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development. Cell Reports. 33(9), 108463. mla: Tan, Shutang, et al. “Non-Steroidal Anti-Inflammatory Drugs Target TWISTED DWARF1-Regulated Actin Dynamics and Auxin Transport-Mediated Plant Development.” Cell Reports, vol. 33, no. 9, 108463, Elsevier, 2020, doi:10.1016/j.celrep.2020.108463. short: S. Tan, M. Di Donato, M. Glanc, X. Zhang, P. Klíma, J. Liu, A. Bailly, N. Ferro, J. Petrášek, M. Geisler, J. Friml, Cell Reports 33 (2020). date_created: 2020-12-13T23:01:21Z date_published: 2020-12-01T00:00:00Z date_updated: 2023-11-16T13:03:31Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.celrep.2020.108463 ec_funded: 1 external_id: isi: - '000595658100018' pmid: - '33264621' file: - access_level: open_access checksum: ed18cba0fb48ed2e789381a54cc21904 content_type: application/pdf creator: dernst date_created: 2020-12-14T07:33:39Z date_updated: 2020-12-14T07:33:39Z file_id: '8948' file_name: 2020_CellReports_Tan.pdf file_size: 8056434 relation: main_file success: 1 file_date_updated: 2020-12-14T07:33:39Z has_accepted_license: '1' intvolume: ' 33' isi: 1 issue: '9' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 256FEF10-B435-11E9-9278-68D0E5697425 grant_number: 723-2015 name: Long Term Fellowship publication: Cell Reports publication_identifier: eissn: - '22111247' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/plants-on-aspirin/ scopus_import: '1' status: public title: Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 33 year: '2020' ... --- _id: '7932' abstract: - lang: eng text: Pulsating flows through tubular geometries are laminar provided that velocities are moderate. This in particular is also believed to apply to cardiovascular flows where inertial forces are typically too low to sustain turbulence. On the other hand, flow instabilities and fluctuating shear stresses are held responsible for a variety of cardiovascular diseases. Here we report a nonlinear instability mechanism for pulsating pipe flow that gives rise to bursts of turbulence at low flow rates. Geometrical distortions of small, yet finite, amplitude are found to excite a state consisting of helical vortices during flow deceleration. The resulting flow pattern grows rapidly in magnitude, breaks down into turbulence, and eventually returns to laminar when the flow accelerates. This scenario causes shear stress fluctuations and flow reversal during each pulsation cycle. Such unsteady conditions can adversely affect blood vessels and have been shown to promote inflammation and dysfunction of the shear stress-sensitive endothelial cell layer. article_processing_charge: No article_type: original author: - first_name: Duo full_name: Xu, Duo id: 3454D55E-F248-11E8-B48F-1D18A9856A87 last_name: Xu - first_name: Atul full_name: Varshney, Atul id: 2A2006B2-F248-11E8-B48F-1D18A9856A87 last_name: Varshney orcid: 0000-0002-3072-5999 - first_name: Xingyu full_name: Ma, Xingyu id: 34BADBA6-F248-11E8-B48F-1D18A9856A87 last_name: Ma orcid: 0000-0002-0179-9737 - first_name: Baofang full_name: Song, Baofang last_name: Song - first_name: Michael full_name: Riedl, Michael id: 3BE60946-F248-11E8-B48F-1D18A9856A87 last_name: Riedl orcid: 0000-0003-4844-6311 - first_name: Marc full_name: Avila, Marc last_name: Avila - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Xu D, Varshney A, Ma X, et al. Nonlinear hydrodynamic instability and turbulence in pulsatile flow. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(21):11233-11239. doi:10.1073/pnas.1913716117 apa: Xu, D., Varshney, A., Ma, X., Song, B., Riedl, M., Avila, M., & Hof, B. (2020). Nonlinear hydrodynamic instability and turbulence in pulsatile flow. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.1913716117 chicago: Xu, Duo, Atul Varshney, Xingyu Ma, Baofang Song, Michael Riedl, Marc Avila, and Björn Hof. “Nonlinear Hydrodynamic Instability and Turbulence in Pulsatile Flow.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2020. https://doi.org/10.1073/pnas.1913716117. ieee: D. Xu et al., “Nonlinear hydrodynamic instability and turbulence in pulsatile flow,” Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 21. National Academy of Sciences, pp. 11233–11239, 2020. ista: Xu D, Varshney A, Ma X, Song B, Riedl M, Avila M, Hof B. 2020. Nonlinear hydrodynamic instability and turbulence in pulsatile flow. Proceedings of the National Academy of Sciences of the United States of America. 117(21), 11233–11239. mla: Xu, Duo, et al. “Nonlinear Hydrodynamic Instability and Turbulence in Pulsatile Flow.” Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 21, National Academy of Sciences, 2020, pp. 11233–39, doi:10.1073/pnas.1913716117. short: D. Xu, A. Varshney, X. Ma, B. Song, M. Riedl, M. Avila, B. Hof, Proceedings of the National Academy of Sciences of the United States of America 117 (2020) 11233–11239. date_created: 2020-06-07T22:00:51Z date_published: 2020-05-26T00:00:00Z date_updated: 2023-11-30T10:55:13Z day: '26' department: - _id: BjHo doi: 10.1073/pnas.1913716117 ec_funded: 1 external_id: arxiv: - '2005.11190' isi: - '000536797100014' intvolume: ' 117' isi: 1 issue: '21' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2005.11190 month: '05' oa: 1 oa_version: Preprint page: 11233-11239 project: - _id: 238B8092-32DE-11EA-91FC-C7463DDC885E call_identifier: FWF grant_number: I04188 name: Instabilities in pulsating pipe flow of Newtonian and complex fluids - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - '10916490' issn: - '00278424' publication_status: published publisher: National Academy of Sciences quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/blood-flows-more-turbulent-than-previously-expected/ record: - id: '12726' relation: dissertation_contains status: public - id: '14530' relation: dissertation_contains status: public scopus_import: '1' status: public title: Nonlinear hydrodynamic instability and turbulence in pulsatile flow type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 117 year: '2020' ... --- _id: '14694' abstract: - lang: eng text: We study the unique solution m of the Dyson equation \( -m(z)^{-1} = z\1 - a + S[m(z)] \) on a von Neumann algebra A with the constraint Imm≥0. Here, z lies in the complex upper half-plane, a is a self-adjoint element of A and S is a positivity-preserving linear operator on A. We show that m is the Stieltjes transform of a compactly supported A-valued measure on R. Under suitable assumptions, we establish that this measure has a uniformly 1/3-Hölder continuous density with respect to the Lebesgue measure, which is supported on finitely many intervals, called bands. In fact, the density is analytic inside the bands with a square-root growth at the edges and internal cubic root cusps whenever the gap between two bands vanishes. The shape of these singularities is universal and no other singularity may occur. We give a precise asymptotic description of m near the singular points. These asymptotics generalize the analysis at the regular edges given in the companion paper on the Tracy-Widom universality for the edge eigenvalue statistics for correlated random matrices [the first author et al., Ann. Probab. 48, No. 2, 963--1001 (2020; Zbl 1434.60017)] and they play a key role in the proof of the Pearcey universality at the cusp for Wigner-type matrices [G. Cipolloni et al., Pure Appl. Anal. 1, No. 4, 615--707 (2019; Zbl 07142203); the second author et al., Commun. Math. Phys. 378, No. 2, 1203--1278 (2020; Zbl 07236118)]. We also extend the finite dimensional band mass formula from [the first author et al., loc. cit.] to the von Neumann algebra setting by showing that the spectral mass of the bands is topologically rigid under deformations and we conclude that these masses are quantized in some important cases. article_processing_charge: Yes article_type: original author: - first_name: Johannes full_name: Alt, Johannes id: 36D3D8B6-F248-11E8-B48F-1D18A9856A87 last_name: Alt - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Torben H full_name: Krüger, Torben H id: 3020C786-F248-11E8-B48F-1D18A9856A87 last_name: Krüger orcid: 0000-0002-4821-3297 citation: ama: 'Alt J, Erdös L, Krüger TH. The Dyson equation with linear self-energy: Spectral bands, edges and cusps. Documenta Mathematica. 2020;25:1421-1539. doi:10.4171/dm/780' apa: 'Alt, J., Erdös, L., & Krüger, T. H. (2020). The Dyson equation with linear self-energy: Spectral bands, edges and cusps. Documenta Mathematica. EMS Press. https://doi.org/10.4171/dm/780' chicago: 'Alt, Johannes, László Erdös, and Torben H Krüger. “The Dyson Equation with Linear Self-Energy: Spectral Bands, Edges and Cusps.” Documenta Mathematica. EMS Press, 2020. https://doi.org/10.4171/dm/780.' ieee: 'J. Alt, L. Erdös, and T. H. Krüger, “The Dyson equation with linear self-energy: Spectral bands, edges and cusps,” Documenta Mathematica, vol. 25. EMS Press, pp. 1421–1539, 2020.' ista: 'Alt J, Erdös L, Krüger TH. 2020. The Dyson equation with linear self-energy: Spectral bands, edges and cusps. Documenta Mathematica. 25, 1421–1539.' mla: 'Alt, Johannes, et al. “The Dyson Equation with Linear Self-Energy: Spectral Bands, Edges and Cusps.” Documenta Mathematica, vol. 25, EMS Press, 2020, pp. 1421–539, doi:10.4171/dm/780.' short: J. Alt, L. Erdös, T.H. Krüger, Documenta Mathematica 25 (2020) 1421–1539. date_created: 2023-12-18T10:37:43Z date_published: 2020-09-01T00:00:00Z date_updated: 2023-12-18T10:46:09Z day: '01' ddc: - '510' department: - _id: LaEr doi: 10.4171/dm/780 external_id: arxiv: - '1804.07752' file: - access_level: open_access checksum: 12aacc1d63b852ff9a51c1f6b218d4a6 content_type: application/pdf creator: dernst date_created: 2023-12-18T10:42:32Z date_updated: 2023-12-18T10:42:32Z file_id: '14695' file_name: 2020_DocumentaMathematica_Alt.pdf file_size: 1374708 relation: main_file success: 1 file_date_updated: 2023-12-18T10:42:32Z has_accepted_license: '1' intvolume: ' 25' keyword: - General Mathematics language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 1421-1539 publication: Documenta Mathematica publication_identifier: eissn: - 1431-0643 issn: - 1431-0635 publication_status: published publisher: EMS Press quality_controlled: '1' related_material: record: - id: '6183' relation: earlier_version status: public status: public title: 'The Dyson equation with linear self-energy: Spectral bands, edges and cusps' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2020' ... --- _id: '8156' abstract: - lang: eng text: 'We present solutions to several problems originating from geometry and discrete mathematics: existence of equipartitions, maps without Tverberg multiple points, and inscribing quadrilaterals. Equivariant obstruction theory is the natural topological approach to these type of questions. However, for the specific problems we consider it had yielded only partial or no results. We get our results by complementing equivariant obstruction theory with other techniques from topology and geometry.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Sergey full_name: Avvakumov, Sergey id: 3827DAC8-F248-11E8-B48F-1D18A9856A87 last_name: Avvakumov citation: ama: Avvakumov S. Topological methods in geometry and discrete mathematics. 2020. doi:10.15479/AT:ISTA:8156 apa: Avvakumov, S. (2020). Topological methods in geometry and discrete mathematics. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8156 chicago: Avvakumov, Sergey. “Topological Methods in Geometry and Discrete Mathematics.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8156. ieee: S. Avvakumov, “Topological methods in geometry and discrete mathematics,” Institute of Science and Technology Austria, 2020. ista: Avvakumov S. 2020. Topological methods in geometry and discrete mathematics. Institute of Science and Technology Austria. mla: Avvakumov, Sergey. Topological Methods in Geometry and Discrete Mathematics. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8156. short: S. Avvakumov, Topological Methods in Geometry and Discrete Mathematics, Institute of Science and Technology Austria, 2020. date_created: 2020-07-23T09:51:29Z date_published: 2020-07-24T00:00:00Z date_updated: 2023-12-18T10:51:01Z day: '24' ddc: - '514' degree_awarded: PhD department: - _id: UlWa doi: 10.15479/AT:ISTA:8156 file: - access_level: closed content_type: application/zip creator: savvakum date_created: 2020-07-27T12:44:51Z date_updated: 2020-07-27T12:44:51Z file_id: '8178' file_name: source.zip file_size: 1061740 relation: source_file - access_level: open_access content_type: application/pdf creator: savvakum date_created: 2020-07-27T12:46:53Z date_updated: 2020-07-27T12:46:53Z file_id: '8179' file_name: thesis_pdfa.pdf file_size: 1336501 relation: main_file success: 1 file_date_updated: 2020-07-27T12:46:53Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '119' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '8182' relation: part_of_dissertation status: public - id: '8183' relation: part_of_dissertation status: public - id: '8185' relation: part_of_dissertation status: public - id: '8184' relation: part_of_dissertation status: public - id: '6355' relation: part_of_dissertation status: public - id: '75' relation: part_of_dissertation status: public status: public supervisor: - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 title: Topological methods in geometry and discrete mathematics type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '14891' abstract: - lang: eng text: We give the first mathematically rigorous justification of the local density approximation in density functional theory. We provide a quantitative estimate on the difference between the grand-canonical Levy–Lieb energy of a given density (the lowest possible energy of all quantum states having this density) and the integral over the uniform electron gas energy of this density. The error involves gradient terms and justifies the use of the local density approximation in the situation where the density is very flat on sufficiently large regions in space. article_processing_charge: No article_type: original author: - first_name: Mathieu full_name: Lewin, Mathieu last_name: Lewin - first_name: Elliott H. full_name: Lieb, Elliott H. last_name: Lieb - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Lewin M, Lieb EH, Seiringer R. The local density approximation in density functional theory. Pure and Applied Analysis. 2020;2(1):35-73. doi:10.2140/paa.2020.2.35 apa: Lewin, M., Lieb, E. H., & Seiringer, R. (2020). The local density approximation in density functional theory. Pure and Applied Analysis. Mathematical Sciences Publishers. https://doi.org/10.2140/paa.2020.2.35 chicago: Lewin, Mathieu, Elliott H. Lieb, and Robert Seiringer. “ The Local Density Approximation in Density Functional Theory.” Pure and Applied Analysis. Mathematical Sciences Publishers, 2020. https://doi.org/10.2140/paa.2020.2.35. ieee: M. Lewin, E. H. Lieb, and R. Seiringer, “ The local density approximation in density functional theory,” Pure and Applied Analysis, vol. 2, no. 1. Mathematical Sciences Publishers, pp. 35–73, 2020. ista: Lewin M, Lieb EH, Seiringer R. 2020. The local density approximation in density functional theory. Pure and Applied Analysis. 2(1), 35–73. mla: Lewin, Mathieu, et al. “ The Local Density Approximation in Density Functional Theory.” Pure and Applied Analysis, vol. 2, no. 1, Mathematical Sciences Publishers, 2020, pp. 35–73, doi:10.2140/paa.2020.2.35. short: M. Lewin, E.H. Lieb, R. Seiringer, Pure and Applied Analysis 2 (2020) 35–73. date_created: 2024-01-28T23:01:44Z date_published: 2020-01-01T00:00:00Z date_updated: 2024-01-29T09:01:12Z day: '01' department: - _id: RoSe doi: 10.2140/paa.2020.2.35 external_id: arxiv: - '1903.04046' intvolume: ' 2' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.1903.04046 month: '01' oa: 1 oa_version: Preprint page: 35-73 publication: Pure and Applied Analysis publication_identifier: eissn: - 2578-5885 issn: - 2578-5893 publication_status: published publisher: Mathematical Sciences Publishers quality_controlled: '1' scopus_import: '1' status: public title: ' The local density approximation in density functional theory' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2020' ... --- _id: '8914' abstract: - lang: eng text: Amyotrophic lateral sclerosis (ALS) leads to a loss of specific motor neuron populations in the spinal cord and cortex. Emerging evidence suggests that interneurons may also be affected, but a detailed characterization of interneuron loss and its potential impacts on motor neuron loss and disease progression is lacking. To examine this issue, the fate of V1 inhibitory neurons during ALS was assessed in the ventral spinal cord using the SODG93A mouse model. The V1 population makes up ∼30% of all ventral inhibitory neurons, ∼50% of direct inhibitory synaptic contacts onto motor neuron cell bodies, and is thought to play a key role in modulating motor output, in part through recurrent and reciprocal inhibitory circuits. We find that approximately half of V1 inhibitory neurons are lost in SODG93A mice at late disease stages, but that this loss is delayed relative to the loss of motor neurons and V2a excitatory neurons. We further identify V1 subpopulations based on transcription factor expression that are differentially susceptible to degeneration in SODG93A mice. At an early disease stage, we show that V1 synaptic contacts with motor neuron cell bodies increase, suggesting an upregulation of inhibition before V1 neurons are lost in substantial numbers. These data support a model in which progressive changes in V1 synaptic contacts early in disease, and in select V1 subpopulations at later stages, represent a compensatory upregulation and then deleterious breakdown of specific interneuron circuits within the spinal cord. acknowledgement: This work was made possible by the generous support of Project ALS. Imaging and related analyses were facilitated by The Waitt Advanced Biophotonics Center Core at the Salk Institute, supported by grants from NIH-NCI CCSG (P30 014195) and NINDS Neuroscience Center (NS072031). The authors would like to additionally thank Drs. Jane Dodd, Robert Brownstone, and Laskaro Zagoraiou for helpful comments on the manuscript. This manuscript is dedicated to Tom Jessell, an inspirational scientist, friend and mentor. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Alina full_name: Salamatina, Alina last_name: Salamatina - first_name: Jerry H full_name: Yang, Jerry H last_name: Yang - first_name: Susan full_name: Brenner-Morton, Susan last_name: Brenner-Morton - first_name: 'Jay B ' full_name: 'Bikoff, Jay B ' last_name: Bikoff - first_name: Linjing full_name: Fang, Linjing last_name: Fang - first_name: Christopher R full_name: Kintner, Christopher R last_name: Kintner - first_name: Thomas M full_name: Jessell, Thomas M last_name: Jessell - first_name: Lora Beatrice Jaeger full_name: Sweeney, Lora Beatrice Jaeger id: 56BE8254-C4F0-11E9-8E45-0B23E6697425 last_name: Sweeney orcid: 0000-0001-9242-5601 citation: ama: Salamatina A, Yang JH, Brenner-Morton S, et al. Differential loss of spinal interneurons in a mouse model of ALS. Neuroscience. 2020;450:81-95. doi:10.1016/j.neuroscience.2020.08.011 apa: Salamatina, A., Yang, J. H., Brenner-Morton, S., Bikoff, J. B., Fang, L., Kintner, C. R., … Sweeney, L. B. (2020). Differential loss of spinal interneurons in a mouse model of ALS. Neuroscience. Elsevier. https://doi.org/10.1016/j.neuroscience.2020.08.011 chicago: Salamatina, Alina, Jerry H Yang, Susan Brenner-Morton, Jay B Bikoff, Linjing Fang, Christopher R Kintner, Thomas M Jessell, and Lora B. Sweeney. “Differential Loss of Spinal Interneurons in a Mouse Model of ALS.” Neuroscience. Elsevier, 2020. https://doi.org/10.1016/j.neuroscience.2020.08.011. ieee: A. Salamatina et al., “Differential loss of spinal interneurons in a mouse model of ALS,” Neuroscience, vol. 450. Elsevier, pp. 81–95, 2020. ista: Salamatina A, Yang JH, Brenner-Morton S, Bikoff JB, Fang L, Kintner CR, Jessell TM, Sweeney LB. 2020. Differential loss of spinal interneurons in a mouse model of ALS. Neuroscience. 450, 81–95. mla: Salamatina, Alina, et al. “Differential Loss of Spinal Interneurons in a Mouse Model of ALS.” Neuroscience, vol. 450, Elsevier, 2020, pp. 81–95, doi:10.1016/j.neuroscience.2020.08.011. short: A. Salamatina, J.H. Yang, S. Brenner-Morton, J.B. Bikoff, L. Fang, C.R. Kintner, T.M. Jessell, L.B. Sweeney, Neuroscience 450 (2020) 81–95. date_created: 2020-12-03T11:47:31Z date_published: 2020-12-01T00:00:00Z date_updated: 2024-01-31T10:15:34Z day: '01' ddc: - '570' department: - _id: LoSw doi: 10.1016/j.neuroscience.2020.08.011 external_id: isi: - '000595588700008' pmid: - '32858144' file: - access_level: open_access checksum: da7413c819e079720669c82451b49294 content_type: application/pdf creator: dernst date_created: 2020-12-03T11:45:26Z date_updated: 2020-12-03T11:45:26Z file_id: '8915' file_name: 2020_Neuroscience_Salamatina.pdf file_size: 4071247 relation: main_file success: 1 file_date_updated: 2020-12-03T11:45:26Z has_accepted_license: '1' intvolume: ' 450' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '12' oa: 1 oa_version: Published Version page: 81-95 pmid: 1 publication: Neuroscience publication_identifier: issn: - 0306-4522 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Differential loss of spinal interneurons in a mouse model of ALS tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 450 year: '2020' ... --- _id: '8834' abstract: - lang: eng text: "This data collection contains the transport data for figures presented in the supplementary material of \"Enhancement of Proximity Induced Superconductivity in Planar Germanium\" by K. Aggarwal, et. al. \r\nThe measurements were done using Labber Software and the data is stored in the hdf5 file format. The files can be opened using either the Labber Log Browser (https://labber.org/overview/) or Labber Python API (http://labber.org/online-doc/api/LogFile.html).\r\n" article_processing_charge: No author: - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X citation: ama: Katsaros G. Enhancement of proximity induced superconductivity in planar Germanium. 2020. doi:10.15479/AT:ISTA:8834 apa: Katsaros, G. (2020). Enhancement of proximity induced superconductivity in planar Germanium. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8834 chicago: Katsaros, Georgios. “Enhancement of Proximity Induced Superconductivity in Planar Germanium.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8834. ieee: G. Katsaros, “Enhancement of proximity induced superconductivity in planar Germanium.” Institute of Science and Technology Austria, 2020. ista: Katsaros G. 2020. Enhancement of proximity induced superconductivity in planar Germanium, Institute of Science and Technology Austria, 10.15479/AT:ISTA:8834. mla: Katsaros, Georgios. Enhancement of Proximity Induced Superconductivity in Planar Germanium. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8834. short: G. Katsaros, (2020). contributor: - contributor_type: project_member first_name: Kushagra id: b22ab905-3539-11eb-84c3-fc159dcd79cb last_name: Aggarwal - contributor_type: project_member first_name: Andrea C id: 340F461A-F248-11E8-B48F-1D18A9856A87 last_name: Hofmann - contributor_type: project_member first_name: Daniel id: 4C473F58-F248-11E8-B48F-1D18A9856A87 last_name: Jirovec - contributor_type: project_member first_name: Ivan id: 2A307FE2-F248-11E8-B48F-1D18A9856A87 last_name: Prieto Gonzalez - contributor_type: project_member first_name: Amir last_name: Sammak - contributor_type: project_member first_name: Marc last_name: Botifoll - contributor_type: project_member first_name: Sara last_name: Marti-Sanchez - contributor_type: project_member first_name: Menno last_name: Veldhorst - contributor_type: project_member first_name: Jordi last_name: Arbiol - contributor_type: project_member first_name: Giordano last_name: Scappucci - contributor_type: project_leader first_name: Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros date_created: 2020-12-02T10:49:30Z date_published: 2020-12-02T00:00:00Z date_updated: 2024-02-21T12:41:26Z day: '02' ddc: - '530' department: - _id: GeKa doi: 10.15479/AT:ISTA:8834 file: - access_level: open_access checksum: 898607ac9d7cfbd5c7dd84bcb6d8a924 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:21Z date_updated: 2020-12-02T10:46:21Z file_id: '8836' file_name: Figure1-ICvsVG.hdf5 file_size: 898039 relation: main_file success: 1 - access_level: open_access checksum: f6f5888f8425e82b4dcd5ec3db9162a6 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:21Z date_updated: 2020-12-02T10:46:21Z file_id: '8837' file_name: Figure1-RNvsVG.hdf5 file_size: 184971 relation: main_file success: 1 - access_level: open_access checksum: 63a26c4b0299538610ec58c48c0ab1e3 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:22Z date_updated: 2020-12-02T10:46:22Z file_id: '8838' file_name: Figure2-MAR.hdf5 file_size: 2097740 relation: main_file success: 1 - access_level: open_access checksum: 4c6795b64b05088606ab7881f801acd7 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:22Z date_updated: 2020-12-02T10:46:22Z file_id: '8839' file_name: Figure3-Fraunhofer.hdf5 file_size: 911501 relation: main_file success: 1 - access_level: open_access checksum: 6b1b07e8ab0d6c1fead91032bf543818 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:22Z date_updated: 2020-12-02T10:46:22Z file_id: '8840' file_name: Figure3-ICvsBparallel.hdf5 file_size: 384239 relation: main_file success: 1 - access_level: open_access checksum: d825f77f57cbf455a4ac48afeec27f5b content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:22Z date_updated: 2020-12-02T10:46:22Z file_id: '8841' file_name: Figure3-ICvsBperp.hdf5 file_size: 942878 relation: main_file success: 1 - access_level: open_access checksum: ec81afc3697da097a224e9142322243c content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:22Z date_updated: 2020-12-02T10:46:22Z file_id: '8842' file_name: Figure4-CPR.hdf5 file_size: 623246 relation: main_file success: 1 - access_level: open_access checksum: ca5860a8850a6874312c4ca1d7d41013 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:22Z date_updated: 2020-12-02T10:46:22Z file_id: '8843' file_name: Figure4-SQUID.hdf5 file_size: 507164 relation: main_file success: 1 - access_level: open_access checksum: 770721205d081c847316d9122c94eb9b content_type: text/plain creator: gkatsaro date_created: 2020-12-02T10:46:22Z date_updated: 2020-12-02T10:46:22Z file_id: '8844' file_name: Readme.txt file_size: 1573 relation: main_file success: 1 - access_level: open_access checksum: 5e2e407ca631fb15b8c3cc51c5dd3bdb content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:22Z date_updated: 2020-12-02T10:46:22Z file_id: '8845' file_name: Figure S5-ICvsVG.hdf5 file_size: 842702 relation: main_file success: 1 - access_level: open_access checksum: 2076e5f68264ed76c297811f449d768d content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:22Z date_updated: 2020-12-02T10:46:22Z file_id: '8846' file_name: Figure S5-RNvsVG.hdf5 file_size: 208921 relation: main_file success: 1 - access_level: open_access checksum: 5dccb801d694749fe8cb496821f12f79 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:22Z date_updated: 2020-12-02T10:46:22Z file_id: '8847' file_name: Figure S8-ICvsVG.hdf5 file_size: 912249 relation: main_file success: 1 - access_level: open_access checksum: 2b104aee4276e594c0d50557ead36441 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:22Z date_updated: 2020-12-02T10:46:22Z file_id: '8848' file_name: Figure S8-RNvsVG.hdf5 file_size: 230550 relation: main_file success: 1 - access_level: open_access checksum: 1645b03bdc6999d120c3fcc7012c6984 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:23Z date_updated: 2020-12-02T10:46:23Z file_id: '8849' file_name: Figure S9-JoFET1-Fraunhofer.hdf5 file_size: 533581 relation: main_file success: 1 - access_level: open_access checksum: 7ba623bbee93e8cb5645c4866f241d43 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:23Z date_updated: 2020-12-02T10:46:23Z file_id: '8850' file_name: Figure S9-JoFET1-ICvsVG.hdf5 file_size: 1394384 relation: main_file success: 1 - access_level: open_access checksum: 3b65ccb68cea8d3c30832fc77aa9eea3 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:23Z date_updated: 2020-12-02T10:46:23Z file_id: '8851' file_name: Figure S9-JoFET2-Fraunhofer.hdf5 file_size: 548051 relation: main_file success: 1 - access_level: open_access checksum: 3d7394a7bc8ff08bcc7928262514d2b9 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:23Z date_updated: 2020-12-02T10:46:23Z file_id: '8852' file_name: Figure S9-JoFET2-ICvsVG.hdf5 file_size: 112602 relation: main_file success: 1 - access_level: open_access checksum: 2ef8b3226a99fc65cad1162a52552848 content_type: text/plain creator: gkatsaro date_created: 2020-12-02T10:46:23Z date_updated: 2020-12-02T10:46:23Z file_id: '8853' file_name: Readme.txt file_size: 1449 relation: main_file success: 1 - access_level: open_access checksum: 361ef6521f6b23223a34f8cf9645ee68 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:23Z date_updated: 2020-12-02T10:46:23Z file_id: '8854' file_name: dev2-jj2-ICvsVG-Tdependence_1000mK.hdf5 file_size: 149502 relation: main_file success: 1 - access_level: open_access checksum: f8ff5a6dd64d68d55daa79a4145bbd9c content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:23Z date_updated: 2020-12-02T10:46:23Z file_id: '8855' file_name: dev2-jj2-ICvsVG-Tdependence_100mK.hdf5 file_size: 167055 relation: main_file success: 1 - access_level: open_access checksum: f9309e1f1a5f727281960b01a3be64b4 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:23Z date_updated: 2020-12-02T10:46:23Z file_id: '8856' file_name: dev2-jj2-ICvsVG-Tdependence_1100mK.hdf5 file_size: 149648 relation: main_file success: 1 - access_level: open_access checksum: e0589a34db4c5b7643c8179b0c156e48 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:23Z date_updated: 2020-12-02T10:46:23Z file_id: '8857' file_name: dev2-jj2-ICvsVG-Tdependence_1200mK.hdf5 file_size: 144688 relation: main_file success: 1 - access_level: open_access checksum: f9736851466851cca596124b1ccdbe01 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:23Z date_updated: 2020-12-02T10:46:23Z file_id: '8858' file_name: dev2-jj2-ICvsVG-Tdependence_125mK.hdf5 file_size: 148611 relation: main_file success: 1 - access_level: open_access checksum: d517a4781bb242f7bfb75e7c054131e4 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:23Z date_updated: 2020-12-02T10:46:23Z file_id: '8859' file_name: dev2-jj2-ICvsVG-Tdependence_1300mK.hdf5 file_size: 144702 relation: main_file success: 1 - access_level: open_access checksum: ce1dafef1008405b7d63b9d9018bba0d content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:23Z date_updated: 2020-12-02T10:46:23Z file_id: '8860' file_name: dev2-jj2-ICvsVG-Tdependence_1400mK.hdf5 file_size: 150639 relation: main_file success: 1 - access_level: open_access checksum: 0a13039fdb83caee41437685fe73d2b4 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:23Z date_updated: 2020-12-02T10:46:23Z file_id: '8861' file_name: dev2-jj2-ICvsVG-Tdependence_1500mK.hdf5 file_size: 150819 relation: main_file success: 1 - access_level: open_access checksum: 6e543bc92d4dd4b9b2fcfd7992bfa101 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:24Z date_updated: 2020-12-02T10:46:24Z file_id: '8862' file_name: dev2-jj2-ICvsVG-Tdependence_150mK.hdf5 file_size: 148362 relation: main_file success: 1 - access_level: open_access checksum: 91cfcef1edfbb5c7bed3dde4b2cee5b8 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:24Z date_updated: 2020-12-02T10:46:24Z file_id: '8863' file_name: dev2-jj2-ICvsVG-Tdependence_1600mK.hdf5 file_size: 150766 relation: main_file success: 1 - access_level: open_access checksum: 528fa8c3128e0d79de599ba0bc715665 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:24Z date_updated: 2020-12-02T10:46:24Z file_id: '8864' file_name: dev2-jj2-ICvsVG-Tdependence_1700mK.hdf5 file_size: 169554 relation: main_file success: 1 - access_level: open_access checksum: 9e35c7f20c0b162e205bfa520dc4535d content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:24Z date_updated: 2020-12-02T10:46:24Z file_id: '8865' file_name: dev2-jj2-ICvsVG-Tdependence_175mK.hdf5 file_size: 148548 relation: main_file success: 1 - access_level: open_access checksum: 1fb5a8b651447a7204ae31883a1da269 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:24Z date_updated: 2020-12-02T10:46:24Z file_id: '8866' file_name: dev2-jj2-ICvsVG-Tdependence_1800mK.hdf5 file_size: 147386 relation: main_file success: 1 - access_level: open_access checksum: 0d3ee65697bceaae15fbcd5d5a8480c1 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:24Z date_updated: 2020-12-02T10:46:24Z file_id: '8867' file_name: dev2-jj2-ICvsVG-Tdependence_1900mK.hdf5 file_size: 147265 relation: main_file success: 1 - access_level: open_access checksum: fc386694414fee55a21adbc21c5c9b35 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:24Z date_updated: 2020-12-02T10:46:24Z file_id: '8868' file_name: dev2-jj2-ICvsVG-Tdependence_2000mK.hdf5 file_size: 147371 relation: main_file success: 1 - access_level: open_access checksum: de7c4a302b9fbad6dbcd7dd76af9f585 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:24Z date_updated: 2020-12-02T10:46:24Z file_id: '8869' file_name: dev2-jj2-ICvsVG-Tdependence_200mK.hdf5 file_size: 148576 relation: main_file success: 1 - access_level: open_access checksum: 3f31eb2fb17cdaa70f4f3de2f1c6a563 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:24Z date_updated: 2020-12-02T10:46:24Z file_id: '8870' file_name: dev2-jj2-ICvsVG-Tdependence_20mK.hdf5 file_size: 183004 relation: main_file success: 1 - access_level: open_access checksum: 9044e65b660b5a90931ddcc0d4da7baa content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:24Z date_updated: 2020-12-02T10:46:24Z file_id: '8871' file_name: dev2-jj2-ICvsVG-Tdependence_2100mK.hdf5 file_size: 131582 relation: main_file success: 1 - access_level: open_access checksum: a4d0644bed0076a5c3a9b10dadac217a content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:24Z date_updated: 2020-12-02T10:46:24Z file_id: '8872' file_name: dev2-jj2-ICvsVG-Tdependence_2200mK.hdf5 file_size: 131645 relation: main_file success: 1 - access_level: open_access checksum: 7177bd4d5bd80655b513168ebdf4a0c6 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:24Z date_updated: 2020-12-02T10:46:24Z file_id: '8873' file_name: dev2-jj2-ICvsVG-Tdependence_225mK.hdf5 file_size: 144366 relation: main_file success: 1 - access_level: open_access checksum: 62e51c2cabcb586af21222e60eb8910e content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:24Z date_updated: 2020-12-02T10:46:24Z file_id: '8874' file_name: dev2-jj2-ICvsVG-Tdependence_2300mK.hdf5 file_size: 148466 relation: main_file success: 1 - access_level: open_access checksum: 67f943fbaae90d117f0f82c3a29e6ccc content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8875' file_name: dev2-jj2-ICvsVG-Tdependence_2400mK.hdf5 file_size: 160774 relation: main_file success: 1 - access_level: open_access checksum: c6b33f7c61ba57178fa613c58131fd3d content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8876' file_name: dev2-jj2-ICvsVG-Tdependence_2500mK.hdf5 file_size: 150110 relation: main_file success: 1 - access_level: open_access checksum: be127426947b8778cfae29a7ad2013f1 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8877' file_name: dev2-jj2-ICvsVG-Tdependence_250mK.hdf5 file_size: 144419 relation: main_file success: 1 - access_level: open_access checksum: 81dfeb4d94c1efec10b623e94d13faa5 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8878' file_name: dev2-jj2-ICvsVG-Tdependence_2600mK.hdf5 file_size: 148905 relation: main_file success: 1 - access_level: open_access checksum: 5c0a37e0de317c7d8df62075ff35f1ec content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8879' file_name: dev2-jj2-ICvsVG-Tdependence_2700mK.hdf5 file_size: 131966 relation: main_file success: 1 - access_level: open_access checksum: 0f25d03f2551cbd903c7522883510492 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8880' file_name: dev2-jj2-ICvsVG-Tdependence_275mK.hdf5 file_size: 144253 relation: main_file success: 1 - access_level: open_access checksum: 93923640d8bb599f6a459d2fda915b8b content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8881' file_name: dev2-jj2-ICvsVG-Tdependence_2800mK.hdf5 file_size: 131997 relation: main_file success: 1 - access_level: open_access checksum: c4fcf44e88ed344f4b747a67cae4e147 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8882' file_name: dev2-jj2-ICvsVG-Tdependence_2900mK.hdf5 file_size: 131950 relation: main_file success: 1 - access_level: open_access checksum: 5c1b296c6e654b16f610516b4a2fae30 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8883' file_name: dev2-jj2-ICvsVG-Tdependence_3000mK.hdf5 file_size: 150616 relation: main_file success: 1 - access_level: open_access checksum: 5d1a2735216b1d6abf4c2645ebe0164e content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8884' file_name: dev2-jj2-ICvsVG-Tdependence_300mK.hdf5 file_size: 144570 relation: main_file success: 1 - access_level: open_access checksum: 50dd9572cee3262ab4d64573289f9832 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8885' file_name: dev2-jj2-ICvsVG-Tdependence_3100mK.hdf5 file_size: 150709 relation: main_file success: 1 - access_level: open_access checksum: f528a1daeaddef5deef914798f5569ec content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8886' file_name: dev2-jj2-ICvsVG-Tdependence_3200mK.hdf5 file_size: 131954 relation: main_file success: 1 - access_level: open_access checksum: c2f53134c6877f200bdf4e5638e5c6d3 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8887' file_name: dev2-jj2-ICvsVG-Tdependence_325mK.hdf5 file_size: 144197 relation: main_file success: 1 - access_level: open_access checksum: 10dd70f340df3bbe0cfe8cc9e6427d50 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:25Z date_updated: 2020-12-02T10:46:25Z file_id: '8888' file_name: dev2-jj2-ICvsVG-Tdependence_360mK.hdf5 file_size: 144729 relation: main_file success: 1 - access_level: open_access checksum: 6da19e1e3ff6f254ce859a2c6952fd3a content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:26Z date_updated: 2020-12-02T10:46:26Z file_id: '8889' file_name: dev2-jj2-ICvsVG-Tdependence_400mK.hdf5 file_size: 144502 relation: main_file success: 1 - access_level: open_access checksum: 49b78d23ef1538e1ecfc51dcfcf423d4 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:26Z date_updated: 2020-12-02T10:46:26Z file_id: '8890' file_name: dev2-jj2-ICvsVG-Tdependence_430mK.hdf5 file_size: 144280 relation: main_file success: 1 - access_level: open_access checksum: 065610415e2386a6e571fce3f14a2fc4 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:26Z date_updated: 2020-12-02T10:46:26Z file_id: '8891' file_name: dev2-jj2-ICvsVG-Tdependence_45mK.hdf5 file_size: 173158 relation: main_file success: 1 - access_level: open_access checksum: 06a83873a1e72377728c080fb8db15fd content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:26Z date_updated: 2020-12-02T10:46:26Z file_id: '8892' file_name: dev2-jj2-ICvsVG-Tdependence_460mK.hdf5 file_size: 144447 relation: main_file success: 1 - access_level: open_access checksum: c4391fda28b9a44e44f2d039ec8651b7 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:26Z date_updated: 2020-12-02T10:46:26Z file_id: '8893' file_name: dev2-jj2-ICvsVG-Tdependence_500mK.hdf5 file_size: 144800 relation: main_file success: 1 - access_level: open_access checksum: e9d2ffde84357e8e0be5581408da9b8a content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:26Z date_updated: 2020-12-02T10:46:26Z file_id: '8894' file_name: dev2-jj2-ICvsVG-Tdependence_530mK.hdf5 file_size: 144594 relation: main_file success: 1 - access_level: open_access checksum: d2966be14e8877ca27bf5daff23d76d6 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:26Z date_updated: 2020-12-02T10:46:26Z file_id: '8895' file_name: dev2-jj2-ICvsVG-Tdependence_560mK.hdf5 file_size: 144681 relation: main_file success: 1 - access_level: open_access checksum: 75cc9b9a2991b356471ca956076cc376 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:26Z date_updated: 2020-12-02T10:46:26Z file_id: '8896' file_name: dev2-jj2-ICvsVG-Tdependence_600mK.hdf5 file_size: 144909 relation: main_file success: 1 - access_level: open_access checksum: 9144cff758563b93f22c7946146fa5d5 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:26Z date_updated: 2020-12-02T10:46:26Z file_id: '8897' file_name: dev2-jj2-ICvsVG-Tdependence_630mK.hdf5 file_size: 144985 relation: main_file success: 1 - access_level: open_access checksum: 14509a2dd1bf74d9c6fc05c046e5b6ff content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:26Z date_updated: 2020-12-02T10:46:26Z file_id: '8898' file_name: dev2-jj2-ICvsVG-Tdependence_660mK.hdf5 file_size: 144782 relation: main_file success: 1 - access_level: open_access checksum: 9c38e2178f0fda99a02e6d7b2c034082 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:26Z date_updated: 2020-12-02T10:46:26Z file_id: '8899' file_name: dev2-jj2-ICvsVG-Tdependence_700mK.hdf5 file_size: 145046 relation: main_file success: 1 - access_level: open_access checksum: 962a205f7ff515b9aad2df28cc5a95e7 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:26Z date_updated: 2020-12-02T10:46:26Z file_id: '8900' file_name: dev2-jj2-ICvsVG-Tdependence_730mK.hdf5 file_size: 145107 relation: main_file success: 1 - access_level: open_access checksum: 5e24b1a7840e6a2b3b04bf922b521ec4 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:26Z date_updated: 2020-12-02T10:46:26Z file_id: '8901' file_name: dev2-jj2-ICvsVG-Tdependence_760mK.hdf5 file_size: 145018 relation: main_file success: 1 - access_level: open_access checksum: dfbefc2d53df7afd1e534ced7d669b30 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:27Z date_updated: 2020-12-02T10:46:27Z file_id: '8902' file_name: dev2-jj2-ICvsVG-Tdependence_800mK.hdf5 file_size: 145318 relation: main_file success: 1 - access_level: open_access checksum: 1629ae97d2748bbf02fdb2d165d236e5 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:27Z date_updated: 2020-12-02T10:46:27Z file_id: '8903' file_name: dev2-jj2-ICvsVG-Tdependence_830mK.hdf5 file_size: 145322 relation: main_file success: 1 - access_level: open_access checksum: 618f507780343c6b9145c40d3d5b0ff0 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:27Z date_updated: 2020-12-02T10:46:27Z file_id: '8904' file_name: dev2-jj2-ICvsVG-Tdependence_850mK.hdf5 file_size: 145282 relation: main_file success: 1 - access_level: open_access checksum: 7547c3607280c7eedca3168854976cc9 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:27Z date_updated: 2020-12-02T10:46:27Z file_id: '8905' file_name: dev2-jj2-ICvsVG-Tdependence_900mK.hdf5 file_size: 143681 relation: main_file success: 1 - access_level: open_access checksum: 514d9a43ed3888ce7d8b26ca772cadc3 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:27Z date_updated: 2020-12-02T10:46:27Z file_id: '8906' file_name: dev2-jj2-ICvsVG-Tdependence_90mK.hdf5 file_size: 167184 relation: main_file success: 1 - access_level: open_access checksum: 77285471178fa68c1eade48761b2aba5 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:27Z date_updated: 2020-12-02T10:46:27Z file_id: '8907' file_name: dev2-jj2-ICvsVG-Tdependence_930mK.hdf5 file_size: 143491 relation: main_file success: 1 - access_level: open_access checksum: bf8da09fcfa20196fb7e65528a581297 content_type: application/octet-stream creator: gkatsaro date_created: 2020-12-02T10:46:27Z date_updated: 2020-12-02T10:46:27Z file_id: '8908' file_name: dev2-jj2-ICvsVG-Tdependence_965mK.hdf5 file_size: 144057 relation: main_file success: 1 file_date_updated: 2020-12-02T10:46:27Z has_accepted_license: '1' license: https://creativecommons.org/publicdomain/zero/1.0/ month: '12' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '10559' relation: used_in_publication status: public - id: '8831' relation: used_in_publication status: public status: public title: Enhancement of proximity induced superconductivity in planar Germanium tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8097' abstract: - lang: eng text: 'Antibiotics that interfere with translation, when combined, interact in diverse and difficult-to-predict ways. Here, we explain these interactions by "translation bottlenecks": points in the translation cycle where antibiotics block ribosomal progression. To elucidate the underlying mechanisms of drug interactions between translation inhibitors, we generate translation bottlenecks genetically using inducible control of translation factors that regulate well-defined translation cycle steps. These perturbations accurately mimic antibiotic action and drug interactions, supporting that the interplay of different translation bottlenecks causes these interactions. We further show that growth laws, combined with drug uptake and binding kinetics, enable the direct prediction of a large fraction of observed interactions, yet fail to predict suppression. However, varying two translation bottlenecks simultaneously supports that dense traffic of ribosomes and competition for translation factors account for the previously unexplained suppression. These results highlight the importance of "continuous epistasis" in bacterial physiology.' acknowledged_ssus: - _id: LifeSc article_processing_charge: No author: - first_name: Bor full_name: Kavcic, Bor id: 350F91D2-F248-11E8-B48F-1D18A9856A87 last_name: Kavcic orcid: 0000-0001-6041-254X citation: ama: Kavcic B. Analysis scripts and research data for the paper “Mechanisms of drug interactions between translation-inhibiting antibiotics.” 2020. doi:10.15479/AT:ISTA:8097 apa: Kavcic, B. (2020). Analysis scripts and research data for the paper “Mechanisms of drug interactions between translation-inhibiting antibiotics.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8097 chicago: Kavcic, Bor. “Analysis Scripts and Research Data for the Paper ‘Mechanisms of Drug Interactions between Translation-Inhibiting Antibiotics.’” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8097. ieee: B. Kavcic, “Analysis scripts and research data for the paper ‘Mechanisms of drug interactions between translation-inhibiting antibiotics.’” Institute of Science and Technology Austria, 2020. ista: Kavcic B. 2020. Analysis scripts and research data for the paper ‘Mechanisms of drug interactions between translation-inhibiting antibiotics’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:8097. mla: Kavcic, Bor. Analysis Scripts and Research Data for the Paper “Mechanisms of Drug Interactions between Translation-Inhibiting Antibiotics.” Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8097. short: B. Kavcic, (2020). contributor: - contributor_type: research_group first_name: Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 - contributor_type: research_group first_name: Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach date_created: 2020-07-06T20:40:19Z date_published: 2020-07-15T00:00:00Z date_updated: 2024-02-21T12:40:51Z day: '15' department: - _id: GaTk doi: 10.15479/AT:ISTA:8097 file: - access_level: open_access checksum: 5c321dbbb6d4b3c85da786fd3ebbdc98 content_type: application/zip creator: bkavcic date_created: 2020-07-06T20:38:27Z date_updated: 2020-07-14T12:48:09Z file_id: '8098' file_name: natComm_2020_scripts.zip file_size: 255770756 relation: main_file file_date_updated: 2020-07-14T12:48:09Z has_accepted_license: '1' keyword: - Escherichia coli - antibiotic combinations - translation - growth laws - drug interactions - bacterial physiology - translation inhibitors month: '07' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria status: public title: Analysis scripts and research data for the paper "Mechanisms of drug interactions between translation-inhibiting antibiotics" tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8254' abstract: - lang: eng text: "Here are the research data underlying the publication \"Estimating inbreeding and its effects in a long-term study of snapdragons (Antirrhinum majus)\". Further information are summed up in the README document.\r\nThe files for this record have been updated and are now found in the linked DOI https://doi.org/10.15479/AT:ISTA:9192." article_processing_charge: No author: - first_name: Louise S full_name: Arathoon, Louise S id: 2CFCFF98-F248-11E8-B48F-1D18A9856A87 last_name: Arathoon orcid: 0000-0003-1771-714X citation: ama: Arathoon LS. Estimating inbreeding and its effects in a long-term study of snapdragons (Antirrhinum majus). 2020. doi:10.15479/AT:ISTA:8254 apa: Arathoon, L. S. (2020). Estimating inbreeding and its effects in a long-term study of snapdragons (Antirrhinum majus). Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8254 chicago: Arathoon, Louise S. “Estimating Inbreeding and Its Effects in a Long-Term Study of Snapdragons (Antirrhinum Majus).” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8254. ieee: L. S. Arathoon, “Estimating inbreeding and its effects in a long-term study of snapdragons (Antirrhinum majus).” Institute of Science and Technology Austria, 2020. ista: Arathoon LS. 2020. Estimating inbreeding and its effects in a long-term study of snapdragons (Antirrhinum majus), Institute of Science and Technology Austria, 10.15479/AT:ISTA:8254. mla: Arathoon, Louise S. Estimating Inbreeding and Its Effects in a Long-Term Study of Snapdragons (Antirrhinum Majus). Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8254. short: L.S. Arathoon, (2020). contributor: - contributor_type: data_collector first_name: Louise S id: 2CFCFF98-F248-11E8-B48F-1D18A9856A87 last_name: Arathoon - contributor_type: project_member first_name: Parvathy id: 455235B8-F248-11E8-B48F-1D18A9856A87 last_name: Surendranadh - contributor_type: project_member first_name: Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - contributor_type: project_member first_name: David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - contributor_type: project_member first_name: Melinda id: 2C78037E-F248-11E8-B48F-1D18A9856A87 last_name: Pickup orcid: 0000-0001-6118-0541 - contributor_type: project_member first_name: Carina id: 3B4A7CE2-F248-11E8-B48F-1D18A9856A87 last_name: Baskett date_created: 2020-08-12T12:49:23Z date_published: 2020-08-18T00:00:00Z date_updated: 2024-02-21T12:41:09Z day: '18' ddc: - '576' department: - _id: NiBa doi: 10.15479/AT:ISTA:8254 file: - access_level: open_access checksum: 4f1382ed4384751b6013398c11557bf6 content_type: application/x-zip-compressed creator: dernst date_created: 2020-08-18T08:03:23Z date_updated: 2020-08-18T08:03:23Z file_id: '8280' file_name: Data_Rcode_MathematicaNB.zip file_size: 5778420 relation: main_file success: 1 file_date_updated: 2020-08-18T08:03:23Z has_accepted_license: '1' month: '08' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '11321' relation: later_version status: public - id: '9192' relation: later_version status: public status: public title: Estimating inbreeding and its effects in a long-term study of snapdragons (Antirrhinum majus) tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7541' abstract: - lang: eng text: Semiconductor nanowires have been playing a crucial role in the development of nanoscale devices for the realization of spin qubits, Majorana fermions, single photon emitters, nanoprocessors, etc. The monolithic growth of site‐controlled nanowires is a prerequisite toward the next generation of devices that will require addressability and scalability. Here, combining top‐down nanofabrication and bottom‐up self‐assembly, the growth of Ge wires on prepatterned Si (001) substrates with controllable position, distance, length, and structure is reported. This is achieved by a novel growth process that uses a SiGe strain‐relaxation template and can be potentially generalized to other material combinations. Transport measurements show an electrically tunable spin–orbit coupling, with a spin–orbit length similar to that of III–V materials. Also, charge sensing between quantum dots in closely spaced wires is observed, which underlines their potential for the realization of advanced quantum devices. The reported results open a path toward scalable qubit devices using nanowires on silicon. acknowledged_ssus: - _id: NanoFab - _id: M-Shop acknowledgement: 'This work was supported by the National Key R&D Program of China (Grant Nos. 2016YFA0301701 and 2016YFA0300600), the NSFC (Grant Nos. 11574356, 11434010, and 11404252), the Strategic Priority Research Program of CAS (Grant No. XDB30000000), the ERC Starting Grant No. 335497, the FWF P32235 project, and the European Union''s Horizon 2020 research and innovation program under Grant Agreement #862046. This research was supported by the Scientific Service Units of IST Austria through resources provided by the MIBA Machine Shop and the nanofabrication facility. F.L. thanks support from DOE (Grant No. DE‐FG02‐04ER46148). H.H. thanks the Startup Funding from Xi''an Jiaotong University.' article_number: '1906523' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Fei full_name: Gao, Fei last_name: Gao - first_name: Jian-Huan full_name: Wang, Jian-Huan last_name: Wang - first_name: Hannes full_name: Watzinger, Hannes id: 35DF8E50-F248-11E8-B48F-1D18A9856A87 last_name: Watzinger - first_name: Hao full_name: Hu, Hao last_name: Hu - first_name: Marko J. full_name: Rančić, Marko J. last_name: Rančić - first_name: Jie-Yin full_name: Zhang, Jie-Yin last_name: Zhang - first_name: Ting full_name: Wang, Ting last_name: Wang - first_name: Yuan full_name: Yao, Yuan last_name: Yao - first_name: Gui-Lei full_name: Wang, Gui-Lei last_name: Wang - first_name: Josip full_name: Kukucka, Josip id: 3F5D8856-F248-11E8-B48F-1D18A9856A87 last_name: Kukucka - first_name: Lada full_name: Vukušić, Lada id: 31E9F056-F248-11E8-B48F-1D18A9856A87 last_name: Vukušić orcid: 0000-0003-2424-8636 - first_name: Christoph full_name: Kloeffel, Christoph last_name: Kloeffel - first_name: Daniel full_name: Loss, Daniel last_name: Loss - first_name: Feng full_name: Liu, Feng last_name: Liu - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X - first_name: Jian-Jun full_name: Zhang, Jian-Jun last_name: Zhang citation: ama: Gao F, Wang J-H, Watzinger H, et al. Site-controlled uniform Ge/Si hut wires with electrically tunable spin-orbit coupling. Advanced Materials. 2020;32(16). doi:10.1002/adma.201906523 apa: Gao, F., Wang, J.-H., Watzinger, H., Hu, H., Rančić, M. J., Zhang, J.-Y., … Zhang, J.-J. (2020). Site-controlled uniform Ge/Si hut wires with electrically tunable spin-orbit coupling. Advanced Materials. Wiley. https://doi.org/10.1002/adma.201906523 chicago: Gao, Fei, Jian-Huan Wang, Hannes Watzinger, Hao Hu, Marko J. Rančić, Jie-Yin Zhang, Ting Wang, et al. “Site-Controlled Uniform Ge/Si Hut Wires with Electrically Tunable Spin-Orbit Coupling.” Advanced Materials. Wiley, 2020. https://doi.org/10.1002/adma.201906523. ieee: F. Gao et al., “Site-controlled uniform Ge/Si hut wires with electrically tunable spin-orbit coupling,” Advanced Materials, vol. 32, no. 16. Wiley, 2020. ista: Gao F, Wang J-H, Watzinger H, Hu H, Rančić MJ, Zhang J-Y, Wang T, Yao Y, Wang G-L, Kukucka J, Vukušić L, Kloeffel C, Loss D, Liu F, Katsaros G, Zhang J-J. 2020. Site-controlled uniform Ge/Si hut wires with electrically tunable spin-orbit coupling. Advanced Materials. 32(16), 1906523. mla: Gao, Fei, et al. “Site-Controlled Uniform Ge/Si Hut Wires with Electrically Tunable Spin-Orbit Coupling.” Advanced Materials, vol. 32, no. 16, 1906523, Wiley, 2020, doi:10.1002/adma.201906523. short: F. Gao, J.-H. Wang, H. Watzinger, H. Hu, M.J. Rančić, J.-Y. Zhang, T. Wang, Y. Yao, G.-L. Wang, J. Kukucka, L. Vukušić, C. Kloeffel, D. Loss, F. Liu, G. Katsaros, J.-J. Zhang, Advanced Materials 32 (2020). date_created: 2020-02-28T09:47:00Z date_published: 2020-04-23T00:00:00Z date_updated: 2024-02-21T12:42:12Z day: '23' ddc: - '530' department: - _id: GeKa doi: 10.1002/adma.201906523 ec_funded: 1 external_id: isi: - '000516660900001' file: - access_level: open_access checksum: c622737dc295972065782558337124a2 content_type: application/pdf creator: dernst date_created: 2020-11-20T10:11:35Z date_updated: 2020-11-20T10:11:35Z file_id: '8782' file_name: 2020_AdvancedMaterials_Gao.pdf file_size: 5242880 relation: main_file success: 1 file_date_updated: 2020-11-20T10:11:35Z has_accepted_license: '1' intvolume: ' 32' isi: 1 issue: '16' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 25517E86-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '335497' name: Towards Spin qubits and Majorana fermions in Germanium selfassembled hut-wires - _id: 237B3DA4-32DE-11EA-91FC-C7463DDC885E call_identifier: FWF grant_number: P32235 name: Towards scalable hut wire quantum devices - _id: 237E5020-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862046' name: TOPOLOGICALLY PROTECTED AND SCALABLE QUANTUM BITS publication: Advanced Materials publication_identifier: issn: - 0935-9648 publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '7996' relation: dissertation_contains status: public - id: '9222' relation: research_data status: public scopus_import: '1' status: public title: Site-controlled uniform Ge/Si hut wires with electrically tunable spin-orbit coupling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 32 year: '2020' ... --- _id: '8930' abstract: - lang: eng text: Phenomenological relations such as Ohm’s or Fourier’s law have a venerable history in physics but are still scarce in biology. This situation restrains predictive theory. Here, we build on bacterial “growth laws,” which capture physiological feedback between translation and cell growth, to construct a minimal biophysical model for the combined action of ribosome-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy solely from responses to individual drugs. We provide analytical results for limiting cases, which agree well with numerical results. We systematically refine the model by including direct physical interactions of different antibiotics on the ribosome. In a limiting case, our model provides a mechanistic underpinning for recent predictions of higher-order interactions that were derived using entropy maximization. We further refine the model to include the effects of antibiotics that mimic starvation and the presence of resistance genes. We describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and verify it experimentally. Our extended model suggests a change in the type of drug interaction that depends on the strength of resistance, which challenges established rescaling paradigms. We experimentally show that the presence of unregulated resistance genes can lead to altered drug interaction, which agrees with the prediction of the model. While minimal, the model is readily adaptable and opens the door to predicting interactions of second and higher-order in a broad range of biological systems. article_processing_charge: No author: - first_name: Bor full_name: Kavcic, Bor id: 350F91D2-F248-11E8-B48F-1D18A9856A87 last_name: Kavcic orcid: 0000-0001-6041-254X citation: ama: Kavcic B. Analysis scripts and research data for the paper “Minimal biophysical model of combined antibiotic action.” 2020. doi:10.15479/AT:ISTA:8930 apa: Kavcic, B. (2020). Analysis scripts and research data for the paper “Minimal biophysical model of combined antibiotic action.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8930 chicago: Kavcic, Bor. “Analysis Scripts and Research Data for the Paper ‘Minimal Biophysical Model of Combined Antibiotic Action.’” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8930. ieee: B. Kavcic, “Analysis scripts and research data for the paper ‘Minimal biophysical model of combined antibiotic action.’” Institute of Science and Technology Austria, 2020. ista: Kavcic B. 2020. Analysis scripts and research data for the paper ‘Minimal biophysical model of combined antibiotic action’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:8930. mla: Kavcic, Bor. Analysis Scripts and Research Data for the Paper “Minimal Biophysical Model of Combined Antibiotic Action.” Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8930. short: B. Kavcic, (2020). contributor: - contributor_type: supervisor first_name: Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 - contributor_type: supervisor first_name: Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach date_created: 2020-12-09T15:04:02Z date_published: 2020-12-10T00:00:00Z date_updated: 2024-02-21T12:41:42Z day: '10' ddc: - '570' department: - _id: GaTk doi: 10.15479/AT:ISTA:8930 file: - access_level: open_access checksum: 60a818edeffaa7da1ebf5f8fbea9ba18 content_type: application/zip creator: bkavcic date_created: 2020-12-09T15:00:19Z date_updated: 2020-12-09T15:00:19Z file_id: '8932' file_name: PLoSCompBiol2020_datarep.zip file_size: 315494370 relation: main_file success: 1 file_date_updated: 2020-12-09T15:00:19Z has_accepted_license: '1' keyword: - Escherichia coli - antibiotic combinations - translation - growth laws - drug interactions - bacterial physiology - translation inhibitors month: '12' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '8997' relation: used_in_publication status: public status: public title: Analysis scripts and research data for the paper "Minimal biophysical model of combined antibiotic action" tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8951' abstract: - lang: eng text: Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions, such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks remains a major challenge. Here, we use a well-defined synthetic gene regulatory network to study how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one gene regulatory network with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Our results demonstrate that changes in local genetic context can place a single transcriptional unit within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual transcriptional units, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of gene regulatory networks. article_processing_charge: No author: - first_name: Anna A full_name: Nagy-Staron, Anna A id: 3ABC5BA6-F248-11E8-B48F-1D18A9856A87 last_name: Nagy-Staron orcid: 0000-0002-1391-8377 citation: ama: Nagy-Staron AA. Sequences of gene regulatory network permutations for the article “Local genetic context shapes the function of a gene regulatory network.” 2020. doi:10.15479/AT:ISTA:8951 apa: Nagy-Staron, A. A. (2020). Sequences of gene regulatory network permutations for the article “Local genetic context shapes the function of a gene regulatory network.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8951 chicago: Nagy-Staron, Anna A. “Sequences of Gene Regulatory Network Permutations for the Article ‘Local Genetic Context Shapes the Function of a Gene Regulatory Network.’” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8951. ieee: A. A. Nagy-Staron, “Sequences of gene regulatory network permutations for the article ‘Local genetic context shapes the function of a gene regulatory network.’” Institute of Science and Technology Austria, 2020. ista: Nagy-Staron AA. 2020. Sequences of gene regulatory network permutations for the article ‘Local genetic context shapes the function of a gene regulatory network’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:8951. mla: Nagy-Staron, Anna A. Sequences of Gene Regulatory Network Permutations for the Article “Local Genetic Context Shapes the Function of a Gene Regulatory Network.” Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8951. short: A.A. Nagy-Staron, (2020). contributor: - contributor_type: project_member first_name: Anna A id: 3ABC5BA6-F248-11E8-B48F-1D18A9856A87 last_name: Nagy-Staron - contributor_type: project_member first_name: Kathrin id: 3AEC8556-F248-11E8-B48F-1D18A9856A87 last_name: Tomasek - contributor_type: project_member first_name: Caroline last_name: Caruso Carter - contributor_type: project_member first_name: Elisabeth last_name: Sonnleitner - contributor_type: project_member first_name: Bor id: 350F91D2-F248-11E8-B48F-1D18A9856A87 last_name: Kavcic orcid: 0000-0001-6041-254X - contributor_type: project_member first_name: Tiago last_name: Paixão - contributor_type: project_manager first_name: Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 date_created: 2020-12-20T10:00:26Z date_published: 2020-12-21T00:00:00Z date_updated: 2024-02-21T12:41:57Z day: '21' ddc: - '570' department: - _id: CaGu doi: 10.15479/AT:ISTA:8951 file: - access_level: open_access checksum: f57862aeee1690c7effd2b1117d40ed1 content_type: text/plain creator: bkavcic date_created: 2020-12-20T09:52:52Z date_updated: 2020-12-20T09:52:52Z file_id: '8952' file_name: readme.txt file_size: 523 relation: main_file success: 1 - access_level: open_access checksum: f2c6d5232ec6d551b6993991e8689e9f content_type: application/octet-stream creator: bkavcic date_created: 2020-12-20T22:01:44Z date_updated: 2020-12-20T22:01:44Z file_id: '8954' file_name: GRNs Research depository.gb file_size: 379228 relation: main_file success: 1 file_date_updated: 2020-12-20T22:01:44Z has_accepted_license: '1' keyword: - Gene regulatory networks - Gene expression - Escherichia coli - Synthetic Biology month: '12' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '9283' relation: used_in_publication status: public status: public title: Sequences of gene regulatory network permutations for the article "Local genetic context shapes the function of a gene regulatory network" tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7383' abstract: - lang: eng text: Organisms cope with change by employing transcriptional regulators. However, when faced with rare environments, the evolution of transcriptional regulators and their promoters may be too slow. We ask whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. By real-time monitoring of gene copy number mutations in E. coli, we show that gene duplications and amplifications enable adaptation to fluctuating environments by rapidly generating copy number, and hence expression level, polymorphism. This ‘amplification-mediated gene expression tuning’ occurs on timescales similar to canonical gene regulation and can deal with rapid environmental changes. Mathematical modeling shows that amplifications also tune gene expression in stochastic environments where transcription factor-based schemes are hard to evolve or maintain. The fleeting nature of gene amplifications gives rise to a generic population-level mechanism that relies on genetic heterogeneity to rapidly tune expression of any gene, without leaving any genomic signature. article_processing_charge: No author: - first_name: Rok full_name: Grah, Rok id: 483E70DE-F248-11E8-B48F-1D18A9856A87 last_name: Grah orcid: 0000-0003-2539-3560 citation: ama: 'Grah R. Matlab scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression regulation. 2020. doi:10.15479/AT:ISTA:7383' apa: 'Grah, R. (2020). Matlab scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression regulation. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7383' chicago: 'Grah, Rok. “Matlab Scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression Regulation.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7383.' ieee: 'R. Grah, “Matlab scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression regulation.” Institute of Science and Technology Austria, 2020.' ista: 'Grah R. 2020. Matlab scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression regulation, Institute of Science and Technology Austria, 10.15479/AT:ISTA:7383.' mla: 'Grah, Rok. Matlab Scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression Regulation. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7383.' short: R. Grah, (2020). contributor: - contributor_type: project_leader first_name: Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 date_created: 2020-01-28T10:41:49Z date_published: 2020-01-28T00:00:00Z date_updated: 2024-02-21T12:42:31Z day: '28' department: - _id: CaGu - _id: GaTk doi: 10.15479/AT:ISTA:7383 file: - access_level: open_access checksum: 9d292cf5207b3829225f44c044cdb3fd content_type: application/zip creator: rgrah date_created: 2020-01-28T10:39:40Z date_updated: 2020-07-14T12:47:57Z file_id: '7384' file_name: Scripts.zip file_size: 73363365 relation: main_file - access_level: open_access checksum: 4076ceab32ef588cc233802bab24c1ab content_type: text/plain creator: rgrah date_created: 2020-01-28T10:39:30Z date_updated: 2020-07-14T12:47:57Z file_id: '7385' file_name: READ_ME_MAIN.txt file_size: 962 relation: main_file file_date_updated: 2020-07-14T12:47:57Z has_accepted_license: '1' keyword: - Matlab scripts - analysis of microfluidics - mathematical model month: '01' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '7652' relation: used_in_publication status: public status: public title: 'Matlab scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression regulation' type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '9222' article_processing_charge: No author: - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X citation: ama: 'Katsaros G. Transport data for: Site‐controlled uniform Ge/Si Hut wires with electrically tunable spin–orbit coupling. 2020. doi:10.15479/AT:ISTA:9222' apa: 'Katsaros, G. (2020). Transport data for: Site‐controlled uniform Ge/Si Hut wires with electrically tunable spin–orbit coupling. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:9222' chicago: 'Katsaros, Georgios. “Transport Data for: Site‐controlled Uniform Ge/Si Hut Wires with Electrically Tunable Spin–Orbit Coupling.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:9222.' ieee: 'G. Katsaros, “Transport data for: Site‐controlled uniform Ge/Si Hut wires with electrically tunable spin–orbit coupling.” Institute of Science and Technology Austria, 2020.' ista: 'Katsaros G. 2020. Transport data for: Site‐controlled uniform Ge/Si Hut wires with electrically tunable spin–orbit coupling, Institute of Science and Technology Austria, 10.15479/AT:ISTA:9222.' mla: 'Katsaros, Georgios. Transport Data for: Site‐controlled Uniform Ge/Si Hut Wires with Electrically Tunable Spin–Orbit Coupling. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:9222.' short: G. Katsaros, (2020). contributor: - contributor_type: research_group first_name: Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros date_created: 2021-03-05T18:00:47Z date_published: 2020-03-16T00:00:00Z date_updated: 2024-02-21T12:42:13Z day: '16' ddc: - '530' department: - _id: GeKa doi: 10.15479/AT:ISTA:9222 file: - access_level: open_access checksum: 41b66e195ed3dbd73077feee77b05652 content_type: application/x-zip-compressed creator: gkatsaro date_created: 2021-03-05T17:50:45Z date_updated: 2021-03-05T17:50:45Z file_id: '9223' file_name: DOI_SiteControlledHWs.zip file_size: 13317557 relation: main_file - access_level: open_access checksum: a1dc5f710ba4b3bb7f248195ba754ab2 content_type: text/plain creator: dernst date_created: 2021-03-10T07:31:50Z date_updated: 2021-03-10T07:31:50Z file_id: '9233' file_name: Readme.txt file_size: 3515 relation: main_file success: 1 file_date_updated: 2021-03-10T07:31:50Z has_accepted_license: '1' month: '03' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '7541' relation: used_in_publication status: public status: public title: 'Transport data for: Site‐controlled uniform Ge/Si Hut wires with electrically tunable spin–orbit coupling' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8366' abstract: - lang: eng text: "Fabrication of curved shells plays an important role in modern design, industry, and science. Among their remarkable properties are, for example, aesthetics of organic shapes, ability to evenly distribute loads, or efficient flow separation. They find applications across vast length scales ranging from sky-scraper architecture to microscopic devices. But, at\r\nthe same time, the design of curved shells and their manufacturing process pose a variety of challenges. In this thesis, they are addressed from several perspectives. In particular, this thesis presents approaches based on the transformation of initially flat sheets into the target curved surfaces. This involves problems of interactive design of shells with nontrivial mechanical constraints, inverse design of complex structural materials, and data-driven modeling of delicate and time-dependent physical properties. At the same time, two newly-developed self-morphing mechanisms targeting flat-to-curved transformation are presented.\r\nIn architecture, doubly curved surfaces can be realized as cold bent glass panelizations. Originally flat glass panels are bent into frames and remain stressed. This is a cost-efficient fabrication approach compared to hot bending, when glass panels are shaped plastically. However such constructions are prone to breaking during bending, and it is highly\r\nnontrivial to navigate the design space, keeping the panels fabricable and aesthetically pleasing at the same time. We introduce an interactive design system for cold bent glass façades, while previously even offline optimization for such scenarios has not been sufficiently developed. Our method is based on a deep learning approach providing quick\r\nand high precision estimation of glass panel shape and stress while handling the shape\r\nmultimodality.\r\nFabrication of smaller objects of scales below 1 m, can also greatly benefit from shaping originally flat sheets. In this respect, we designed new self-morphing shell mechanisms transforming from an initial flat state to a doubly curved state with high precision and detail. Our so-called CurveUps demonstrate the encodement of the geometric information\r\ninto the shell. Furthermore, we explored the frontiers of programmable materials and showed how temporal information can additionally be encoded into a flat shell. This allows prescribing deformation sequences for doubly curved surfaces and, thus, facilitates self-collision avoidance enabling complex shapes and functionalities otherwise impossible.\r\nBoth of these methods include inverse design tools keeping the user in the design loop." acknowledged_ssus: - _id: M-Shop - _id: ScienComp acknowledgement: "During the work on this thesis, I received substantial support from IST Austria’s scientific service units. A big thank you to Todor Asenov and other Miba Machine Shop team members for their help with fabrication of experimental prototypes. In addition, I would like to thank Scientific Computing team for the support with high performance computing.\r\nFinancial support was provided by the European Research Council (ERC) under grant agreement No 715767 - MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling, which I gratefully acknowledge." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 citation: ama: 'Guseinov R. Computational design of curved thin shells: From glass façades to programmable matter. 2020. doi:10.15479/AT:ISTA:8366' apa: 'Guseinov, R. (2020). Computational design of curved thin shells: From glass façades to programmable matter. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8366' chicago: 'Guseinov, Ruslan. “Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8366.' ieee: 'R. Guseinov, “Computational design of curved thin shells: From glass façades to programmable matter,” Institute of Science and Technology Austria, 2020.' ista: 'Guseinov R. 2020. Computational design of curved thin shells: From glass façades to programmable matter. Institute of Science and Technology Austria.' mla: 'Guseinov, Ruslan. Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8366.' short: 'R. Guseinov, Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter, Institute of Science and Technology Austria, 2020.' date_created: 2020-09-10T16:19:55Z date_published: 2020-09-21T00:00:00Z date_updated: 2024-02-21T12:44:29Z day: '21' ddc: - '000' degree_awarded: PhD department: - _id: BeBi doi: 10.15479/AT:ISTA:8366 ec_funded: 1 file: - access_level: open_access checksum: f8da89553da36037296b0a80f14ebf50 content_type: application/pdf creator: rguseino date_created: 2020-09-10T16:11:49Z date_updated: 2020-09-10T16:11:49Z file_id: '8367' file_name: thesis_rguseinov.pdf file_size: 70950442 relation: main_file success: 1 - access_level: closed checksum: e8fd944c960c20e0e27e6548af69121d content_type: application/x-zip-compressed creator: rguseino date_created: 2020-09-11T09:39:48Z date_updated: 2020-09-16T15:11:01Z file_id: '8374' file_name: thesis_source.zip file_size: 76207597 relation: source_file file_date_updated: 2020-09-16T15:11:01Z has_accepted_license: '1' keyword: - computer-aided design - shape modeling - self-morphing - mechanical engineering language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '118' project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication_identifier: isbn: - 978-3-99078-010-7 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7151' relation: research_data status: deleted - id: '7262' relation: part_of_dissertation status: public - id: '8562' relation: part_of_dissertation status: public - id: '1001' relation: part_of_dissertation status: public - id: '8375' relation: research_data status: public status: public supervisor: - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 title: 'Computational design of curved thin shells: From glass façades to programmable matter' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8562' abstract: - lang: eng text: "Cold bent glass is a promising and cost-efficient method for realizing doubly curved glass facades. They are produced by attaching planar glass sheets to curved frames and require keeping the occurring stress within safe limits.\r\nHowever, it is very challenging to navigate the design space of cold bent glass panels due to the fragility of the material, which impedes the form-finding for practically feasible and aesthetically pleasing cold bent glass facades. We propose an interactive, data-driven approach for designing cold bent glass facades that can be seamlessly integrated into a typical architectural design pipeline. Our method allows non-expert users to interactively edit a parametric surface while providing real-time feedback on the deformed shape and maximum stress of cold bent glass panels. Designs are automatically refined to minimize several fairness criteria while maximal stresses are kept within glass limits. We achieve interactive frame rates by using a differentiable Mixture Density Network trained from more than a million simulations. Given a curved boundary, our regression model is capable of handling multistable\r\nconfigurations and accurately predicting the equilibrium shape of the panel and its corresponding maximal stress. We show predictions are highly accurate and validate our results with a physical realization of a cold bent glass surface." acknowledged_ssus: - _id: ScienComp acknowledgement: "We thank IST Austria’s Scientific Computing team for their support, Corinna Datsiou and Sophie Pennetier for their expert input on the practical applications of cold bent glass, and Zaha Hadid Architects and Waagner Biro for providing the architectural datasets. Photo of Fondation Louis Vuitton by Francisco Anzola / CC BY 2.0 / cropped.\r\nPhoto of Opus by Danica O. Kus. This project has received funding from the European Union’s\r\nHorizon 2020 research and innovation program under grant agreement No 675789 - Algebraic Representations in Computer-Aided Design for complEx Shapes (ARCADES), from the European Research Council (ERC) under grant agreement No 715767 - MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling, and SFB-Transregio “Discretization in Geometry and Dynamics” through grant I 2978 of the Austrian Science Fund (FWF). F. Rist and K. Gavriil have been partially supported by KAUST baseline funding." article_number: '208' article_processing_charge: No article_type: original author: - first_name: Konstantinos full_name: Gavriil, Konstantinos last_name: Gavriil - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - first_name: Jesus full_name: Perez Rodriguez, Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - first_name: Davide full_name: Pellis, Davide last_name: Pellis - first_name: Paul M full_name: Henderson, Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 - first_name: Florian full_name: Rist, Florian last_name: Rist - first_name: Helmut full_name: Pottmann, Helmut last_name: Pottmann - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Gavriil K, Guseinov R, Perez Rodriguez J, et al. Computational design of cold bent glass façades. ACM Transactions on Graphics. 2020;39(6). doi:10.1145/3414685.3417843 apa: Gavriil, K., Guseinov, R., Perez Rodriguez, J., Pellis, D., Henderson, P. M., Rist, F., … Bickel, B. (2020). Computational design of cold bent glass façades. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3414685.3417843 chicago: Gavriil, Konstantinos, Ruslan Guseinov, Jesus Perez Rodriguez, Davide Pellis, Paul M Henderson, Florian Rist, Helmut Pottmann, and Bernd Bickel. “Computational Design of Cold Bent Glass Façades.” ACM Transactions on Graphics. Association for Computing Machinery, 2020. https://doi.org/10.1145/3414685.3417843. ieee: K. Gavriil et al., “Computational design of cold bent glass façades,” ACM Transactions on Graphics, vol. 39, no. 6. Association for Computing Machinery, 2020. ista: Gavriil K, Guseinov R, Perez Rodriguez J, Pellis D, Henderson PM, Rist F, Pottmann H, Bickel B. 2020. Computational design of cold bent glass façades. ACM Transactions on Graphics. 39(6), 208. mla: Gavriil, Konstantinos, et al. “Computational Design of Cold Bent Glass Façades.” ACM Transactions on Graphics, vol. 39, no. 6, 208, Association for Computing Machinery, 2020, doi:10.1145/3414685.3417843. short: K. Gavriil, R. Guseinov, J. Perez Rodriguez, D. Pellis, P.M. Henderson, F. Rist, H. Pottmann, B. Bickel, ACM Transactions on Graphics 39 (2020). date_created: 2020-09-23T11:30:02Z date_published: 2020-11-26T00:00:00Z date_updated: 2024-02-21T12:43:21Z day: '26' ddc: - '000' department: - _id: BeBi doi: 10.1145/3414685.3417843 ec_funded: 1 external_id: arxiv: - '2009.03667' isi: - '000595589100048' file: - access_level: open_access checksum: c7f67717ad74e670b7daeae732abe151 content_type: application/pdf creator: bbickel date_created: 2023-05-23T20:54:43Z date_updated: 2023-05-23T20:54:43Z file_id: '13084' file_name: coldglass.pdf file_size: 28964641 relation: main_file success: 1 file_date_updated: 2023-05-23T20:54:43Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '6' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/bend-dont-break/ record: - id: '8366' relation: dissertation_contains status: public - id: '8761' relation: research_data status: public scopus_import: '1' status: public title: Computational design of cold bent glass façades type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 39 year: '2020' ... --- _id: '8203' abstract: - lang: eng text: Using inelastic cotunneling spectroscopy we observe a zero field splitting within the spin triplet manifold of Ge hut wire quantum dots. The states with spin ±1 in the confinement direction are energetically favored by up to 55 μeV compared to the spin 0 triplet state because of the strong spin–orbit coupling. The reported effect should be observable in a broad class of strongly confined hole quantum-dot systems and might need to be considered when operating hole spin qubits. acknowledged_ssus: - _id: NanoFab - _id: M-Shop acknowledgement: "We acknowledge G. Burkard, V. N. Golovach, C. Kloeffel, D.Loss, P. Rabl, and M. Rancič ́ for helpful discussions. We\r\nfurther acknowledge T. Adletzberger, J. Aguilera, T. Asenov, S. Bagiante, T. Menner, L. Shafeek, P. Taus, P. Traunmüller, and D. Waldhausl for their invaluable assistance. This research was supported by the Scientific Service Units of IST Austria through resources provided by the MIBA Machine Shop and the nanofabrication facility, by the FWF-P 32235 project, by the National Key R&D Program of China (2016YFA0301701, 2016YFA0300600), and by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 862046. All data of this publication are available at 10.15479/AT:ISTA:7689." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X - first_name: Josip full_name: Kukucka, Josip id: 3F5D8856-F248-11E8-B48F-1D18A9856A87 last_name: Kukucka - first_name: Lada full_name: Vukušić, Lada id: 31E9F056-F248-11E8-B48F-1D18A9856A87 last_name: Vukušić orcid: 0000-0003-2424-8636 - first_name: Hannes full_name: Watzinger, Hannes id: 35DF8E50-F248-11E8-B48F-1D18A9856A87 last_name: Watzinger - first_name: Fei full_name: Gao, Fei last_name: Gao - first_name: Ting full_name: Wang, Ting last_name: Wang orcid: 0000-0002-4619-9575 - first_name: Jian-Jun full_name: Zhang, Jian-Jun last_name: Zhang - first_name: Karsten full_name: Held, Karsten last_name: Held citation: ama: Katsaros G, Kukucka J, Vukušić L, et al. Zero field splitting of heavy-hole states in quantum dots. Nano Letters. 2020;20(7):5201-5206. doi:10.1021/acs.nanolett.0c01466 apa: Katsaros, G., Kukucka, J., Vukušić, L., Watzinger, H., Gao, F., Wang, T., … Held, K. (2020). Zero field splitting of heavy-hole states in quantum dots. Nano Letters. American Chemical Society. https://doi.org/10.1021/acs.nanolett.0c01466 chicago: Katsaros, Georgios, Josip Kukucka, Lada Vukušić, Hannes Watzinger, Fei Gao, Ting Wang, Jian-Jun Zhang, and Karsten Held. “Zero Field Splitting of Heavy-Hole States in Quantum Dots.” Nano Letters. American Chemical Society, 2020. https://doi.org/10.1021/acs.nanolett.0c01466. ieee: G. Katsaros et al., “Zero field splitting of heavy-hole states in quantum dots,” Nano Letters, vol. 20, no. 7. American Chemical Society, pp. 5201–5206, 2020. ista: Katsaros G, Kukucka J, Vukušić L, Watzinger H, Gao F, Wang T, Zhang J-J, Held K. 2020. Zero field splitting of heavy-hole states in quantum dots. Nano Letters. 20(7), 5201–5206. mla: Katsaros, Georgios, et al. “Zero Field Splitting of Heavy-Hole States in Quantum Dots.” Nano Letters, vol. 20, no. 7, American Chemical Society, 2020, pp. 5201–06, doi:10.1021/acs.nanolett.0c01466. short: G. Katsaros, J. Kukucka, L. Vukušić, H. Watzinger, F. Gao, T. Wang, J.-J. Zhang, K. Held, Nano Letters 20 (2020) 5201–5206. date_created: 2020-08-06T09:25:04Z date_published: 2020-06-01T00:00:00Z date_updated: 2024-02-21T12:44:01Z day: '01' ddc: - '530' department: - _id: GeKa doi: 10.1021/acs.nanolett.0c01466 ec_funded: 1 external_id: isi: - '000548893200066' pmid: - '32479090' file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2020-08-06T09:35:37Z date_updated: 2020-08-06T09:35:37Z file_id: '8204' file_name: 2020_NanoLetters_Katsaros.pdf file_size: 3308906 relation: main_file success: 1 file_date_updated: 2020-08-06T09:35:37Z has_accepted_license: '1' intvolume: ' 20' isi: 1 issue: '7' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 5201-5206 pmid: 1 project: - _id: 237B3DA4-32DE-11EA-91FC-C7463DDC885E call_identifier: FWF grant_number: P32235 name: Towards scalable hut wire quantum devices - _id: 237E5020-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862046' name: TOPOLOGICALLY PROTECTED AND SCALABLE QUANTUM BITS publication: Nano Letters publication_identifier: eissn: - 1530-6992 issn: - 1530-6984 publication_status: published publisher: American Chemical Society quality_controlled: '1' related_material: record: - id: '7689' relation: research_data status: public scopus_import: '1' status: public title: Zero field splitting of heavy-hole states in quantum dots tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 20 year: '2020' ... --- _id: '8740' abstract: - lang: eng text: In vitro work revealed that excitatory synaptic inputs to hippocampal inhibitory interneurons could undergo Hebbian, associative, or non-associative plasticity. Both behavioral and learning-dependent reorganization of these connections has also been demonstrated by measuring spike transmission probabilities in pyramidal cell-interneuron spike cross-correlations that indicate monosynaptic connections. Here we investigated the activity-dependent modification of these connections during exploratory behavior in rats by optogenetically inhibiting pyramidal cell and interneuron subpopulations. Light application and associated firing alteration of pyramidal and interneuron populations led to lasting changes in pyramidal-interneuron connection weights as indicated by spike transmission changes. Spike transmission alterations were predicted by the light-mediated changes in the number of pre- and postsynaptic spike pairing events and by firing rate changes of interneurons but not pyramidal cells. This work demonstrates the presence of activity-dependent associative and non-associative reorganization of pyramidal-interneuron connections triggered by the optogenetic modification of the firing rate and spike synchrony of cells. acknowledgement: We thank Michele Nardin and Federico Stella for comments on an earlier version of the manuscript. K Deisseroth for providing the pAAV-CaMKIIα::eNpHR3.0-YFP plasmid through Addgene. E Boyden for providing AAV2/1.CaMKII::ArchT.GFP.WPRE.SV40 plasmid through Penn Vector Core. This work was supported by the Austrian Science Fund (I02072 and I03713) and a Swiss National Science Foundation grant to PS. The authors declare no conflicts of interest. article_number: '61106' article_processing_charge: No article_type: original author: - first_name: Igor full_name: Gridchyn, Igor id: 4B60654C-F248-11E8-B48F-1D18A9856A87 last_name: Gridchyn orcid: 0000-0002-1807-1929 - first_name: Philipp full_name: Schönenberger, Philipp id: 3B9D816C-F248-11E8-B48F-1D18A9856A87 last_name: Schönenberger - first_name: Joseph full_name: O'Neill, Joseph id: 426376DC-F248-11E8-B48F-1D18A9856A87 last_name: O'Neill - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Gridchyn I, Schönenberger P, O’Neill J, Csicsvari JL. Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior. eLife. 2020;9. doi:10.7554/eLife.61106 apa: Gridchyn, I., Schönenberger, P., O’Neill, J., & Csicsvari, J. L. (2020). Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.61106 chicago: Gridchyn, Igor, Philipp Schönenberger, Joseph O’Neill, and Jozsef L Csicsvari. “Optogenetic Inhibition-Mediated Activity-Dependent Modification of CA1 Pyramidal-Interneuron Connections during Behavior.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/eLife.61106. ieee: I. Gridchyn, P. Schönenberger, J. O’Neill, and J. L. Csicsvari, “Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior,” eLife, vol. 9. eLife Sciences Publications, 2020. ista: Gridchyn I, Schönenberger P, O’Neill J, Csicsvari JL. 2020. Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior. eLife. 9, 61106. mla: Gridchyn, Igor, et al. “Optogenetic Inhibition-Mediated Activity-Dependent Modification of CA1 Pyramidal-Interneuron Connections during Behavior.” ELife, vol. 9, 61106, eLife Sciences Publications, 2020, doi:10.7554/eLife.61106. short: I. Gridchyn, P. Schönenberger, J. O’Neill, J.L. Csicsvari, ELife 9 (2020). date_created: 2020-11-08T23:01:25Z date_published: 2020-10-05T00:00:00Z date_updated: 2024-02-21T12:43:40Z day: '05' ddc: - '570' department: - _id: JoCs doi: 10.7554/eLife.61106 external_id: isi: - '000584369000001' file: - access_level: open_access checksum: 6a7b0543c440f4c000a1864e69377d95 content_type: application/pdf creator: dernst date_created: 2020-11-09T09:17:40Z date_updated: 2020-11-09T09:17:40Z file_id: '8749' file_name: 2020_eLife_Gridchyn.pdf file_size: 447669 relation: main_file success: 1 file_date_updated: 2020-11-09T09:17:40Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 257D4372-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I2072-B27 name: Interneuron plasticity during spatial learning - _id: 2654F984-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03713 name: Interneuro Plasticity During Spatial Learning publication: eLife publication_identifier: eissn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: record: - id: '8563' relation: research_data status: public scopus_import: '1' status: public title: Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '8375' abstract: - lang: eng text: 'Supplementary movies showing the following sequences for spatio-temporarily programmed shells: input geometry and actuation time landscape; comparison of morphing processes from a camera recording and a simulation; final actuated shape.' article_processing_charge: No author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 citation: ama: 'Guseinov R. Supplementary data for “Computational design of curved thin shells: from glass façades to programmable matter.” 2020. doi:10.15479/AT:ISTA:8375' apa: 'Guseinov, R. (2020). Supplementary data for “Computational design of curved thin shells: from glass façades to programmable matter.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8375' chicago: 'Guseinov, Ruslan. “Supplementary Data for ‘Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter.’” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8375.' ieee: 'R. Guseinov, “Supplementary data for ‘Computational design of curved thin shells: from glass façades to programmable matter.’” Institute of Science and Technology Austria, 2020.' ista: 'Guseinov R. 2020. Supplementary data for ‘Computational design of curved thin shells: from glass façades to programmable matter’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:8375.' mla: 'Guseinov, Ruslan. Supplementary Data for “Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter.” Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8375.' short: R. Guseinov, (2020). contributor: - contributor_type: researcher first_name: Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - contributor_type: researcher first_name: Connor last_name: McMahan - contributor_type: researcher first_name: Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - contributor_type: researcher first_name: Chiara last_name: Daraio - contributor_type: researcher first_name: Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 date_created: 2020-09-11T09:52:54Z date_published: 2020-09-21T00:00:00Z date_updated: 2024-02-21T12:44:29Z day: '21' ddc: - '000' department: - _id: BeBi doi: 10.15479/AT:ISTA:8375 ec_funded: 1 file: - access_level: open_access checksum: 4029ffd65fb82ef2366b2fc2a4908e16 content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:21Z date_updated: 2020-09-11T09:45:21Z file_id: '8376' file_name: supplementary_movie_1.mp4 file_size: 29214988 relation: main_file success: 1 - access_level: open_access checksum: 8ed03b04d80f1a4e622cb22e6100afd8 content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:25Z date_updated: 2020-09-11T09:45:25Z file_id: '8377' file_name: supplementary_movie_2.mp4 file_size: 28449475 relation: main_file success: 1 - access_level: open_access checksum: ad6864afb5e694e5c52a88fba4e02eea content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:28Z date_updated: 2020-09-11T09:45:28Z file_id: '8378' file_name: supplementary_movie_3.mp4 file_size: 26315853 relation: main_file success: 1 - access_level: open_access checksum: b079cef7871fe1afb69af0e2b099f3b1 content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:33Z date_updated: 2020-09-11T09:45:33Z file_id: '8379' file_name: supplementary_movie_4.mp4 file_size: 25198755 relation: main_file success: 1 - access_level: open_access checksum: 9d1d48a8ed5c109a999c51b044ee523d content_type: video/mp4 creator: rguseino date_created: 2020-09-11T09:45:36Z date_updated: 2020-09-11T09:45:36Z file_id: '8380' file_name: supplementary_movie_5.mp4 file_size: 29011354 relation: main_file success: 1 - access_level: open_access checksum: d414d0059e982d752d218756b3c3ce05 content_type: text/plain creator: rguseino date_created: 2020-09-11T09:52:36Z date_updated: 2020-09-11T09:52:36Z file_id: '8381' file_name: readme.txt file_size: 586 relation: main_file success: 1 file_date_updated: 2020-09-11T09:52:36Z has_accepted_license: '1' month: '09' oa: 1 oa_version: Published Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publisher: Institute of Science and Technology Austria related_material: record: - id: '8366' relation: used_in_publication status: public status: public title: 'Supplementary data for "Computational design of curved thin shells: from glass façades to programmable matter"' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7689' abstract: - lang: eng text: "These are the supplementary research data to the publication \"Zero field splitting of heavy-hole states in quantum dots\". All matrix files have the same format. Within each column the bias voltage is changed. Each column corresponds to either a different gate voltage or magnetic field. The voltage values are given in mV, the current values in pA. Find a specific description in the included Readme file.\r\n" article_processing_charge: No author: - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X citation: ama: Katsaros G. Supplementary data for “Zero field splitting of heavy-hole states in quantum dots.” 2020. doi:10.15479/AT:ISTA:7689 apa: Katsaros, G. (2020). Supplementary data for “Zero field splitting of heavy-hole states in quantum dots.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7689 chicago: Katsaros, Georgios. “Supplementary Data for ‘Zero Field Splitting of Heavy-Hole States in Quantum Dots.’” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7689. ieee: G. Katsaros, “Supplementary data for ‘Zero field splitting of heavy-hole states in quantum dots.’” Institute of Science and Technology Austria, 2020. ista: Katsaros G. 2020. Supplementary data for ‘Zero field splitting of heavy-hole states in quantum dots’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:7689. mla: Katsaros, Georgios. Supplementary Data for “Zero Field Splitting of Heavy-Hole States in Quantum Dots.” Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7689. short: G. Katsaros, (2020). contributor: - contributor_type: contact_person first_name: Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros date_created: 2020-05-01T15:14:46Z date_published: 2020-05-01T00:00:00Z date_updated: 2024-02-21T12:44:02Z day: '01' ddc: - '530' department: - _id: GeKa doi: 10.15479/AT:ISTA:7689 ec_funded: 1 file: - access_level: open_access checksum: d23c0cb9e2d19e14e2f902b88b97c05d content_type: application/x-zip-compressed creator: gkatsaro date_created: 2020-05-01T15:13:28Z date_updated: 2020-07-14T12:48:02Z file_id: '7786' file_name: DOI_ZeroFieldSplitting.zip file_size: 5514403 relation: main_file file_date_updated: 2020-07-14T12:48:02Z has_accepted_license: '1' month: '05' oa: 1 oa_version: Published Version project: - _id: 237E5020-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862046' name: TOPOLOGICALLY PROTECTED AND SCALABLE QUANTUM BITS - _id: 237B3DA4-32DE-11EA-91FC-C7463DDC885E call_identifier: FWF grant_number: P32235 name: Towards scalable hut wire quantum devices publisher: Institute of Science and Technology Austria related_material: record: - id: '8203' relation: used_in_publication status: public status: public title: Supplementary data for "Zero field splitting of heavy-hole states in quantum dots" tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8761' acknowledged_ssus: - _id: ScienComp article_processing_charge: No author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 citation: ama: Guseinov R. Supplementary data for “Computational design of cold bent glass façades.” 2020. doi:10.15479/AT:ISTA:8761 apa: Guseinov, R. (2020). Supplementary data for “Computational design of cold bent glass façades.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8761 chicago: Guseinov, Ruslan. “Supplementary Data for ‘Computational Design of Cold Bent Glass Façades.’” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8761. ieee: R. Guseinov, “Supplementary data for ‘Computational design of cold bent glass façades.’” Institute of Science and Technology Austria, 2020. ista: Guseinov R. 2020. Supplementary data for ‘Computational design of cold bent glass façades’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:8761. mla: Guseinov, Ruslan. Supplementary Data for “Computational Design of Cold Bent Glass Façades.” Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8761. short: R. Guseinov, (2020). contributor: - contributor_type: researcher first_name: Konstantinos last_name: Gavriil - contributor_type: researcher first_name: Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - contributor_type: researcher first_name: Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - contributor_type: researcher first_name: Davide last_name: Pellis - contributor_type: researcher first_name: Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 - contributor_type: researcher first_name: Florian last_name: Rist - contributor_type: researcher first_name: Helmut last_name: Pottmann - contributor_type: researcher first_name: Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 date_created: 2020-11-16T10:47:18Z date_published: 2020-11-23T00:00:00Z date_updated: 2024-02-21T12:43:22Z day: '23' ddc: - '000' department: - _id: BeBi doi: 10.15479/AT:ISTA:8761 ec_funded: 1 file: - access_level: open_access checksum: f5ae57b97017b9f61081032703361233 content_type: application/x-gzip creator: rguseino date_created: 2020-11-16T10:31:29Z date_updated: 2020-11-16T10:31:29Z file_id: '8762' file_name: mdn_model.tar.gz file_size: 15378270 relation: main_file success: 1 - access_level: open_access checksum: b0d25e04060ee78c585ee2f23542c744 content_type: application/x-gzip creator: rguseino date_created: 2020-11-16T10:43:23Z date_updated: 2020-11-16T10:43:23Z file_id: '8763' file_name: optimal_panels_data.tar.gz file_size: 615387734 relation: main_file success: 1 - access_level: open_access checksum: 69c1dde3434ada86d125e0c2588caf1e content_type: text/plain creator: rguseino date_created: 2020-11-18T10:04:59Z date_updated: 2020-11-18T10:04:59Z file_id: '8770' file_name: readme.txt file_size: 1228 relation: main_file success: 1 file_date_updated: 2020-11-18T10:04:59Z has_accepted_license: '1' month: '11' oa: 1 oa_version: Published Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publisher: Institute of Science and Technology Austria related_material: link: - relation: software url: https://github.com/russelmann/cold-glass-acm record: - id: '8562' relation: used_in_publication status: public status: public title: Supplementary data for "Computational design of cold bent glass façades" tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8563' abstract: - lang: eng text: "Supplementary data provided for the provided for the publication:\r\nIgor Gridchyn , Philipp Schoenenberger , Joseph O'Neill , Jozsef Csicsvari (2020) Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior. Elife." article_processing_charge: No author: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 - first_name: Igor full_name: Gridchyn, Igor id: 4B60654C-F248-11E8-B48F-1D18A9856A87 last_name: Gridchyn orcid: 0000-0002-1807-1929 - first_name: Philipp full_name: Schönenberger, Philipp id: 3B9D816C-F248-11E8-B48F-1D18A9856A87 last_name: Schönenberger citation: ama: Csicsvari JL, Gridchyn I, Schönenberger P. Optogenetic alteration of hippocampal network activity. 2020. doi:10.15479/AT:ISTA:8563 apa: Csicsvari, J. L., Gridchyn, I., & Schönenberger, P. (2020). Optogenetic alteration of hippocampal network activity. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8563 chicago: Csicsvari, Jozsef L, Igor Gridchyn, and Philipp Schönenberger. “Optogenetic Alteration of Hippocampal Network Activity.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8563. ieee: J. L. Csicsvari, I. Gridchyn, and P. Schönenberger, “Optogenetic alteration of hippocampal network activity.” Institute of Science and Technology Austria, 2020. ista: Csicsvari JL, Gridchyn I, Schönenberger P. 2020. Optogenetic alteration of hippocampal network activity, Institute of Science and Technology Austria, 10.15479/AT:ISTA:8563. mla: Csicsvari, Jozsef L., et al. Optogenetic Alteration of Hippocampal Network Activity. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8563. short: J.L. Csicsvari, I. Gridchyn, P. Schönenberger, (2020). contributor: - contributor_type: project_leader first_name: Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 date_created: 2020-09-23T14:39:54Z date_published: 2020-10-19T00:00:00Z date_updated: 2024-02-21T12:43:41Z day: '19' ddc: - '570' department: - _id: JoCs doi: 10.15479/AT:ISTA:8563 file: - access_level: open_access checksum: a16098a6d172f9c42ab5af5f6991668c content_type: application/x-compressed creator: jozsef date_created: 2020-09-23T14:36:17Z date_updated: 2020-09-23T14:36:17Z file_id: '8564' file_name: upload.tgz file_size: 145243906 relation: main_file success: 1 - access_level: open_access checksum: 0bfc54b7e14c0694cd081617318ba606 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: jozsef date_created: 2020-10-19T10:12:29Z date_updated: 2020-10-19T10:12:29Z file_id: '8675' file_name: redme.docx file_size: 11648 relation: main_file success: 1 file_date_updated: 2020-10-19T10:12:29Z has_accepted_license: '1' month: '10' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '8740' relation: used_in_publication status: public status: public title: Optogenetic alteration of hippocampal network activity tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7262' abstract: - lang: eng text: Advances in shape-morphing materials, such as hydrogels, shape-memory polymers and light-responsive polymers have enabled prescribing self-directed deformations of initially flat geometries. However, most proposed solutions evolve towards a target geometry without considering time-dependent actuation paths. To achieve more complex geometries and avoid self-collisions, it is critical to encode a spatial and temporal shape evolution within the initially flat shell. Recent realizations of time-dependent morphing are limited to the actuation of few, discrete hinges and cannot form doubly curved surfaces. Here, we demonstrate a method for encoding temporal shape evolution in architected shells that assume complex shapes and doubly curved geometries. The shells are non-periodic tessellations of pre-stressed contractile unit cells that soften in water at rates prescribed locally by mesostructure geometry. The ensuing midplane contraction is coupled to the formation of encoded curvatures. We propose an inverse design tool based on a data-driven model for unit cells’ temporal responses. article_number: '237' article_processing_charge: No article_type: original author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - first_name: Connor full_name: McMahan, Connor last_name: McMahan - first_name: Jesus full_name: Perez Rodriguez, Jesus id: 2DC83906-F248-11E8-B48F-1D18A9856A87 last_name: Perez Rodriguez - first_name: Chiara full_name: Daraio, Chiara last_name: Daraio - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Guseinov R, McMahan C, Perez Rodriguez J, Daraio C, Bickel B. Programming temporal morphing of self-actuated shells. Nature Communications. 2020;11. doi:10.1038/s41467-019-14015-2 apa: Guseinov, R., McMahan, C., Perez Rodriguez, J., Daraio, C., & Bickel, B. (2020). Programming temporal morphing of self-actuated shells. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-019-14015-2 chicago: Guseinov, Ruslan, Connor McMahan, Jesus Perez Rodriguez, Chiara Daraio, and Bernd Bickel. “Programming Temporal Morphing of Self-Actuated Shells.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-019-14015-2. ieee: R. Guseinov, C. McMahan, J. Perez Rodriguez, C. Daraio, and B. Bickel, “Programming temporal morphing of self-actuated shells,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Guseinov R, McMahan C, Perez Rodriguez J, Daraio C, Bickel B. 2020. Programming temporal morphing of self-actuated shells. Nature Communications. 11, 237. mla: Guseinov, Ruslan, et al. “Programming Temporal Morphing of Self-Actuated Shells.” Nature Communications, vol. 11, 237, Springer Nature, 2020, doi:10.1038/s41467-019-14015-2. short: R. Guseinov, C. McMahan, J. Perez Rodriguez, C. Daraio, B. Bickel, Nature Communications 11 (2020). date_created: 2020-01-13T16:54:26Z date_published: 2020-01-13T00:00:00Z date_updated: 2024-02-21T12:45:02Z day: '13' ddc: - '000' department: - _id: BeBi doi: 10.1038/s41467-019-14015-2 ec_funded: 1 external_id: isi: - '000511916800015' file: - access_level: open_access checksum: 7db23fef2f4cda712f17f1004116ddff content_type: application/pdf creator: rguseino date_created: 2020-01-15T14:35:34Z date_updated: 2020-07-14T12:47:55Z file_id: '7336' file_name: 2020_NatureComm_Guseinov.pdf file_size: 1315270 relation: main_file file_date_updated: 2020-07-14T12:47:55Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - Design - Synthesis and processing - Mechanical engineering - Polymers language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/geometry-meets-time/ record: - id: '8366' relation: dissertation_contains status: public - id: '7154' relation: research_data status: public scopus_import: '1' status: public title: Programming temporal morphing of self-actuated shells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '14592' abstract: - lang: eng text: Cryo-electron microscopy (cryo-EM) of cellular specimens provides insights into biological processes and structures within a native context. However, a major challenge still lies in the efficient and reproducible preparation of adherent cells for subsequent cryo-EM analysis. This is due to the sensitivity of many cellular specimens to the varying seeding and culturing conditions required for EM experiments, the often limited amount of cellular material and also the fragility of EM grids and their substrate. Here, we present low-cost and reusable 3D printed grid holders, designed to improve specimen preparation when culturing challenging cellular samples directly on grids. The described grid holders increase cell culture reproducibility and throughput, and reduce the resources required for cell culturing. We show that grid holders can be integrated into various cryo-EM workflows, including micro-patterning approaches to control cell seeding on grids, and for generating samples for cryo-focused ion beam milling and cryo-electron tomography experiments. Their adaptable design allows for the generation of specialized grid holders customized to a large variety of applications. article_processing_charge: No author: - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 citation: ama: Schur FK. STL-files for 3D-printed grid holders described in  Fäßler F, Zens B, et al.; 3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy. 2020. doi:10.15479/AT:ISTA:14592 apa: Schur, F. K. (2020). STL-files for 3D-printed grid holders described in  Fäßler F, Zens B, et al.; 3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:14592 chicago: Schur, Florian KM. “STL-Files for 3D-Printed Grid Holders Described in  Fäßler F, Zens B, et Al.; 3D Printed Cell Culture Grid Holders for Improved Cellular Specimen Preparation in Cryo-Electron Microscopy.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:14592. ieee: F. K. Schur, “STL-files for 3D-printed grid holders described in  Fäßler F, Zens B, et al.; 3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy.” Institute of Science and Technology Austria, 2020. ista: Schur FK. 2020. STL-files for 3D-printed grid holders described in  Fäßler F, Zens B, et al.; 3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy, Institute of Science and Technology Austria, 10.15479/AT:ISTA:14592. mla: Schur, Florian KM. STL-Files for 3D-Printed Grid Holders Described in  Fäßler F, Zens B, et Al.; 3D Printed Cell Culture Grid Holders for Improved Cellular Specimen Preparation in Cryo-Electron Microscopy. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:14592. short: F.K. Schur, (2020). contributor: - contributor_type: researcher first_name: Florian id: 404F5528-F248-11E8-B48F-1D18A9856A87 last_name: Fäßler orcid: 0000-0001-7149-769X - contributor_type: researcher first_name: Bettina id: 45FD126C-F248-11E8-B48F-1D18A9856A87 last_name: Zens - contributor_type: researcher first_name: Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild - contributor_type: researcher first_name: Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 date_created: 2023-11-22T15:00:57Z date_published: 2020-12-01T00:00:00Z date_updated: 2024-02-21T12:44:48Z day: '01' ddc: - '570' department: - _id: FlSc doi: 10.15479/AT:ISTA:14592 file: - access_level: open_access checksum: 0108616e2a59e51879ea51299a29b091 content_type: application/zip creator: fschur date_created: 2023-11-22T14:58:44Z date_updated: 2023-11-22T14:58:44Z file_id: '14593' file_name: 3Dprint-files_download_v2.zip file_size: 49297 relation: main_file success: 1 - access_level: open_access checksum: 4c66ddedee4d01c1c4a7978208350cfc content_type: text/plain creator: cchlebak date_created: 2023-12-01T10:39:59Z date_updated: 2023-12-01T10:39:59Z file_id: '14637' file_name: readme.txt file_size: 641 relation: main_file success: 1 file_date_updated: 2023-12-01T10:39:59Z has_accepted_license: '1' month: '12' oa: 1 oa_version: Published Version project: - _id: 9B954C5C-BA93-11EA-9121-9846C619BF3A grant_number: P33367 name: Structure and isoform diversity of the Arp2/3 complex publisher: Institute of Science and Technology Austria related_material: record: - id: '8586' relation: research_data status: public status: public title: STL-files for 3D-printed grid holders described in Fäßler F, Zens B, et al.; 3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7213' abstract: - lang: eng text: Persistent homology is a powerful tool in Topological Data Analysis (TDA) to capture the topological properties of data succinctly at different spatial resolutions. For graphical data, the shape, and structure of the neighborhood of individual data items (nodes) are an essential means of characterizing their properties. We propose the use of persistent homology methods to capture structural and topological properties of graphs and use it to address the problem of link prediction. We achieve encouraging results on nine different real-world datasets that attest to the potential of persistent homology-based methods for network analysis. alternative_title: - SCI article_processing_charge: No author: - first_name: Sumit full_name: Bhatia, Sumit last_name: Bhatia - first_name: Bapi full_name: Chatterjee, Bapi id: 3C41A08A-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-2742-4028 - first_name: Deepak full_name: Nathani, Deepak last_name: Nathani - first_name: Manohar full_name: Kaul, Manohar last_name: Kaul citation: ama: 'Bhatia S, Chatterjee B, Nathani D, Kaul M. A persistent homology perspective to the link prediction problem. In: Complex Networks and Their Applications VIII. Vol 881. Springer Nature; 2020:27-39. doi:10.1007/978-3-030-36687-2_3' apa: 'Bhatia, S., Chatterjee, B., Nathani, D., & Kaul, M. (2020). A persistent homology perspective to the link prediction problem. In Complex Networks and their applications VIII (Vol. 881, pp. 27–39). Lisbon, Portugal: Springer Nature. https://doi.org/10.1007/978-3-030-36687-2_3' chicago: Bhatia, Sumit, Bapi Chatterjee, Deepak Nathani, and Manohar Kaul. “A Persistent Homology Perspective to the Link Prediction Problem.” In Complex Networks and Their Applications VIII, 881:27–39. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-36687-2_3. ieee: S. Bhatia, B. Chatterjee, D. Nathani, and M. Kaul, “A persistent homology perspective to the link prediction problem,” in Complex Networks and their applications VIII, Lisbon, Portugal, 2020, vol. 881, pp. 27–39. ista: 'Bhatia S, Chatterjee B, Nathani D, Kaul M. 2020. A persistent homology perspective to the link prediction problem. Complex Networks and their applications VIII. COMPLEX: International Conference on Complex Networks and their Applications, SCI, vol. 881, 27–39.' mla: Bhatia, Sumit, et al. “A Persistent Homology Perspective to the Link Prediction Problem.” Complex Networks and Their Applications VIII, vol. 881, Springer Nature, 2020, pp. 27–39, doi:10.1007/978-3-030-36687-2_3. short: S. Bhatia, B. Chatterjee, D. Nathani, M. Kaul, in:, Complex Networks and Their Applications VIII, Springer Nature, 2020, pp. 27–39. conference: end_date: 2019-12-12 location: Lisbon, Portugal name: 'COMPLEX: International Conference on Complex Networks and their Applications' start_date: 2019-12-10 date_created: 2019-12-29T23:00:45Z date_published: 2020-01-01T00:00:00Z date_updated: 2024-02-22T13:16:06Z day: '01' ddc: - '004' department: - _id: DaAl doi: 10.1007/978-3-030-36687-2_3 ec_funded: 1 external_id: isi: - '000843927300003' file: - access_level: open_access checksum: 8951f094c8c7dae9ff8db885199bc296 content_type: application/pdf creator: bchatter date_created: 2020-10-08T08:16:48Z date_updated: 2020-10-08T08:16:48Z file_id: '8625' file_name: main.pdf file_size: 310598 relation: main_file success: 1 file_date_updated: 2020-10-08T08:16:48Z has_accepted_license: '1' intvolume: ' 881' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 27-39 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Complex Networks and their applications VIII publication_identifier: eissn: - '18609503' isbn: - '9783030366865' issn: - 1860949X publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: A persistent homology perspective to the link prediction problem type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 881 year: '2020' ... --- _id: '10556' abstract: - lang: eng text: In this paper, we present the first Asynchronous Distributed Key Generation (ADKG) algorithm which is also the first distributed key generation algorithm that can generate cryptographic keys with a dual (f,2f+1)-threshold (where f is the number of faulty parties). As a result, using our ADKG we remove the trusted setup assumption that the most scalable consensus algorithms make. In order to create a DKG with a dual (f,2f+1)- threshold we first answer in the affirmative the open question posed by Cachin et al. [7] on how to create an Asynchronous Verifiable Secret Sharing (AVSS) protocol with a reconstruction threshold of f+1Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. Association for Computing Machinery; 2020:1751–1767. doi:10.1145/3372297.3423364' apa: 'Kokoris Kogias, E., Malkhi, D., & Spiegelman, A. (2020). Asynchronous distributed key generation for computationally-secure randomness, consensus, and threshold signatures. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security (pp. 1751–1767). Virtual, United States: Association for Computing Machinery. https://doi.org/10.1145/3372297.3423364' chicago: Kokoris Kogias, Eleftherios, Dahlia Malkhi, and Alexander Spiegelman. “Asynchronous Distributed Key Generation for Computationally-Secure Randomness, Consensus, and Threshold Signatures.” In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, 1751–1767. Association for Computing Machinery, 2020. https://doi.org/10.1145/3372297.3423364. ieee: E. Kokoris Kogias, D. Malkhi, and A. Spiegelman, “Asynchronous distributed key generation for computationally-secure randomness, consensus, and threshold signatures,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual, United States, 2020, pp. 1751–1767. ista: 'Kokoris Kogias E, Malkhi D, Spiegelman A. 2020. Asynchronous distributed key generation for computationally-secure randomness, consensus, and threshold signatures. Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. CCS: Computer and Communications Security, 1751–1767.' mla: Kokoris Kogias, Eleftherios, et al. “Asynchronous Distributed Key Generation for Computationally-Secure Randomness, Consensus, and Threshold Signatures.” Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Association for Computing Machinery, 2020, pp. 1751–1767, doi:10.1145/3372297.3423364. short: E. Kokoris Kogias, D. Malkhi, A. Spiegelman, in:, Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Association for Computing Machinery, 2020, pp. 1751–1767. conference: end_date: 2020-11-13 location: Virtual, United States name: 'CCS: Computer and Communications Security' start_date: 2020-11-09 date_created: 2021-12-16T13:23:27Z date_published: 2020-10-30T00:00:00Z date_updated: 2024-02-22T13:10:45Z day: '30' department: - _id: ElKo doi: 10.1145/3372297.3423364 external_id: isi: - '000768470400104' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2019/1015 month: '10' oa: 1 oa_version: Preprint page: 1751–1767 publication: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security publication_identifier: isbn: - 978-1-4503-7089-9 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Asynchronous distributed key generation for computationally-secure randomness, consensus, and threshold signatures type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '9202' abstract: - lang: eng text: We propose a novel hybridization method for stability analysis that over-approximates nonlinear dynamical systems by switched systems with linear inclusion dynamics. We observe that existing hybridization techniques for safety analysis that over-approximate nonlinear dynamical systems by switched affine inclusion dynamics and provide fixed approximation error, do not suffice for stability analysis. Hence, we propose a hybridization method that provides a state-dependent error which converges to zero as the state tends to the equilibrium point. The crux of our hybridization computation is an elegant recursive algorithm that uses partial derivatives of a given function to obtain upper and lower bound matrices for the over-approximating linear inclusion. We illustrate our method on some examples to demonstrate the application of the theory for stability analysis. In particular, our method is able to establish stability of a nonlinear system which does not admit a polynomial Lyapunov function. acknowledgement: Miriam Garc´ıa Soto was partially supported by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). Pavithra Prabhakar was partially supported by NSF CAREER Award No. 1552668, NSF Award No. 2008957 and ONR YIP Award No. N000141712577. article_processing_charge: No author: - first_name: Miriam full_name: Garcia Soto, Miriam id: 4B3207F6-F248-11E8-B48F-1D18A9856A87 last_name: Garcia Soto orcid: 0000-0003-2936-5719 - first_name: Pavithra full_name: Prabhakar, Pavithra last_name: Prabhakar citation: ama: 'Garcia Soto M, Prabhakar P. Hybridization for stability verification of nonlinear switched systems. In: 2020 IEEE Real-Time Systems Symposium. IEEE; 2020:244-256. doi:10.1109/RTSS49844.2020.00031' apa: 'Garcia Soto, M., & Prabhakar, P. (2020). Hybridization for stability verification of nonlinear switched systems. In 2020 IEEE Real-Time Systems Symposium (pp. 244–256). Houston, TX, USA : IEEE. https://doi.org/10.1109/RTSS49844.2020.00031' chicago: Garcia Soto, Miriam, and Pavithra Prabhakar. “Hybridization for Stability Verification of Nonlinear Switched Systems.” In 2020 IEEE Real-Time Systems Symposium, 244–56. IEEE, 2020. https://doi.org/10.1109/RTSS49844.2020.00031. ieee: M. Garcia Soto and P. Prabhakar, “Hybridization for stability verification of nonlinear switched systems,” in 2020 IEEE Real-Time Systems Symposium, Houston, TX, USA , 2020, pp. 244–256. ista: 'Garcia Soto M, Prabhakar P. 2020. Hybridization for stability verification of nonlinear switched systems. 2020 IEEE Real-Time Systems Symposium. RTTS: Real-Time Systems Symposium, 244–256.' mla: Garcia Soto, Miriam, and Pavithra Prabhakar. “Hybridization for Stability Verification of Nonlinear Switched Systems.” 2020 IEEE Real-Time Systems Symposium, IEEE, 2020, pp. 244–56, doi:10.1109/RTSS49844.2020.00031. short: M. Garcia Soto, P. Prabhakar, in:, 2020 IEEE Real-Time Systems Symposium, IEEE, 2020, pp. 244–256. conference: end_date: 2020-12-04 location: 'Houston, TX, USA ' name: 'RTTS: Real-Time Systems Symposium' start_date: 2020-12-01 date_created: 2021-02-26T16:38:24Z date_published: 2020-12-01T00:00:00Z date_updated: 2024-02-22T13:25:19Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1109/RTSS49844.2020.00031 external_id: isi: - '000680435100021' file: - access_level: open_access checksum: 8f97f229316c3b3a6f0cf99297aa0941 content_type: application/pdf creator: mgarcias date_created: 2021-02-26T16:38:14Z date_updated: 2021-02-26T16:38:14Z file_id: '9203' file_name: main.pdf file_size: 1125794 relation: main_file file_date_updated: 2021-02-26T16:38:14Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Submitted Version page: 244-256 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 2020 IEEE Real-Time Systems Symposium publication_identifier: eisbn: - '9781728183244' eissn: - 2576-3172 publication_status: published publisher: IEEE quality_controlled: '1' status: public title: Hybridization for stability verification of nonlinear switched systems type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '6906' abstract: - lang: eng text: We consider systems of bosons trapped in a box, in the Gross–Pitaevskii regime. We show that low-energy states exhibit complete Bose–Einstein condensation with an optimal bound on the number of orthogonal excitations. This extends recent results obtained in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018), removing the assumption of small interaction potential. acknowledgement: "We would like to thank P. T. Nam and R. Seiringer for several useful discussions and\r\nfor suggesting us to use the localization techniques from [9]. C. Boccato has received funding from the\r\nEuropean Research Council (ERC) under the programme Horizon 2020 (Grant Agreement 694227). B. Schlein gratefully acknowledges support from the NCCR SwissMAP and from the Swiss National Foundation of Science (Grant No. 200020_1726230) through the SNF Grant “Dynamical and energetic properties of Bose–Einstein condensates”." article_processing_charge: No article_type: original author: - first_name: Chiara full_name: Boccato, Chiara id: 342E7E22-F248-11E8-B48F-1D18A9856A87 last_name: Boccato - first_name: Christian full_name: Brennecke, Christian last_name: Brennecke - first_name: Serena full_name: Cenatiempo, Serena last_name: Cenatiempo - first_name: Benjamin full_name: Schlein, Benjamin last_name: Schlein citation: ama: Boccato C, Brennecke C, Cenatiempo S, Schlein B. Optimal rate for Bose-Einstein condensation in the Gross-Pitaevskii regime. Communications in Mathematical Physics. 2020;376:1311-1395. doi:10.1007/s00220-019-03555-9 apa: Boccato, C., Brennecke, C., Cenatiempo, S., & Schlein, B. (2020). Optimal rate for Bose-Einstein condensation in the Gross-Pitaevskii regime. Communications in Mathematical Physics. Springer. https://doi.org/10.1007/s00220-019-03555-9 chicago: Boccato, Chiara, Christian Brennecke, Serena Cenatiempo, and Benjamin Schlein. “Optimal Rate for Bose-Einstein Condensation in the Gross-Pitaevskii Regime.” Communications in Mathematical Physics. Springer, 2020. https://doi.org/10.1007/s00220-019-03555-9. ieee: C. Boccato, C. Brennecke, S. Cenatiempo, and B. Schlein, “Optimal rate for Bose-Einstein condensation in the Gross-Pitaevskii regime,” Communications in Mathematical Physics, vol. 376. Springer, pp. 1311–1395, 2020. ista: Boccato C, Brennecke C, Cenatiempo S, Schlein B. 2020. Optimal rate for Bose-Einstein condensation in the Gross-Pitaevskii regime. Communications in Mathematical Physics. 376, 1311–1395. mla: Boccato, Chiara, et al. “Optimal Rate for Bose-Einstein Condensation in the Gross-Pitaevskii Regime.” Communications in Mathematical Physics, vol. 376, Springer, 2020, pp. 1311–95, doi:10.1007/s00220-019-03555-9. short: C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein, Communications in Mathematical Physics 376 (2020) 1311–1395. date_created: 2019-09-24T17:30:59Z date_published: 2020-06-01T00:00:00Z date_updated: 2024-02-22T13:33:02Z day: '01' department: - _id: RoSe doi: 10.1007/s00220-019-03555-9 ec_funded: 1 external_id: arxiv: - '1812.03086' isi: - '000536053300012' intvolume: ' 376' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1812.03086 month: '06' oa: 1 oa_version: Preprint page: 1311-1395 project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: Communications in Mathematical Physics publication_identifier: eissn: - 1432-0916 issn: - 0010-3616 publication_status: published publisher: Springer quality_controlled: '1' scopus_import: '1' status: public title: Optimal rate for Bose-Einstein condensation in the Gross-Pitaevskii regime type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 376 year: '2020' ... --- _id: '7410' abstract: - lang: eng text: 'Epiboly is a conserved gastrulation movement describing the thinning and spreading of a sheet or multi-layer of cells. The zebrafish embryo has emerged as a vital model system to address the cellular and molecular mechanisms that drive epiboly. In the zebrafish embryo, the blastoderm, consisting of a simple squamous epithelium (the enveloping layer) and an underlying mass of deep cells, as well as a yolk nuclear syncytium (the yolk syncytial layer) undergo epiboly to internalize the yolk cell during gastrulation. The major events during zebrafish epiboly are: expansion of the enveloping layer and the internal yolk syncytial layer, reduction and removal of the yolk membrane ahead of the advancing blastoderm margin and deep cell rearrangements between the enveloping layer and yolk syncytial layer to thin the blastoderm. Here, work addressing the cellular and molecular mechanisms as well as the sources of the mechanical forces that underlie these events is reviewed. The contribution of recent findings to the current model of epiboly as well as open questions and future prospects are also discussed.' article_processing_charge: No author: - first_name: Ashley E.E. full_name: Bruce, Ashley E.E. last_name: Bruce - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Bruce AEE, Heisenberg C-PJ. Mechanisms of zebrafish epiboly: A current view. In: Solnica-Krezel L, ed. Gastrulation: From Embryonic Pattern to Form. Vol 136. Current Topics in Developmental Biology. Elsevier; 2020:319-341. doi:10.1016/bs.ctdb.2019.07.001' apa: 'Bruce, A. E. E., & Heisenberg, C.-P. J. (2020). Mechanisms of zebrafish epiboly: A current view. In L. Solnica-Krezel (Ed.), Gastrulation: From Embryonic Pattern to Form (Vol. 136, pp. 319–341). Elsevier. https://doi.org/10.1016/bs.ctdb.2019.07.001' chicago: 'Bruce, Ashley E.E., and Carl-Philipp J Heisenberg. “Mechanisms of Zebrafish Epiboly: A Current View.” In Gastrulation: From Embryonic Pattern to Form, edited by Lilianna Solnica-Krezel, 136:319–41. Current Topics in Developmental Biology. Elsevier, 2020. https://doi.org/10.1016/bs.ctdb.2019.07.001.' ieee: 'A. E. E. Bruce and C.-P. J. Heisenberg, “Mechanisms of zebrafish epiboly: A current view,” in Gastrulation: From Embryonic Pattern to Form, vol. 136, L. Solnica-Krezel, Ed. Elsevier, 2020, pp. 319–341.' ista: 'Bruce AEE, Heisenberg C-PJ. 2020.Mechanisms of zebrafish epiboly: A current view. In: Gastrulation: From Embryonic Pattern to Form. vol. 136, 319–341.' mla: 'Bruce, Ashley E. E., and Carl-Philipp J. Heisenberg. “Mechanisms of Zebrafish Epiboly: A Current View.” Gastrulation: From Embryonic Pattern to Form, edited by Lilianna Solnica-Krezel, vol. 136, Elsevier, 2020, pp. 319–41, doi:10.1016/bs.ctdb.2019.07.001.' short: 'A.E.E. Bruce, C.-P.J. Heisenberg, in:, L. Solnica-Krezel (Ed.), Gastrulation: From Embryonic Pattern to Form, Elsevier, 2020, pp. 319–341.' date_created: 2020-01-30T09:24:06Z date_published: 2020-01-01T00:00:00Z date_updated: 2024-02-22T13:23:09Z day: '01' department: - _id: CaHe doi: 10.1016/bs.ctdb.2019.07.001 editor: - first_name: 'Lilianna ' full_name: 'Solnica-Krezel, Lilianna ' last_name: Solnica-Krezel external_id: isi: - '000611830600012' intvolume: ' 136' isi: 1 language: - iso: eng month: '01' oa_version: None page: 319-341 publication: 'Gastrulation: From Embryonic Pattern to Form' publication_identifier: isbn: - '9780128127988' issn: - 0070-2153 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' series_title: Current Topics in Developmental Biology status: public title: 'Mechanisms of zebrafish epiboly: A current view' type: book_chapter user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 136 year: '2020' ... --- _id: '6944' abstract: - lang: eng text: 'We study the problem of automatically detecting if a given multi-class classifier operates outside of its specifications (out-of-specs), i.e. on input data from a different distribution than what it was trained for. This is an important problem to solve on the road towards creating reliable computer vision systems for real-world applications, because the quality of a classifier’s predictions cannot be guaranteed if it operates out-of-specs. Previously proposed methods for out-of-specs detection make decisions on the level of single inputs. This, however, is insufficient to achieve low false positive rate and high false negative rates at the same time. In this work, we describe a new procedure named KS(conf), based on statistical reasoning. Its main component is a classical Kolmogorov–Smirnov test that is applied to the set of predicted confidence values for batches of samples. Working with batches instead of single samples allows increasing the true positive rate without negatively affecting the false positive rate, thereby overcoming a crucial limitation of single sample tests. We show by extensive experiments using a variety of convolutional network architectures and datasets that KS(conf) reliably detects out-of-specs situations even under conditions where other tests fail. It furthermore has a number of properties that make it an excellent candidate for practical deployment: it is easy to implement, adds almost no overhead to the system, works with any classifier that outputs confidence scores, and requires no a priori knowledge about how the data distribution could change.' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Rémy full_name: Sun, Rémy last_name: Sun - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 citation: ama: 'Sun R, Lampert C. KS(conf): A light-weight test if a multiclass classifier operates outside of its specifications. International Journal of Computer Vision. 2020;128(4):970-995. doi:10.1007/s11263-019-01232-x' apa: 'Sun, R., & Lampert, C. (2020). KS(conf): A light-weight test if a multiclass classifier operates outside of its specifications. International Journal of Computer Vision. Springer Nature. https://doi.org/10.1007/s11263-019-01232-x' chicago: 'Sun, Rémy, and Christoph Lampert. “KS(Conf): A Light-Weight Test If a Multiclass Classifier Operates Outside of Its Specifications.” International Journal of Computer Vision. Springer Nature, 2020. https://doi.org/10.1007/s11263-019-01232-x.' ieee: 'R. Sun and C. Lampert, “KS(conf): A light-weight test if a multiclass classifier operates outside of its specifications,” International Journal of Computer Vision, vol. 128, no. 4. Springer Nature, pp. 970–995, 2020.' ista: 'Sun R, Lampert C. 2020. KS(conf): A light-weight test if a multiclass classifier operates outside of its specifications. International Journal of Computer Vision. 128(4), 970–995.' mla: 'Sun, Rémy, and Christoph Lampert. “KS(Conf): A Light-Weight Test If a Multiclass Classifier Operates Outside of Its Specifications.” International Journal of Computer Vision, vol. 128, no. 4, Springer Nature, 2020, pp. 970–95, doi:10.1007/s11263-019-01232-x.' short: R. Sun, C. Lampert, International Journal of Computer Vision 128 (2020) 970–995. date_created: 2019-10-14T09:14:28Z date_published: 2020-04-01T00:00:00Z date_updated: 2024-02-22T14:57:30Z day: '01' ddc: - '004' department: - _id: ChLa doi: 10.1007/s11263-019-01232-x ec_funded: 1 external_id: isi: - '000494406800001' file: - access_level: open_access checksum: 155e63edf664dcacb3bdc1c2223e606f content_type: application/pdf creator: dernst date_created: 2019-11-26T10:30:02Z date_updated: 2020-07-14T12:47:45Z file_id: '7110' file_name: 2019_IJCV_Sun.pdf file_size: 1715072 relation: main_file file_date_updated: 2020-07-14T12:47:45Z has_accepted_license: '1' intvolume: ' 128' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 970-995 project: - _id: 2532554C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '308036' name: Lifelong Learning of Visual Scene Understanding - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: International Journal of Computer Vision publication_identifier: eissn: - 1573-1405 issn: - 0920-5691 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1007/s11263-019-01262-5 record: - id: '6482' relation: earlier_version status: public scopus_import: '1' status: public title: 'KS(conf): A light-weight test if a multiclass classifier operates outside of its specifications' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 128 year: '2020' ... --- _id: '8324' abstract: - lang: eng text: The notion of program sensitivity (aka Lipschitz continuity) specifies that changes in the program input result in proportional changes to the program output. For probabilistic programs the notion is naturally extended to expected sensitivity. A previous approach develops a relational program logic framework for proving expected sensitivity of probabilistic while loops, where the number of iterations is fixed and bounded. In this work, we consider probabilistic while loops where the number of iterations is not fixed, but randomized and depends on the initial input values. We present a sound approach for proving expected sensitivity of such programs. Our sound approach is martingale-based and can be automated through existing martingale-synthesis algorithms. Furthermore, our approach is compositional for sequential composition of while loops under a mild side condition. We demonstrate the effectiveness of our approach on several classical examples from Gambler's Ruin, stochastic hybrid systems and stochastic gradient descent. We also present experimental results showing that our automated approach can handle various probabilistic programs in the literature. acknowledgement: We thank anonymous reviewers for helpful comments, especially for pointing to us a scenario of piecewise-linear approximation (Remark5). The research was partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61802254, 61672229, 61832015,61772336,11871221 and Austrian Science Fund (FWF) NFN under Grant No. S11407-N23 (RiSE/SHiNE). We thank Prof. Yuxi Fu, director of the BASICS Lab at Shanghai Jiao Tong University, for his support. article_number: '25' article_processing_charge: No author: - first_name: Peixin full_name: Wang, Peixin last_name: Wang - first_name: Hongfei full_name: Fu, Hongfei last_name: Fu - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Yuxin full_name: Deng, Yuxin last_name: Deng - first_name: Ming full_name: Xu, Ming last_name: Xu citation: ama: 'Wang P, Fu H, Chatterjee K, Deng Y, Xu M. Proving expected sensitivity of probabilistic programs with randomized variable-dependent termination time. In: Proceedings of the ACM on Programming Languages. Vol 4. ACM; 2020. doi:10.1145/3371093' apa: Wang, P., Fu, H., Chatterjee, K., Deng, Y., & Xu, M. (2020). Proving expected sensitivity of probabilistic programs with randomized variable-dependent termination time. In Proceedings of the ACM on Programming Languages (Vol. 4). ACM. https://doi.org/10.1145/3371093 chicago: Wang, Peixin, Hongfei Fu, Krishnendu Chatterjee, Yuxin Deng, and Ming Xu. “Proving Expected Sensitivity of Probabilistic Programs with Randomized Variable-Dependent Termination Time.” In Proceedings of the ACM on Programming Languages, Vol. 4. ACM, 2020. https://doi.org/10.1145/3371093. ieee: P. Wang, H. Fu, K. Chatterjee, Y. Deng, and M. Xu, “Proving expected sensitivity of probabilistic programs with randomized variable-dependent termination time,” in Proceedings of the ACM on Programming Languages, 2020, vol. 4, no. POPL. ista: Wang P, Fu H, Chatterjee K, Deng Y, Xu M. 2020. Proving expected sensitivity of probabilistic programs with randomized variable-dependent termination time. Proceedings of the ACM on Programming Languages. vol. 4, 25. mla: Wang, Peixin, et al. “Proving Expected Sensitivity of Probabilistic Programs with Randomized Variable-Dependent Termination Time.” Proceedings of the ACM on Programming Languages, vol. 4, no. POPL, 25, ACM, 2020, doi:10.1145/3371093. short: P. Wang, H. Fu, K. Chatterjee, Y. Deng, M. Xu, in:, Proceedings of the ACM on Programming Languages, ACM, 2020. date_created: 2020-08-30T22:01:12Z date_published: 2020-01-01T00:00:00Z date_updated: 2024-02-22T15:16:45Z day: '01' ddc: - '004' department: - _id: KrCh doi: 10.1145/3371093 external_id: arxiv: - '1902.04744' file: - access_level: open_access checksum: c6193d109ff4ecb17e7a6513d8eb34c0 content_type: application/pdf creator: cziletti date_created: 2020-09-01T11:12:58Z date_updated: 2020-09-01T11:12:58Z file_id: '8328' file_name: 2019_ACM_POPL_Wang.pdf file_size: 564151 relation: main_file success: 1 file_date_updated: 2020-09-01T11:12:58Z has_accepted_license: '1' intvolume: ' 4' issue: POPL language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory publication: Proceedings of the ACM on Programming Languages publication_identifier: eissn: - 2475-1421 publication_status: published publisher: ACM quality_controlled: '1' related_material: link: - relation: software url: https://doi.org/10.5281/zenodo.3533633 scopus_import: '1' status: public title: Proving expected sensitivity of probabilistic programs with randomized variable-dependent termination time tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2020' ... --- _id: '7160' abstract: - lang: eng text: 'Nocturnal animals that rely on their visual system for foraging, mating, and navigation usually exhibit specific traits associated with living in scotopic conditions. Most nocturnal birds have several visual specializations, such as enlarged eyes and an increased orbital convergence. However, the actual role of binocular vision in nocturnal foraging is still debated. Nightjars (Aves: Caprimulgidae) are predators that actively pursue and capture flying insects in crepuscular and nocturnal environments, mainly using a conspicuous “sit-and-wait” tactic on which pursuit begins with an insect flying over the bird that sits on the ground. In this study, we describe the visual system of the band-winged nightjar (Systellura longirostris), with emphasis on anatomical features previously described as relevant for nocturnal birds. Orbit convergence, determined by 3D scanning of the skull, was 73.28°. The visual field, determined by ophthalmoscopic reflex, exhibits an area of maximum binocular overlap of 42°, and it is dorsally oriented. The eyes showed a nocturnal-like normalized corneal aperture/axial length index. Retinal ganglion cells (RGCs) were relatively scant, and distributed in an unusual oblique-band pattern, with higher concentrations in the ventrotemporal quadrant. Together, these results indicate that the band-winged nightjar exhibits a retinal specialization associated with the binocular area of their dorsal visual field, a relevant area for pursuit triggering and prey attacks. The RGC distribution observed is unusual among birds, but similar to that of some visually dependent insectivorous bats, suggesting that those features might be convergent in relation to feeding strategies.' article_processing_charge: No article_type: original author: - first_name: Juan Esteban full_name: Salazar, Juan Esteban last_name: Salazar - first_name: Daniel full_name: Severin, Daniel last_name: Severin - first_name: Tomas A full_name: Vega Zuniga, Tomas A id: 2E7C4E78-F248-11E8-B48F-1D18A9856A87 last_name: Vega Zuniga - first_name: Pedro full_name: Fernández-Aburto, Pedro last_name: Fernández-Aburto - first_name: Alfonso full_name: Deichler, Alfonso last_name: Deichler - first_name: Michel full_name: Sallaberry A., Michel last_name: Sallaberry A. - first_name: Jorge full_name: Mpodozis, Jorge last_name: Mpodozis citation: ama: 'Salazar JE, Severin D, Vega Zuniga TA, et al. Anatomical specializations related to foraging in the visual system of a nocturnal insectivorous bird, the band-winged nightjar (Aves: Caprimulgiformes). Brain, Behavior and Evolution. 2020;94(1-4):27-36. doi:10.1159/000504162' apa: 'Salazar, J. E., Severin, D., Vega Zuniga, T. A., Fernández-Aburto, P., Deichler, A., Sallaberry A., M., & Mpodozis, J. (2020). Anatomical specializations related to foraging in the visual system of a nocturnal insectivorous bird, the band-winged nightjar (Aves: Caprimulgiformes). Brain, Behavior and Evolution. Karger Publishers. https://doi.org/10.1159/000504162' chicago: 'Salazar, Juan Esteban, Daniel Severin, Tomas A Vega Zuniga, Pedro Fernández-Aburto, Alfonso Deichler, Michel Sallaberry A., and Jorge Mpodozis. “Anatomical Specializations Related to Foraging in the Visual System of a Nocturnal Insectivorous Bird, the Band-Winged Nightjar (Aves: Caprimulgiformes).” Brain, Behavior and Evolution. Karger Publishers, 2020. https://doi.org/10.1159/000504162.' ieee: 'J. E. Salazar et al., “Anatomical specializations related to foraging in the visual system of a nocturnal insectivorous bird, the band-winged nightjar (Aves: Caprimulgiformes),” Brain, Behavior and Evolution, vol. 94, no. 1–4. Karger Publishers, pp. 27–36, 2020.' ista: 'Salazar JE, Severin D, Vega Zuniga TA, Fernández-Aburto P, Deichler A, Sallaberry A. M, Mpodozis J. 2020. Anatomical specializations related to foraging in the visual system of a nocturnal insectivorous bird, the band-winged nightjar (Aves: Caprimulgiformes). Brain, Behavior and Evolution. 94(1–4), 27–36.' mla: 'Salazar, Juan Esteban, et al. “Anatomical Specializations Related to Foraging in the Visual System of a Nocturnal Insectivorous Bird, the Band-Winged Nightjar (Aves: Caprimulgiformes).” Brain, Behavior and Evolution, vol. 94, no. 1–4, Karger Publishers, 2020, pp. 27–36, doi:10.1159/000504162.' short: J.E. Salazar, D. Severin, T.A. Vega Zuniga, P. Fernández-Aburto, A. Deichler, M. Sallaberry A., J. Mpodozis, Brain, Behavior and Evolution 94 (2020) 27–36. date_created: 2019-12-09T09:04:13Z date_published: 2020-01-01T00:00:00Z date_updated: 2024-02-22T15:18:34Z day: '01' department: - _id: MaJö doi: 10.1159/000504162 external_id: isi: - '000522856600004' pmid: - '31751995' intvolume: ' 94' isi: 1 issue: 1-4 language: - iso: eng month: '01' oa_version: None page: 27-36 pmid: 1 publication: Brain, Behavior and Evolution publication_identifier: eissn: - 1421-9743 issn: - 0006-8977 publication_status: published publisher: Karger Publishers quality_controlled: '1' scopus_import: '1' status: public title: 'Anatomical specializations related to foraging in the visual system of a nocturnal insectivorous bird, the band-winged nightjar (Aves: Caprimulgiformes)' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 94 year: '2020' ... --- _id: '6184' abstract: - lang: eng text: We prove edge universality for a general class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary expectation. Our theorem also applies to internal edges of the self-consistent density of states. In particular, we establish a strong form of band rigidity which excludes mismatches between location and label of eigenvalues close to internal edges in these general models. article_processing_charge: No article_type: original author: - first_name: Johannes full_name: Alt, Johannes id: 36D3D8B6-F248-11E8-B48F-1D18A9856A87 last_name: Alt - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Torben H full_name: Krüger, Torben H id: 3020C786-F248-11E8-B48F-1D18A9856A87 last_name: Krüger orcid: 0000-0002-4821-3297 - first_name: Dominik J full_name: Schröder, Dominik J id: 408ED176-F248-11E8-B48F-1D18A9856A87 last_name: Schröder orcid: 0000-0002-2904-1856 citation: ama: 'Alt J, Erdös L, Krüger TH, Schröder DJ. Correlated random matrices: Band rigidity and edge universality. Annals of Probability. 2020;48(2):963-1001. doi:10.1214/19-AOP1379' apa: 'Alt, J., Erdös, L., Krüger, T. H., & Schröder, D. J. (2020). Correlated random matrices: Band rigidity and edge universality. Annals of Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/19-AOP1379' chicago: 'Alt, Johannes, László Erdös, Torben H Krüger, and Dominik J Schröder. “Correlated Random Matrices: Band Rigidity and Edge Universality.” Annals of Probability. Institute of Mathematical Statistics, 2020. https://doi.org/10.1214/19-AOP1379.' ieee: 'J. Alt, L. Erdös, T. H. Krüger, and D. J. Schröder, “Correlated random matrices: Band rigidity and edge universality,” Annals of Probability, vol. 48, no. 2. Institute of Mathematical Statistics, pp. 963–1001, 2020.' ista: 'Alt J, Erdös L, Krüger TH, Schröder DJ. 2020. Correlated random matrices: Band rigidity and edge universality. Annals of Probability. 48(2), 963–1001.' mla: 'Alt, Johannes, et al. “Correlated Random Matrices: Band Rigidity and Edge Universality.” Annals of Probability, vol. 48, no. 2, Institute of Mathematical Statistics, 2020, pp. 963–1001, doi:10.1214/19-AOP1379.' short: J. Alt, L. Erdös, T.H. Krüger, D.J. Schröder, Annals of Probability 48 (2020) 963–1001. date_created: 2019-03-28T09:20:08Z date_published: 2020-03-01T00:00:00Z date_updated: 2024-02-22T14:34:33Z day: '01' department: - _id: LaEr doi: 10.1214/19-AOP1379 ec_funded: 1 external_id: arxiv: - '1804.07744' isi: - '000528269100013' intvolume: ' 48' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1804.07744 month: '03' oa: 1 oa_version: Preprint page: 963-1001 project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication: Annals of Probability publication_identifier: issn: - 0091-1798 publication_status: published publisher: Institute of Mathematical Statistics quality_controlled: '1' related_material: record: - id: '149' relation: dissertation_contains status: public - id: '6179' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Correlated random matrices: Band rigidity and edge universality' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 48 year: '2020' ... --- _id: '15037' abstract: - lang: eng text: Protein abundance and localization at the plasma membrane (PM) shapes plant development and mediates adaptation to changing environmental conditions. It is regulated by ubiquitination, a post-translational modification crucial for the proper sorting of endocytosed PM proteins to the vacuole for subsequent degradation. To understand the significance and the variety of roles played by this reversible modification, the function of ubiquitin receptors, which translate the ubiquitin signature into a cellular response, needs to be elucidated. In this study, we show that TOL (TOM1-like) proteins function in plants as multivalent ubiquitin receptors, governing ubiquitinated cargo delivery to the vacuole via the conserved Endosomal Sorting Complex Required for Transport (ESCRT) pathway. TOL2 and TOL6 interact with components of the ESCRT machinery and bind to K63-linked ubiquitin via two tandemly arranged conserved ubiquitin-binding domains. Mutation of these domains results not only in a loss of ubiquitin binding but also altered localization, abolishing TOL6 ubiquitin receptor activity. Function and localization of TOL6 is itself regulated by ubiquitination, whereby TOL6 ubiquitination potentially modulates degradation of PM-localized cargoes, assisting in the fine-tuning of the delicate interplay between protein recycling and downregulation. Taken together, our findings demonstrate the function and regulation of a ubiquitin receptor that mediates vacuolar degradation of PM proteins in higher plants. article_processing_charge: No article_type: original author: - first_name: Jeanette full_name: Moulinier-Anzola, Jeanette last_name: Moulinier-Anzola - first_name: Maximilian full_name: Schwihla, Maximilian last_name: Schwihla - first_name: Lucinda full_name: De-Araújo, Lucinda last_name: De-Araújo - first_name: Christina full_name: Artner, Christina id: 45DF286A-F248-11E8-B48F-1D18A9856A87 last_name: Artner - first_name: Lisa full_name: Jörg, Lisa last_name: Jörg - first_name: Nataliia full_name: Konstantinova, Nataliia last_name: Konstantinova - first_name: Christian full_name: Luschnig, Christian last_name: Luschnig - first_name: Barbara full_name: Korbei, Barbara last_name: Korbei citation: ama: Moulinier-Anzola J, Schwihla M, De-Araújo L, et al. TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants. Molecular Plant. 2020;13(5):717-731. doi:10.1016/j.molp.2020.02.012 apa: Moulinier-Anzola, J., Schwihla, M., De-Araújo, L., Artner, C., Jörg, L., Konstantinova, N., … Korbei, B. (2020). TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants. Molecular Plant. Elsevier. https://doi.org/10.1016/j.molp.2020.02.012 chicago: Moulinier-Anzola, Jeanette, Maximilian Schwihla, Lucinda De-Araújo, Christina Artner, Lisa Jörg, Nataliia Konstantinova, Christian Luschnig, and Barbara Korbei. “TOLs Function as Ubiquitin Receptors in the Early Steps of the ESCRT Pathway in Higher Plants.” Molecular Plant. Elsevier, 2020. https://doi.org/10.1016/j.molp.2020.02.012. ieee: J. Moulinier-Anzola et al., “TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants,” Molecular Plant, vol. 13, no. 5. Elsevier, pp. 717–731, 2020. ista: Moulinier-Anzola J, Schwihla M, De-Araújo L, Artner C, Jörg L, Konstantinova N, Luschnig C, Korbei B. 2020. TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants. Molecular Plant. 13(5), 717–731. mla: Moulinier-Anzola, Jeanette, et al. “TOLs Function as Ubiquitin Receptors in the Early Steps of the ESCRT Pathway in Higher Plants.” Molecular Plant, vol. 13, no. 5, Elsevier, 2020, pp. 717–31, doi:10.1016/j.molp.2020.02.012. short: J. Moulinier-Anzola, M. Schwihla, L. De-Araújo, C. Artner, L. Jörg, N. Konstantinova, C. Luschnig, B. Korbei, Molecular Plant 13 (2020) 717–731. date_created: 2024-02-28T08:55:56Z date_published: 2020-05-04T00:00:00Z date_updated: 2024-02-28T12:41:52Z day: '04' ddc: - '580' department: - _id: EvBe doi: 10.1016/j.molp.2020.02.012 external_id: pmid: - '32087370' file: - access_level: open_access checksum: c538a5008f7827f62d17d40a3bfabe65 content_type: application/pdf creator: dernst date_created: 2024-02-28T12:39:56Z date_updated: 2024-02-28T12:39:56Z file_id: '15038' file_name: 2020_MolecularPlant_MoulinierAnzola.pdf file_size: 3089212 relation: main_file success: 1 file_date_updated: 2024-02-28T12:39:56Z has_accepted_license: '1' intvolume: ' 13' issue: '5' keyword: - Plant Science - Molecular Biology language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 717-731 pmid: 1 publication: Molecular Plant publication_identifier: issn: - 1674-2052 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2020' ... --- _id: '15036' abstract: - lang: eng text: The assembly of a septin filament requires that homologous monomers must distinguish between one another in establishing appropriate interfaces with their neighbors. To understand this phenomenon at the molecular level, we present the first four crystal structures of heterodimeric septin complexes. We describe in detail the two distinct types of G-interface present within the octameric particles, which must polymerize to form filaments. These are formed between SEPT2 and SEPT6 and between SEPT7 and SEPT3, and their description permits an understanding of the structural basis for the selectivity necessary for correct filament assembly. By replacing SEPT6 by SEPT8 or SEPT11, it is possible to rationalize Kinoshita's postulate, which predicts the exchangeability of septins from within a subgroup. Switches I and II, which in classical small GTPases provide a mechanism for nucleotide-dependent conformational change, have been repurposed in septins to play a fundamental role in molecular recognition. Specifically, it is switch I which holds the key to discriminating between the two different G-interfaces. Moreover, residues which are characteristic for a given subgroup play subtle, but pivotal, roles in guaranteeing that the correct interfaces are formed. article_processing_charge: No article_type: original author: - first_name: Higor Vinícius Dias full_name: Rosa, Higor Vinícius Dias last_name: Rosa - first_name: Diego Antonio full_name: Leonardo, Diego Antonio last_name: Leonardo - first_name: Gabriel full_name: Brognara, Gabriel id: D96FFDA0-A884-11E9-9968-DC26E6697425 last_name: Brognara - first_name: José full_name: Brandão-Neto, José last_name: Brandão-Neto - first_name: Humberto full_name: D'Muniz Pereira, Humberto last_name: D'Muniz Pereira - first_name: Ana Paula Ulian full_name: Araújo, Ana Paula Ulian last_name: Araújo - first_name: Richard Charles full_name: Garratt, Richard Charles last_name: Garratt citation: ama: 'Rosa HVD, Leonardo DA, Brognara G, et al. Molecular recognition at septin interfaces: The switches hold the key. Journal of Molecular Biology. 2020;432(21):5784-5801. doi:10.1016/j.jmb.2020.09.001' apa: 'Rosa, H. V. D., Leonardo, D. A., Brognara, G., Brandão-Neto, J., D’Muniz Pereira, H., Araújo, A. P. U., & Garratt, R. C. (2020). Molecular recognition at septin interfaces: The switches hold the key. Journal of Molecular Biology. Elsevier. https://doi.org/10.1016/j.jmb.2020.09.001' chicago: 'Rosa, Higor Vinícius Dias, Diego Antonio Leonardo, Gabriel Brognara, José Brandão-Neto, Humberto D’Muniz Pereira, Ana Paula Ulian Araújo, and Richard Charles Garratt. “Molecular Recognition at Septin Interfaces: The Switches Hold the Key.” Journal of Molecular Biology. Elsevier, 2020. https://doi.org/10.1016/j.jmb.2020.09.001.' ieee: 'H. V. D. Rosa et al., “Molecular recognition at septin interfaces: The switches hold the key,” Journal of Molecular Biology, vol. 432, no. 21. Elsevier, pp. 5784–5801, 2020.' ista: 'Rosa HVD, Leonardo DA, Brognara G, Brandão-Neto J, D’Muniz Pereira H, Araújo APU, Garratt RC. 2020. Molecular recognition at septin interfaces: The switches hold the key. Journal of Molecular Biology. 432(21), 5784–5801.' mla: 'Rosa, Higor Vinícius Dias, et al. “Molecular Recognition at Septin Interfaces: The Switches Hold the Key.” Journal of Molecular Biology, vol. 432, no. 21, Elsevier, 2020, pp. 5784–801, doi:10.1016/j.jmb.2020.09.001.' short: H.V.D. Rosa, D.A. Leonardo, G. Brognara, J. Brandão-Neto, H. D’Muniz Pereira, A.P.U. Araújo, R.C. Garratt, Journal of Molecular Biology 432 (2020) 5784–5801. date_created: 2024-02-28T08:50:34Z date_published: 2020-10-02T00:00:00Z date_updated: 2024-02-28T12:37:54Z day: '02' department: - _id: MaLo doi: 10.1016/j.jmb.2020.09.001 external_id: pmid: - '32910969' intvolume: ' 432' issue: '21' keyword: - Molecular Biology - Structural Biology language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.jmb.2020.09.001 month: '10' oa: 1 oa_version: Published Version page: 5784-5801 pmid: 1 publication: Journal of Molecular Biology publication_identifier: issn: - 0022-2836 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: 'Molecular recognition at septin interfaces: The switches hold the key' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 432 year: '2020' ... --- _id: '8384' abstract: - lang: eng text: Previous research on animations of soap bubbles, films, and foams largely focuses on the motion and geometric shape of the bubble surface. These works neglect the evolution of the bubble’s thickness, which is normally responsible for visual phenomena like surface vortices, Newton’s interference patterns, capillary waves, and deformation-dependent rupturing of films in a foam. In this paper, we model these natural phenomena by introducing the film thickness as a reduced degree of freedom in the Navier-Stokes equations and deriving their equations of motion. We discretize the equations on a nonmanifold triangle mesh surface and couple it to an existing bubble solver. In doing so, we also introduce an incompressible fluid solver for 2.5D films and a novel advection algorithm for convecting fields across non-manifold surface junctions. Our simulations enhance state-of-the-art bubble solvers with additional effects caused by convection, rippling, draining, and evaporation of the thin film. acknowledged_ssus: - _id: ScienComp acknowledgement: "We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria for their valuable feedback, especially Camille Schreck for her help in rendering. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing. We would like to thank the authors of [Belcour and Barla 2017] for providing their implementation, the authors of [Atkins and Elliott 2010] and [Seychelles et al. 2008] for allowing us to use their results, and Rok Grah for helpful discussions. Finally, we thank Ryoichi Ando for many discussions from the beginning of the project that resulted in important contents of the paper including our formulation, numerical scheme, and initial implementation. This project has received funding from the\r\nEuropean Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 638176." article_number: '31' article_processing_charge: No article_type: original author: - first_name: Sadashige full_name: Ishida, Sadashige id: 6F7C4B96-A8E9-11E9-A7CA-09ECE5697425 last_name: Ishida - first_name: Peter full_name: Synak, Peter id: 331776E2-F248-11E8-B48F-1D18A9856A87 last_name: Synak - first_name: Fumiya full_name: Narita, Fumiya last_name: Narita - first_name: Toshiya full_name: Hachisuka, Toshiya last_name: Hachisuka - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Ishida S, Synak P, Narita F, Hachisuka T, Wojtan C. A model for soap film dynamics with evolving thickness. ACM Transactions on Graphics. 2020;39(4). doi:10.1145/3386569.3392405 apa: Ishida, S., Synak, P., Narita, F., Hachisuka, T., & Wojtan, C. (2020). A model for soap film dynamics with evolving thickness. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3386569.3392405 chicago: Ishida, Sadashige, Peter Synak, Fumiya Narita, Toshiya Hachisuka, and Chris Wojtan. “A Model for Soap Film Dynamics with Evolving Thickness.” ACM Transactions on Graphics. Association for Computing Machinery, 2020. https://doi.org/10.1145/3386569.3392405. ieee: S. Ishida, P. Synak, F. Narita, T. Hachisuka, and C. Wojtan, “A model for soap film dynamics with evolving thickness,” ACM Transactions on Graphics, vol. 39, no. 4. Association for Computing Machinery, 2020. ista: Ishida S, Synak P, Narita F, Hachisuka T, Wojtan C. 2020. A model for soap film dynamics with evolving thickness. ACM Transactions on Graphics. 39(4), 31. mla: Ishida, Sadashige, et al. “A Model for Soap Film Dynamics with Evolving Thickness.” ACM Transactions on Graphics, vol. 39, no. 4, 31, Association for Computing Machinery, 2020, doi:10.1145/3386569.3392405. short: S. Ishida, P. Synak, F. Narita, T. Hachisuka, C. Wojtan, ACM Transactions on Graphics 39 (2020). date_created: 2020-09-13T22:01:18Z date_published: 2020-07-08T00:00:00Z date_updated: 2024-02-28T12:57:31Z day: '08' ddc: - '000' department: - _id: ChWo doi: 10.1145/3386569.3392405 ec_funded: 1 external_id: isi: - '000583700300004' file: - access_level: open_access checksum: 813831ca91319d794d9748c276b24578 content_type: application/pdf creator: dernst date_created: 2020-11-23T09:03:19Z date_updated: 2020-11-23T09:03:19Z file_id: '8795' file_name: 2020_soapfilm_submitted.pdf file_size: 14935529 relation: main_file success: 1 file_date_updated: 2020-11-23T09:03:19Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/3386569.3392405 month: '07' oa: 1 oa_version: Submitted Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: ACM Transactions on Graphics publication_identifier: eissn: - '15577368' issn: - '07300301' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: A model for soap film dynamics with evolving thickness type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 39 year: '2020' ... --- _id: '7802' abstract: - lang: eng text: "The Massively Parallel Computation (MPC) model is an emerging model which distills core aspects of distributed and parallel computation. It has been developed as a tool to solve (typically graph) problems in systems where the input is distributed over many machines with limited space.\r\n\t\r\nRecent work has focused on the regime in which machines have sublinear (in $n$, the number of nodes in the input graph) space, with randomized algorithms presented for fundamental graph problems of Maximal Matching and Maximal Independent Set. However, there have been no prior corresponding deterministic algorithms.\r\n\t\r\n\tA major challenge underlying the sublinear space setting is that the local space of each machine might be too small to store all the edges incident to a single node. This poses a considerable obstacle compared to the classical models in which each node is assumed to know and have easy access to its incident edges. To overcome this barrier we introduce a new graph sparsification technique that deterministically computes a low-degree subgraph with additional desired properties. The degree of the nodes in this subgraph is small in the sense that the edges of each node can be now stored on a single machine. This low-degree subgraph also has the property that solving the problem on this subgraph provides \\emph{significant} global progress, i.e., progress towards solving the problem for the original input graph.\r\n\t\r\nUsing this framework to derandomize the well-known randomized algorithm of Luby [SICOMP'86], we obtain $O(\\log \\Delta+\\log\\log n)$-round deterministic MPC algorithms for solving the fundamental problems of Maximal Matching and Maximal Independent Set with $O(n^{\\epsilon})$ space on each machine for any constant $\\epsilon > 0$. Based on the recent work of Ghaffari et al. [FOCS'18], this additive $O(\\log\\log n)$ factor is conditionally essential. These algorithms can also be shown to run in $O(\\log \\Delta)$ rounds in the closely related model of CONGESTED CLIQUE, improving upon the state-of-the-art bound of $O(\\log^2 \\Delta)$ rounds by Censor-Hillel et al. [DISC'17]." article_processing_charge: No author: - first_name: Artur full_name: Czumaj, Artur last_name: Czumaj orcid: 0000-0002-5646-9524 - first_name: Peter full_name: Davies, Peter id: 11396234-BB50-11E9-B24C-90FCE5697425 last_name: Davies orcid: 0000-0002-5646-9524 - first_name: Merav full_name: Parter, Merav last_name: Parter citation: ama: 'Czumaj A, Davies P, Parter M. Graph sparsification for derandomizing massively parallel computation with low space. In: Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2020). Association for Computing Machinery; 2020:175-185. doi:10.1145/3350755.3400282' apa: 'Czumaj, A., Davies, P., & Parter, M. (2020). Graph sparsification for derandomizing massively parallel computation with low space. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2020) (pp. 175–185). Virtual Event, United States: Association for Computing Machinery. https://doi.org/10.1145/3350755.3400282' chicago: Czumaj, Artur, Peter Davies, and Merav Parter. “Graph Sparsification for Derandomizing Massively Parallel Computation with Low Space.” In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2020), 175–85. Association for Computing Machinery, 2020. https://doi.org/10.1145/3350755.3400282. ieee: A. Czumaj, P. Davies, and M. Parter, “Graph sparsification for derandomizing massively parallel computation with low space,” in Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2020), Virtual Event, United States, 2020, no. 7, pp. 175–185. ista: 'Czumaj A, Davies P, Parter M. 2020. Graph sparsification for derandomizing massively parallel computation with low space. Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2020). SPAA: Symposium on Parallelism in Algorithms and Architectures, 175–185.' mla: Czumaj, Artur, et al. “Graph Sparsification for Derandomizing Massively Parallel Computation with Low Space.” Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2020), no. 7, Association for Computing Machinery, 2020, pp. 175–85, doi:10.1145/3350755.3400282. short: A. Czumaj, P. Davies, M. Parter, in:, Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2020), Association for Computing Machinery, 2020, pp. 175–185. conference: end_date: 2020-07-17 location: Virtual Event, United States name: 'SPAA: Symposium on Parallelism in Algorithms and Architectures' start_date: 2020-07-15 date_created: 2020-05-06T08:53:34Z date_published: 2020-07-01T00:00:00Z date_updated: 2024-02-28T12:53:09Z day: '01' department: - _id: DaAl doi: 10.1145/3350755.3400282 ec_funded: 1 external_id: arxiv: - '1912.05390' isi: - '000744436200015' isi: 1 issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.05390 month: '07' oa: 1 oa_version: Preprint page: 175-185 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2020) publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: record: - id: '9541' relation: later_version status: public scopus_import: '1' status: public title: Graph sparsification for derandomizing massively parallel computation with low space type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2020' ... --- _id: '7636' abstract: - lang: eng text: "Balanced search trees typically use key comparisons to guide their operations, and achieve logarithmic running time. By relying on numerical properties of the keys, interpolation search achieves lower search complexity and better performance. Although interpolation-based data structures were investigated in the past, their non-blocking concurrent variants have received very little attention so far.\r\nIn this paper, we propose the first non-blocking implementation of the classic interpolation search tree (IST) data structure. For arbitrary key distributions, the data structure ensures worst-case O(log n + p) amortized time for search, insertion and deletion traversals. When the input key distributions are smooth, lookups run in expected O(log log n + p) time, and insertion and deletion run in expected amortized O(log log n + p) time, where p is a bound on the number of threads. To improve the scalability of concurrent insertion and deletion, we propose a novel parallel rebuilding technique, which should be of independent interest.\r\nWe evaluate whether the theoretical improvements translate to practice by implementing the concurrent interpolation search tree, and benchmarking it on uniform and nonuniform key distributions, for dataset sizes in the millions to billions of keys. Relative to the state-of-the-art concurrent data structures, the concurrent interpolation search tree achieves performance improvements of up to 15% under high update rates, and of up to 50% under moderate update rates. Further, ISTs exhibit up to 2X less cache-misses, and consume 1.2 -- 2.6X less memory compared to the next best alternative on typical dataset sizes. We find that the results are surprisingly robust to distributional skew, which suggests that our data structure can be a promising alternative to classic concurrent search structures." acknowledgement: "This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program, grant agreement No 805223, ERC Starting Grant ScaleML. We acknowledge the support of the Natural Sciences and\r\nEngineering Research Council of Canada (NSERC). " article_processing_charge: No author: - first_name: Trevor A full_name: Brown, Trevor A id: 3569F0A0-F248-11E8-B48F-1D18A9856A87 last_name: Brown - first_name: Aleksandar full_name: Prokopec, Aleksandar last_name: Prokopec - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Brown TA, Prokopec A, Alistarh D-A. Non-blocking interpolation search trees with doubly-logarithmic running time. In: Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. Association for Computing Machinery; 2020:276-291. doi:10.1145/3332466.3374542' apa: 'Brown, T. A., Prokopec, A., & Alistarh, D.-A. (2020). Non-blocking interpolation search trees with doubly-logarithmic running time. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (pp. 276–291). San Diego, CA, United States: Association for Computing Machinery. https://doi.org/10.1145/3332466.3374542' chicago: Brown, Trevor A, Aleksandar Prokopec, and Dan-Adrian Alistarh. “Non-Blocking Interpolation Search Trees with Doubly-Logarithmic Running Time.” In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 276–91. Association for Computing Machinery, 2020. https://doi.org/10.1145/3332466.3374542. ieee: T. A. Brown, A. Prokopec, and D.-A. Alistarh, “Non-blocking interpolation search trees with doubly-logarithmic running time,” in Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Diego, CA, United States, 2020, pp. 276–291. ista: 'Brown TA, Prokopec A, Alistarh D-A. 2020. Non-blocking interpolation search trees with doubly-logarithmic running time. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPOPP: Principles and Practice of Parallel Programming, 276–291.' mla: Brown, Trevor A., et al. “Non-Blocking Interpolation Search Trees with Doubly-Logarithmic Running Time.” Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2020, pp. 276–91, doi:10.1145/3332466.3374542. short: T.A. Brown, A. Prokopec, D.-A. Alistarh, in:, Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2020, pp. 276–291. conference: end_date: 2020-02-26 location: San Diego, CA, United States name: 'PPOPP: Principles and Practice of Parallel Programming' start_date: 2020-02-22 date_created: 2020-04-05T22:00:49Z date_published: 2020-02-19T00:00:00Z date_updated: 2024-02-28T12:55:14Z day: '19' department: - _id: DaAl doi: 10.1145/3332466.3374542 ec_funded: 1 external_id: isi: - '000564476500020' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/3332466.3374542 month: '02' oa: 1 oa_version: Published Version page: 276-291 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming publication_identifier: isbn: - '9781450368186' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Non-blocking interpolation search trees with doubly-logarithmic running time type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ...