--- _id: '6593' abstract: - lang: eng text: 'We consider the monotone variational inequality problem in a Hilbert space and describe a projection-type method with inertial terms under the following properties: (a) The method generates a strongly convergent iteration sequence; (b) The method requires, at each iteration, only one projection onto the feasible set and two evaluations of the operator; (c) The method is designed for variational inequality for which the underline operator is monotone and uniformly continuous; (d) The method includes an inertial term. The latter is also shown to speed up the convergence in our numerical results. A comparison with some related methods is given and indicates that the new method is promising.' acknowledgement: The research of this author is supported by the ERC grant at the IST. article_processing_charge: No article_type: original author: - first_name: Yekini full_name: Shehu, Yekini id: 3FC7CB58-F248-11E8-B48F-1D18A9856A87 last_name: Shehu orcid: 0000-0001-9224-7139 - first_name: Xiao-Huan full_name: Li, Xiao-Huan last_name: Li - first_name: Qiao-Li full_name: Dong, Qiao-Li last_name: Dong citation: ama: Shehu Y, Li X-H, Dong Q-L. An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numerical Algorithms. 2020;84:365-388. doi:10.1007/s11075-019-00758-y apa: Shehu, Y., Li, X.-H., & Dong, Q.-L. (2020). An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numerical Algorithms. Springer Nature. https://doi.org/10.1007/s11075-019-00758-y chicago: Shehu, Yekini, Xiao-Huan Li, and Qiao-Li Dong. “An Efficient Projection-Type Method for Monotone Variational Inequalities in Hilbert Spaces.” Numerical Algorithms. Springer Nature, 2020. https://doi.org/10.1007/s11075-019-00758-y. ieee: Y. Shehu, X.-H. Li, and Q.-L. Dong, “An efficient projection-type method for monotone variational inequalities in Hilbert spaces,” Numerical Algorithms, vol. 84. Springer Nature, pp. 365–388, 2020. ista: Shehu Y, Li X-H, Dong Q-L. 2020. An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numerical Algorithms. 84, 365–388. mla: Shehu, Yekini, et al. “An Efficient Projection-Type Method for Monotone Variational Inequalities in Hilbert Spaces.” Numerical Algorithms, vol. 84, Springer Nature, 2020, pp. 365–88, doi:10.1007/s11075-019-00758-y. short: Y. Shehu, X.-H. Li, Q.-L. Dong, Numerical Algorithms 84 (2020) 365–388. date_created: 2019-06-27T20:09:33Z date_published: 2020-05-01T00:00:00Z date_updated: 2023-08-17T13:51:18Z day: '01' ddc: - '000' department: - _id: VlKo doi: 10.1007/s11075-019-00758-y ec_funded: 1 external_id: isi: - '000528979000015' file: - access_level: open_access checksum: bb1a1eb3ebb2df380863d0db594673ba content_type: application/pdf creator: kschuh date_created: 2019-10-01T13:14:10Z date_updated: 2020-07-14T12:47:34Z file_id: '6927' file_name: ExtragradientMethodPaper.pdf file_size: 359654 relation: main_file file_date_updated: 2020-07-14T12:47:34Z has_accepted_license: '1' intvolume: ' 84' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 365-388 project: - _id: 25FBA906-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '616160' name: 'Discrete Optimization in Computer Vision: Theory and Practice' publication: Numerical Algorithms publication_identifier: eissn: - 1572-9265 issn: - 1017-1398 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: An efficient projection-type method for monotone variational inequalities in Hilbert spaces type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 84 year: '2020' ... --- _id: '6808' abstract: - lang: eng text: Super-resolution fluorescence microscopy has become an important catalyst for discovery in the life sciences. In STimulated Emission Depletion (STED) microscopy, a pattern of light drives fluorophores from a signal-emitting on-state to a non-signalling off-state. Only emitters residing in a sub-diffraction volume around an intensity minimum are allowed to fluoresce, rendering them distinguishable from the nearby, but dark fluorophores. STED routinely achieves resolution in the few tens of nanometers range in biological samples and is suitable for live imaging. Here, we review the working principle of STED and provide general guidelines for successful STED imaging. The strive for ever higher resolution comes at the cost of increased light burden. We discuss techniques to reduce light exposure and mitigate its detrimental effects on the specimen. These include specialized illumination strategies as well as protecting fluorophores from photobleaching mediated by high-intensity STED light. This opens up the prospect of volumetric imaging in living cells and tissues with diffraction-unlimited resolution in all three spatial dimensions. article_processing_charge: No article_type: original author: - first_name: Wiebke full_name: Jahr, Wiebke id: 425C1CE8-F248-11E8-B48F-1D18A9856A87 last_name: Jahr - first_name: Philipp full_name: Velicky, Philipp id: 39BDC62C-F248-11E8-B48F-1D18A9856A87 last_name: Velicky orcid: 0000-0002-2340-7431 - first_name: Johann G full_name: Danzl, Johann G id: 42EFD3B6-F248-11E8-B48F-1D18A9856A87 last_name: Danzl orcid: 0000-0001-8559-3973 citation: ama: Jahr W, Velicky P, Danzl JG. Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens. Methods. 2020;174(3):27-41. doi:10.1016/j.ymeth.2019.07.019 apa: Jahr, W., Velicky, P., & Danzl, J. G. (2020). Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens. Methods. Elsevier. https://doi.org/10.1016/j.ymeth.2019.07.019 chicago: Jahr, Wiebke, Philipp Velicky, and Johann G Danzl. “Strategies to Maximize Performance in STimulated Emission Depletion (STED) Nanoscopy of Biological Specimens.” Methods. Elsevier, 2020. https://doi.org/10.1016/j.ymeth.2019.07.019. ieee: W. Jahr, P. Velicky, and J. G. Danzl, “Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens,” Methods, vol. 174, no. 3. Elsevier, pp. 27–41, 2020. ista: Jahr W, Velicky P, Danzl JG. 2020. Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens. Methods. 174(3), 27–41. mla: Jahr, Wiebke, et al. “Strategies to Maximize Performance in STimulated Emission Depletion (STED) Nanoscopy of Biological Specimens.” Methods, vol. 174, no. 3, Elsevier, 2020, pp. 27–41, doi:10.1016/j.ymeth.2019.07.019. short: W. Jahr, P. Velicky, J.G. Danzl, Methods 174 (2020) 27–41. date_created: 2019-08-12T16:36:32Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-08-17T13:59:57Z day: '01' department: - _id: JoDa doi: 10.1016/j.ymeth.2019.07.019 external_id: isi: - '000525860400005' pmid: - '31344404' intvolume: ' 174' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100895/ month: '03' oa: 1 oa_version: Submitted Version page: 27-41 pmid: 1 project: - _id: 265CB4D0-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03600 name: Optical control of synaptic function via adhesion molecules - _id: 2668BFA0-B435-11E9-9278-68D0E5697425 grant_number: LT00057 name: High-speed 3D-nanoscopy to study the role of adhesion during 3D cell migration publication: Methods publication_identifier: issn: - 1046-2023 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 174 year: '2020' ... --- _id: '6563' abstract: - lang: eng text: "This paper presents two algorithms. The first decides the existence of a pointed homotopy between given simplicial maps \U0001D453,\U0001D454:\U0001D44B→\U0001D44C, and the second computes the group [\U0001D6F4\U0001D44B,\U0001D44C]∗ of pointed homotopy classes of maps from a suspension; in both cases, the target Y is assumed simply connected. More generally, these algorithms work relative to \U0001D434⊆\U0001D44B." article_processing_charge: No article_type: original author: - first_name: Marek full_name: Filakovský, Marek id: 3E8AF77E-F248-11E8-B48F-1D18A9856A87 last_name: Filakovský - first_name: Lukas full_name: Vokřínek, Lukas last_name: Vokřínek citation: ama: Filakovský M, Vokřínek L. Are two given maps homotopic? An algorithmic viewpoint. Foundations of Computational Mathematics. 2020;20:311-330. doi:10.1007/s10208-019-09419-x apa: Filakovský, M., & Vokřínek, L. (2020). Are two given maps homotopic? An algorithmic viewpoint. Foundations of Computational Mathematics. Springer Nature. https://doi.org/10.1007/s10208-019-09419-x chicago: Filakovský, Marek, and Lukas Vokřínek. “Are Two given Maps Homotopic? An Algorithmic Viewpoint.” Foundations of Computational Mathematics. Springer Nature, 2020. https://doi.org/10.1007/s10208-019-09419-x. ieee: M. Filakovský and L. Vokřínek, “Are two given maps homotopic? An algorithmic viewpoint,” Foundations of Computational Mathematics, vol. 20. Springer Nature, pp. 311–330, 2020. ista: Filakovský M, Vokřínek L. 2020. Are two given maps homotopic? An algorithmic viewpoint. Foundations of Computational Mathematics. 20, 311–330. mla: Filakovský, Marek, and Lukas Vokřínek. “Are Two given Maps Homotopic? An Algorithmic Viewpoint.” Foundations of Computational Mathematics, vol. 20, Springer Nature, 2020, pp. 311–30, doi:10.1007/s10208-019-09419-x. short: M. Filakovský, L. Vokřínek, Foundations of Computational Mathematics 20 (2020) 311–330. date_created: 2019-06-16T21:59:14Z date_published: 2020-04-01T00:00:00Z date_updated: 2023-08-17T13:50:44Z day: '01' department: - _id: UlWa doi: 10.1007/s10208-019-09419-x external_id: arxiv: - '1312.2337' isi: - '000522437400004' intvolume: ' 20' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1312.2337 month: '04' oa: 1 oa_version: Preprint page: 311-330 project: - _id: 26611F5C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31312 name: Algorithms for Embeddings and Homotopy Theory publication: Foundations of Computational Mathematics publication_identifier: eissn: - '16153383' issn: - '16153375' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Are two given maps homotopic? An algorithmic viewpoint type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 20 year: '2020' ... --- _id: '6952' abstract: - lang: eng text: 'We present a unified framework tackling two problems: class-specific 3D reconstruction from a single image, and generation of new 3D shape samples. These tasks have received considerable attention recently; however, most existing approaches rely on 3D supervision, annotation of 2D images with keypoints or poses, and/or training with multiple views of each object instance. Our framework is very general: it can be trained in similar settings to existing approaches, while also supporting weaker supervision. Importantly, it can be trained purely from 2D images, without pose annotations, and with only a single view per instance. We employ meshes as an output representation, instead of voxels used in most prior work. This allows us to reason over lighting parameters and exploit shading information during training, which previous 2D-supervised methods cannot. Thus, our method can learn to generate and reconstruct concave object classes. We evaluate our approach in various settings, showing that: (i) it learns to disentangle shape from pose and lighting; (ii) using shading in the loss improves performance compared to just silhouettes; (iii) when using a standard single white light, our model outperforms state-of-the-art 2D-supervised methods, both with and without pose supervision, thanks to exploiting shading cues; (iv) performance improves further when using multiple coloured lights, even approaching that of state-of-the-art 3D-supervised methods; (v) shapes produced by our model capture smooth surfaces and fine details better than voxel-based approaches; and (vi) our approach supports concave classes such as bathtubs and sofas, which methods based on silhouettes cannot learn.' acknowledgement: Open access funding provided by Institute of Science and Technology (IST Austria). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Paul M full_name: Henderson, Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 - first_name: Vittorio full_name: Ferrari, Vittorio last_name: Ferrari citation: ama: Henderson PM, Ferrari V. Learning single-image 3D reconstruction by generative modelling of shape, pose and shading. International Journal of Computer Vision. 2020;128:835-854. doi:10.1007/s11263-019-01219-8 apa: Henderson, P. M., & Ferrari, V. (2020). Learning single-image 3D reconstruction by generative modelling of shape, pose and shading. International Journal of Computer Vision. Springer Nature. https://doi.org/10.1007/s11263-019-01219-8 chicago: Henderson, Paul M, and Vittorio Ferrari. “Learning Single-Image 3D Reconstruction by Generative Modelling of Shape, Pose and Shading.” International Journal of Computer Vision. Springer Nature, 2020. https://doi.org/10.1007/s11263-019-01219-8. ieee: P. M. Henderson and V. Ferrari, “Learning single-image 3D reconstruction by generative modelling of shape, pose and shading,” International Journal of Computer Vision, vol. 128. Springer Nature, pp. 835–854, 2020. ista: Henderson PM, Ferrari V. 2020. Learning single-image 3D reconstruction by generative modelling of shape, pose and shading. International Journal of Computer Vision. 128, 835–854. mla: Henderson, Paul M., and Vittorio Ferrari. “Learning Single-Image 3D Reconstruction by Generative Modelling of Shape, Pose and Shading.” International Journal of Computer Vision, vol. 128, Springer Nature, 2020, pp. 835–54, doi:10.1007/s11263-019-01219-8. short: P.M. Henderson, V. Ferrari, International Journal of Computer Vision 128 (2020) 835–854. date_created: 2019-10-17T13:38:20Z date_published: 2020-04-01T00:00:00Z date_updated: 2023-08-17T14:01:16Z day: '01' ddc: - '004' department: - _id: ChLa doi: 10.1007/s11263-019-01219-8 external_id: arxiv: - '1901.06447' isi: - '000491042100002' file: - access_level: open_access checksum: a0f05dd4f5f64e4f713d8d9d4b5b1e3f content_type: application/pdf creator: dernst date_created: 2019-10-25T10:28:29Z date_updated: 2020-07-14T12:47:46Z file_id: '6973' file_name: 2019_CompVision_Henderson.pdf file_size: 2243134 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 128' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 835-854 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: International Journal of Computer Vision publication_identifier: eissn: - 1573-1405 issn: - 0920-5691 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Learning single-image 3D reconstruction by generative modelling of shape, pose and shading tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 128 year: '2020' ... --- _id: '7148' abstract: - lang: eng text: In the cerebellum, GluD2 is exclusively expressed in Purkinje cells, where it regulates synapse formation and regeneration, synaptic plasticity, and motor learning. Delayed cognitive development in humans with GluD2 gene mutations suggests extracerebellar functions of GluD2. However, extracerebellar expression of GluD2 and its relationship with that of GluD1 are poorly understood. GluD2 mRNA and protein were widely detected, with relatively high levels observed in the olfactory glomerular layer, medial prefrontal cortex, cingulate cortex, retrosplenial granular cortex, olfactory tubercle, subiculum, striatum, lateral septum, anterodorsal thalamic nucleus, and arcuate hypothalamic nucleus. These regions were also enriched for GluD1, and many individual neurons coexpressed the two GluDs. In the retrosplenial granular cortex, GluD1 and GluD2 were selectively expressed at PSD‐95‐expressing glutamatergic synapses, and their coexpression on the same synapses was shown by SDS‐digested freeze‐fracture replica labeling. Biochemically, GluD1 and GluD2 formed coimmunoprecipitable complex formation in HEK293T cells and in the cerebral cortex and hippocampus. We further estimated the relative protein amount by quantitative immunoblotting using GluA2/GluD2 and GluA2/GluD1 chimeric proteins as standards for titration of GluD1 and GluD2 antibodies. Intriguingly, the relative amount of GluD2 was almost comparable to that of GluD1 in the postsynaptic density fraction prepared from the cerebral cortex and hippocampus. In contrast, GluD2 was overwhelmingly predominant in the cerebellum. Thus, we have determined the relative extracerebellar expression of GluD1 and GluD2 at regional, neuronal, and synaptic levels. These data provide a molecular–anatomical basis for possible competitive and cooperative interactions of GluD family members at synapses in various brain regions. acknowledgement: This study was supported by Grants-in-Aid for Scientific Research to K.K. (18K06813), Y.M. (17K08503, 17H0631319), and K.S. (16H04650) and a grant for Scientific Research on Innovative Areas to K.S (16H06276) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). We thank K. Akashi, I. Watanabe-Iida, Y. Suzuki, and H. Azechi for technical assistance and advice, and H. Uchida for valuable discussions. We thank E. Kushiya,I. Yabe, C. Ohori, Y. Mochizuki, Y. Ishikawa, and N. Ishimoto for technical assistance in generating GluD1-KO mice. article_processing_charge: No article_type: original author: - first_name: Chihiro full_name: Nakamoto, Chihiro last_name: Nakamoto - first_name: Kohtarou full_name: Konno, Kohtarou last_name: Konno - first_name: Taisuke full_name: Miyazaki, Taisuke last_name: Miyazaki - first_name: Ena full_name: Nakatsukasa, Ena last_name: Nakatsukasa - first_name: Rie full_name: Natsume, Rie last_name: Natsume - first_name: Manabu full_name: Abe, Manabu last_name: Abe - first_name: Meiko full_name: Kawamura, Meiko last_name: Kawamura - first_name: Yugo full_name: Fukazawa, Yugo last_name: Fukazawa - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Miwako full_name: Yamasaki, Miwako last_name: Yamasaki - first_name: Kenji full_name: Sakimura, Kenji last_name: Sakimura - first_name: Masahiko full_name: Watanabe, Masahiko last_name: Watanabe citation: ama: Nakamoto C, Konno K, Miyazaki T, et al. Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. Journal of Comparative Neurology. 2020;528(6):1003-1027. doi:10.1002/cne.24792 apa: Nakamoto, C., Konno, K., Miyazaki, T., Nakatsukasa, E., Natsume, R., Abe, M., … Watanabe, M. (2020). Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. Journal of Comparative Neurology. Wiley. https://doi.org/10.1002/cne.24792 chicago: Nakamoto, Chihiro, Kohtarou Konno, Taisuke Miyazaki, Ena Nakatsukasa, Rie Natsume, Manabu Abe, Meiko Kawamura, et al. “Expression Mapping, Quantification, and Complex Formation of GluD1 and GluD2 Glutamate Receptors in Adult Mouse Brain.” Journal of Comparative Neurology. Wiley, 2020. https://doi.org/10.1002/cne.24792. ieee: C. Nakamoto et al., “Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain,” Journal of Comparative Neurology, vol. 528, no. 6. Wiley, pp. 1003–1027, 2020. ista: Nakamoto C, Konno K, Miyazaki T, Nakatsukasa E, Natsume R, Abe M, Kawamura M, Fukazawa Y, Shigemoto R, Yamasaki M, Sakimura K, Watanabe M. 2020. Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. Journal of Comparative Neurology. 528(6), 1003–1027. mla: Nakamoto, Chihiro, et al. “Expression Mapping, Quantification, and Complex Formation of GluD1 and GluD2 Glutamate Receptors in Adult Mouse Brain.” Journal of Comparative Neurology, vol. 528, no. 6, Wiley, 2020, pp. 1003–27, doi:10.1002/cne.24792. short: C. Nakamoto, K. Konno, T. Miyazaki, E. Nakatsukasa, R. Natsume, M. Abe, M. Kawamura, Y. Fukazawa, R. Shigemoto, M. Yamasaki, K. Sakimura, M. Watanabe, Journal of Comparative Neurology 528 (2020) 1003–1027. date_created: 2019-12-04T16:09:29Z date_published: 2020-04-01T00:00:00Z date_updated: 2023-08-17T14:06:50Z day: '01' ddc: - '571' - '599' department: - _id: RySh doi: 10.1002/cne.24792 external_id: isi: - '000496410200001' pmid: - '31625608' has_accepted_license: '1' intvolume: ' 528' isi: 1 issue: '6' language: - iso: eng month: '04' oa_version: None page: 1003-1027 pmid: 1 publication: Journal of Comparative Neurology publication_identifier: eissn: - 1096-9861 issn: - 0021-9967 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 528 year: '2020' ... --- _id: '7033' abstract: - lang: eng text: Removal of the Bax gene from mice completely protects the somas of retinal ganglion cells (RGCs) from apoptosis following optic nerve injury. This makes BAX a promising therapeutic target to prevent neurodegeneration. In this study, Bax+/− mice were used to test the hypothesis that lowering the quantity of BAX in RGCs would delay apoptosis following optic nerve injury. RGCs were damaged by performing optic nerve crush (ONC) and then immunostaining for phospho-cJUN, and quantitative PCR were used to monitor the status of the BAX activation mechanism in the months following injury. The apoptotic susceptibility of injured cells was directly tested by virally introducing GFP-BAX into Bax−/− RGCs after injury. The competency of quiescent RGCs to reactivate their BAX activation mechanism was tested by intravitreal injection of the JNK pathway agonist, anisomycin. Twenty-four weeks after ONC, Bax+/− mice had significantly less cell loss in their RGC layer than Bax+/+ mice 3 weeks after ONC. Bax+/− and Bax+/+ RGCs exhibited similar patterns of nuclear phospho-cJUN accumulation immediately after ONC, which persisted in Bax+/− RGCs for up to 7 weeks before abating. The transcriptional activation of BAX-activating genes was similar in Bax+/− and Bax+/+ RGCs following ONC. Intriguingly, cells deactivated their BAX activation mechanism between 7 and 12 weeks after crush. Introduction of GFP-BAX into Bax−/− cells at 4 weeks after ONC showed that these cells had a nearly normal capacity to activate this protein, but this capacity was lost 8 weeks after crush. Collectively, these data suggest that 8–12 weeks after crush, damaged cells no longer displayed increased susceptibility to BAX activation relative to their naïve counterparts. In this same timeframe, retinal glial activation and the signaling of the pro-apoptotic JNK pathway also abated. Quiescent RGCs did not show a timely reactivation of their JNK pathway following intravitreal injection with anisomycin. These findings demonstrate that lowering the quantity of BAX in RGCs is neuroprotective after acute injury. Damaged RGCs enter a quiescent state months after injury and are no longer responsive to an apoptotic stimulus. Quiescent RGCs will require rejuvenation to reacquire functionality. acknowledgement: This work was supported by National Eye Institute grants R01 EY012223 (RWN), R01 EY030123 (RWN), T32 EY027721 (Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison), and a Vision Science Core grant P30 EY016665 (Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison), an unrestricted funding grant from Research to Prevent Blindness (Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison), the Frederick A. Davis Endowment (RWN), and the Mr. and Mrs. George Taylor Foundation (RWN). article_processing_charge: No article_type: original author: - first_name: RJ full_name: Donahue, RJ last_name: Donahue - first_name: Margaret E full_name: Maes, Margaret E id: 3838F452-F248-11E8-B48F-1D18A9856A87 last_name: Maes orcid: 0000-0001-9642-1085 - first_name: JA full_name: Grosser, JA last_name: Grosser - first_name: RW full_name: Nickells, RW last_name: Nickells citation: ama: Donahue R, Maes ME, Grosser J, Nickells R. BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage. Molecular Neurobiology. 2020;57(2):1070–1084. doi:10.1007/s12035-019-01783-7 apa: Donahue, R., Maes, M. E., Grosser, J., & Nickells, R. (2020). BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage. Molecular Neurobiology. Springer Nature. https://doi.org/10.1007/s12035-019-01783-7 chicago: Donahue, RJ, Margaret E Maes, JA Grosser, and RW Nickells. “BAX-Depleted Retinal Ganglion Cells Survive and Become Quiescent Following Optic Nerve Damage.” Molecular Neurobiology. Springer Nature, 2020. https://doi.org/10.1007/s12035-019-01783-7. ieee: R. Donahue, M. E. Maes, J. Grosser, and R. Nickells, “BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage,” Molecular Neurobiology, vol. 57, no. 2. Springer Nature, pp. 1070–1084, 2020. ista: Donahue R, Maes ME, Grosser J, Nickells R. 2020. BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage. Molecular Neurobiology. 57(2), 1070–1084. mla: Donahue, RJ, et al. “BAX-Depleted Retinal Ganglion Cells Survive and Become Quiescent Following Optic Nerve Damage.” Molecular Neurobiology, vol. 57, no. 2, Springer Nature, 2020, pp. 1070–1084, doi:10.1007/s12035-019-01783-7. short: R. Donahue, M.E. Maes, J. Grosser, R. Nickells, Molecular Neurobiology 57 (2020) 1070–1084. date_created: 2019-11-18T14:18:39Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:05:48Z day: '01' department: - _id: SaSi doi: 10.1007/s12035-019-01783-7 external_id: isi: - '000493754200001' pmid: - '31673950' intvolume: ' 57' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035206/ month: '02' oa: 1 oa_version: Submitted Version page: 1070–1084 pmid: 1 publication: Molecular Neurobiology publication_identifier: eissn: - 1559-1182 issn: - 0893-7648 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 57 year: '2020' ... --- _id: '6997' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Zhang Y, Friml J. Auxin guides roots to avoid obstacles during gravitropic growth. New Phytologist. 2020;225(3):1049-1052. doi:10.1111/nph.16203 apa: Zhang, Y., & Friml, J. (2020). Auxin guides roots to avoid obstacles during gravitropic growth. New Phytologist. Wiley. https://doi.org/10.1111/nph.16203 chicago: Zhang, Yuzhou, and Jiří Friml. “Auxin Guides Roots to Avoid Obstacles during Gravitropic Growth.” New Phytologist. Wiley, 2020. https://doi.org/10.1111/nph.16203. ieee: Y. Zhang and J. Friml, “Auxin guides roots to avoid obstacles during gravitropic growth,” New Phytologist, vol. 225, no. 3. Wiley, pp. 1049–1052, 2020. ista: Zhang Y, Friml J. 2020. Auxin guides roots to avoid obstacles during gravitropic growth. New Phytologist. 225(3), 1049–1052. mla: Zhang, Yuzhou, and Jiří Friml. “Auxin Guides Roots to Avoid Obstacles during Gravitropic Growth.” New Phytologist, vol. 225, no. 3, Wiley, 2020, pp. 1049–52, doi:10.1111/nph.16203. short: Y. Zhang, J. Friml, New Phytologist 225 (2020) 1049–1052. date_created: 2019-11-12T11:41:32Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:01:49Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.16203 ec_funded: 1 external_id: isi: - '000489638800001' pmid: - '31603260' file: - access_level: open_access checksum: cd42ffdb381fd52812b9583d4d407139 content_type: application/pdf creator: dernst date_created: 2020-11-18T16:42:48Z date_updated: 2020-11-18T16:42:48Z file_id: '8772' file_name: 2020_NewPhytologist_Zhang.pdf file_size: 717345 relation: main_file success: 1 file_date_updated: 2020-11-18T16:42:48Z has_accepted_license: '1' intvolume: ' 225' isi: 1 issue: '3' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 1049-1052 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646x publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Auxin guides roots to avoid obstacles during gravitropic growth tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 225 year: '2020' ... --- _id: '7149' abstract: - lang: eng text: In recent years, many genes have been associated with chromatinopathies classified as “Cornelia de Lange Syndrome‐like.” It is known that the phenotype of these patients becomes less recognizable, overlapping to features characteristic of other syndromes caused by genetic variants affecting different regulators of chromatin structure and function. Therefore, Cornelia de Lange syndrome diagnosis might be arduous due to the seldom discordance between unexpected molecular diagnosis and clinical evaluation. Here, we review the molecular features of Cornelia de Lange syndrome, supporting the hypothesis that “CdLS‐like syndromes” are part of a larger “rare disease family” sharing multiple clinical features and common disrupted molecular pathways. acknowledgement: ' Dipartimento DiSS, Università degli Studi di Milano, Grant/Award Number: Linea 2; Fondazione Cariplo, Grant/Award Number: 2015-0783; German Federal Ministry of Education and Research (BMBF), Grant/Award Number: CHROMATIN-Net; Medical Faculty of the University of Lübeck, Grant/Award Number: J09-2017; Nickel & Co S.p.A.; Università degli Studi di Milano, Grant/Award Numbers: Molecular & Translational Medicine PhD Scholarship, Translational Medicine PhD Scholarship' article_processing_charge: No article_type: review author: - first_name: Laura full_name: Avagliano, Laura last_name: Avagliano - first_name: Ilaria full_name: Parenti, Ilaria id: D93538B0-5B71-11E9-AC62-02EBE5697425 last_name: Parenti - first_name: Paolo full_name: Grazioli, Paolo last_name: Grazioli - first_name: Elisabetta full_name: Di Fede, Elisabetta last_name: Di Fede - first_name: Chiara full_name: Parodi, Chiara last_name: Parodi - first_name: Milena full_name: Mariani, Milena last_name: Mariani - first_name: Frank J. full_name: Kaiser, Frank J. last_name: Kaiser - first_name: Angelo full_name: Selicorni, Angelo last_name: Selicorni - first_name: Cristina full_name: Gervasini, Cristina last_name: Gervasini - first_name: Valentina full_name: Massa, Valentina last_name: Massa citation: ama: 'Avagliano L, Parenti I, Grazioli P, et al. Chromatinopathies: A focus on Cornelia de Lange syndrome. Clinical Genetics. 2020;97(1):3-11. doi:10.1111/cge.13674' apa: 'Avagliano, L., Parenti, I., Grazioli, P., Di Fede, E., Parodi, C., Mariani, M., … Massa, V. (2020). Chromatinopathies: A focus on Cornelia de Lange syndrome. Clinical Genetics. Wiley. https://doi.org/10.1111/cge.13674' chicago: 'Avagliano, Laura, Ilaria Parenti, Paolo Grazioli, Elisabetta Di Fede, Chiara Parodi, Milena Mariani, Frank J. Kaiser, Angelo Selicorni, Cristina Gervasini, and Valentina Massa. “Chromatinopathies: A Focus on Cornelia de Lange Syndrome.” Clinical Genetics. Wiley, 2020. https://doi.org/10.1111/cge.13674.' ieee: 'L. Avagliano et al., “Chromatinopathies: A focus on Cornelia de Lange syndrome,” Clinical Genetics, vol. 97, no. 1. Wiley, pp. 3–11, 2020.' ista: 'Avagliano L, Parenti I, Grazioli P, Di Fede E, Parodi C, Mariani M, Kaiser FJ, Selicorni A, Gervasini C, Massa V. 2020. Chromatinopathies: A focus on Cornelia de Lange syndrome. Clinical Genetics. 97(1), 3–11.' mla: 'Avagliano, Laura, et al. “Chromatinopathies: A Focus on Cornelia de Lange Syndrome.” Clinical Genetics, vol. 97, no. 1, Wiley, 2020, pp. 3–11, doi:10.1111/cge.13674.' short: L. Avagliano, I. Parenti, P. Grazioli, E. Di Fede, C. Parodi, M. Mariani, F.J. Kaiser, A. Selicorni, C. Gervasini, V. Massa, Clinical Genetics 97 (2020) 3–11. date_created: 2019-12-04T16:10:59Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-08-17T14:06:20Z day: '01' department: - _id: GaNo doi: 10.1111/cge.13674 external_id: isi: - '000562561800001' pmid: - '31721174' intvolume: ' 97' isi: 1 issue: '1' language: - iso: eng month: '01' oa_version: None page: 3-11 pmid: 1 publication: Clinical Genetics publication_identifier: eissn: - 1399-0004 issn: - 0009-9163 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Chromatinopathies: A focus on Cornelia de Lange syndrome' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 97 year: '2020' ... --- _id: '7004' abstract: - lang: eng text: We define an action of the (double of) Cohomological Hall algebra of Kontsevich and Soibelman on the cohomology of the moduli space of spiked instantons of Nekrasov. We identify this action with the one of the affine Yangian of gl(1). Based on that we derive the vertex algebra at the corner Wr1,r2,r3 of Gaiotto and Rapčák. We conjecture that our approach works for a big class of Calabi–Yau categories, including those associated with toric Calabi–Yau 3-folds. article_processing_charge: No article_type: original author: - first_name: Miroslav full_name: Rapcak, Miroslav last_name: Rapcak - first_name: Yan full_name: Soibelman, Yan last_name: Soibelman - first_name: Yaping full_name: Yang, Yaping last_name: Yang - first_name: Gufang full_name: Zhao, Gufang id: 2BC2AC5E-F248-11E8-B48F-1D18A9856A87 last_name: Zhao citation: ama: Rapcak M, Soibelman Y, Yang Y, Zhao G. Cohomological Hall algebras, vertex algebras and instantons. Communications in Mathematical Physics. 2020;376:1803-1873. doi:10.1007/s00220-019-03575-5 apa: Rapcak, M., Soibelman, Y., Yang, Y., & Zhao, G. (2020). Cohomological Hall algebras, vertex algebras and instantons. Communications in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s00220-019-03575-5 chicago: Rapcak, Miroslav, Yan Soibelman, Yaping Yang, and Gufang Zhao. “Cohomological Hall Algebras, Vertex Algebras and Instantons.” Communications in Mathematical Physics. Springer Nature, 2020. https://doi.org/10.1007/s00220-019-03575-5. ieee: M. Rapcak, Y. Soibelman, Y. Yang, and G. Zhao, “Cohomological Hall algebras, vertex algebras and instantons,” Communications in Mathematical Physics, vol. 376. Springer Nature, pp. 1803–1873, 2020. ista: Rapcak M, Soibelman Y, Yang Y, Zhao G. 2020. Cohomological Hall algebras, vertex algebras and instantons. Communications in Mathematical Physics. 376, 1803–1873. mla: Rapcak, Miroslav, et al. “Cohomological Hall Algebras, Vertex Algebras and Instantons.” Communications in Mathematical Physics, vol. 376, Springer Nature, 2020, pp. 1803–73, doi:10.1007/s00220-019-03575-5. short: M. Rapcak, Y. Soibelman, Y. Yang, G. Zhao, Communications in Mathematical Physics 376 (2020) 1803–1873. date_created: 2019-11-12T14:01:27Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-08-17T14:02:59Z day: '01' department: - _id: TaHa doi: 10.1007/s00220-019-03575-5 ec_funded: 1 external_id: arxiv: - '1810.10402' isi: - '000536255500004' intvolume: ' 376' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1810.10402 month: '06' oa: 1 oa_version: Preprint page: 1803-1873 project: - _id: 25E549F4-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '320593' name: Arithmetic and physics of Higgs moduli spaces publication: Communications in Mathematical Physics publication_identifier: eissn: - 1432-0916 issn: - 0010-3616 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Cohomological Hall algebras, vertex algebras and instantons type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 376 year: '2020' ... --- _id: '7204' abstract: - lang: eng text: Plant root architecture dynamically adapts to various environmental conditions, such as salt‐containing soil. The phytohormone abscisic acid (ABA) is involved among others also in these developmental adaptations, but the underlying molecular mechanism remains elusive. Here, a novel branch of the ABA signaling pathway in Arabidopsis involving PYR/PYL/RCAR (abbreviated as PYLs) receptor‐protein phosphatase 2A (PP2A) complex that acts in parallel to the canonical PYLs‐protein phosphatase 2C (PP2C) mechanism is identified. The PYLs‐PP2A signaling modulates root gravitropism and lateral root formation through regulating phytohormone auxin transport. In optimal conditions, PYLs ABA receptor interacts with the catalytic subunits of PP2A, increasing their phosphatase activity and thus counteracting PINOID (PID) kinase‐mediated phosphorylation of PIN‐FORMED (PIN) auxin transporters. By contrast, in salt and osmotic stress conditions, ABA binds to PYLs, inhibiting the PP2A activity, which leads to increased PIN phosphorylation and consequently modulated directional auxin transport leading to adapted root architecture. This work reveals an adaptive mechanism that may flexibly adjust plant root growth to withstand saline and osmotic stresses. It occurs via the cross‐talk between the stress hormone ABA and the versatile developmental regulator auxin. article_number: '1901455' article_processing_charge: No article_type: original author: - first_name: Yang full_name: Li, Yang last_name: Li - first_name: Yaping full_name: Wang, Yaping last_name: Wang - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Zhen full_name: Li, Zhen last_name: Li - first_name: Zhi full_name: Yuan, Zhi last_name: Yuan - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: David full_name: Domjan, David id: C684CD7A-257E-11EA-9B6F-D8588B4F947F last_name: Domjan orcid: 0000-0003-2267-106X - first_name: Kai full_name: Wang, Kai last_name: Wang - first_name: Wei full_name: Xuan, Wei last_name: Xuan - first_name: Yan full_name: Guo, Yan last_name: Guo - first_name: Zhizhong full_name: Gong, Zhizhong last_name: Gong - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jing full_name: Zhang, Jing last_name: Zhang citation: ama: Li Y, Wang Y, Tan S, et al. Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex. Advanced Science. 2020;7(3). doi:10.1002/advs.201901455 apa: Li, Y., Wang, Y., Tan, S., Li, Z., Yuan, Z., Glanc, M., … Zhang, J. (2020). Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex. Advanced Science. Wiley. https://doi.org/10.1002/advs.201901455 chicago: Li, Yang, Yaping Wang, Shutang Tan, Zhen Li, Zhi Yuan, Matous Glanc, David Domjan, et al. “Root Growth Adaptation Is Mediated by PYLs ABA Receptor-PP2A Protein Phosphatase Complex.” Advanced Science. Wiley, 2020. https://doi.org/10.1002/advs.201901455. ieee: Y. Li et al., “Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex,” Advanced Science, vol. 7, no. 3. Wiley, 2020. ista: Li Y, Wang Y, Tan S, Li Z, Yuan Z, Glanc M, Domjan D, Wang K, Xuan W, Guo Y, Gong Z, Friml J, Zhang J. 2020. Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex. Advanced Science. 7(3), 1901455. mla: Li, Yang, et al. “Root Growth Adaptation Is Mediated by PYLs ABA Receptor-PP2A Protein Phosphatase Complex.” Advanced Science, vol. 7, no. 3, 1901455, Wiley, 2020, doi:10.1002/advs.201901455. short: Y. Li, Y. Wang, S. Tan, Z. Li, Z. Yuan, M. Glanc, D. Domjan, K. Wang, W. Xuan, Y. Guo, Z. Gong, J. Friml, J. Zhang, Advanced Science 7 (2020). date_created: 2019-12-22T23:00:43Z date_published: 2020-02-05T00:00:00Z date_updated: 2023-08-17T14:13:17Z day: '05' ddc: - '580' department: - _id: JiFr doi: 10.1002/advs.201901455 external_id: isi: - '000501912800001' pmid: - '32042554' file: - access_level: open_access checksum: 016eeab5860860af038e2da95ffe75c3 content_type: application/pdf creator: dernst date_created: 2020-02-24T14:29:54Z date_updated: 2020-07-14T12:47:53Z file_id: '7519' file_name: 2020_AdvScience_Li.pdf file_size: 3586924 relation: main_file file_date_updated: 2020-07-14T12:47:53Z has_accepted_license: '1' intvolume: ' 7' isi: 1 issue: '3' language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 publication: Advanced Science publication_identifier: eissn: - 2198-3844 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 7 year: '2020' ... --- _id: '7220' abstract: - lang: eng text: BACKGROUND:The introduction of image-guided methods to bypass surgery has resulted in optimized preoperative identification of the recipients and excellent patency rates. However, the recently presented methods have also been resource-consuming. In the present study, we have reported a cost-efficient planning workflow for extracranial-intracranial (EC-IC) revascularization combined with transdural indocyanine green videoangiography (tICG-VA). METHODS:We performed a retrospective review at a single tertiary referral center from 2011 to 2018. A novel software-derived workflow was applied for 25 of 92 bypass procedures during the study period. The precision and accuracy were assessed using tICG-VA identification of the cortical recipients and a comparison of the virtual and actual data. The data from a control group of 25 traditionally planned procedures were also matched. RESULTS:The intraoperative transfer time of the calculated coordinates averaged 0.8 minute (range, 0.4-1.9 minutes). The definitive recipients matched the targeted branches in 80%, and a neighboring branch was used in 16%. Our workflow led to a significant craniotomy size reduction in the study group compared with that in the control group (P = 0.005). tICG-VA was successfully applied in 19 cases. An average of 2 potential recipient arteries were identified transdurally, resulting in tailored durotomy and 3 craniotomy adjustments. Follow-up patency results were available for 49 bypass surgeries, comprising 54 grafts. The overall patency rate was 91% at a median follow-up period of 26 months. No significant difference was found in the patency rate between the study and control groups (P = 0.317). CONCLUSIONS:Our clinical results have validated the presented planning and surgical workflow and support the routine implementation of tICG-VA for recipient identification before durotomy. article_processing_charge: No article_type: original author: - first_name: Philippe full_name: Dodier, Philippe last_name: Dodier - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Gabriel full_name: Mistelbauer, Gabriel last_name: Mistelbauer - first_name: Wei Te full_name: Wang, Wei Te last_name: Wang - first_name: Heber full_name: Ferraz-Leite, Heber last_name: Ferraz-Leite - first_name: Andreas full_name: Gruber, Andreas last_name: Gruber - first_name: Wolfgang full_name: Marik, Wolfgang last_name: Marik - first_name: Fabian full_name: Winter, Fabian last_name: Winter - first_name: Gerrit full_name: Fischer, Gerrit last_name: Fischer - first_name: Josa M. full_name: Frischer, Josa M. last_name: Frischer - first_name: Gerhard full_name: Bavinzski, Gerhard last_name: Bavinzski citation: ama: Dodier P, Auzinger T, Mistelbauer G, et al. Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography. World Neurosurgery. 2020;134(2):e892-e902. doi:10.1016/j.wneu.2019.11.038 apa: Dodier, P., Auzinger, T., Mistelbauer, G., Wang, W. T., Ferraz-Leite, H., Gruber, A., … Bavinzski, G. (2020). Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography. World Neurosurgery. Elsevier. https://doi.org/10.1016/j.wneu.2019.11.038 chicago: Dodier, Philippe, Thomas Auzinger, Gabriel Mistelbauer, Wei Te Wang, Heber Ferraz-Leite, Andreas Gruber, Wolfgang Marik, et al. “Novel Software-Derived Workflow in Extracranial–Intracranial Bypass Surgery Validated by Transdural Indocyanine Green Videoangiography.” World Neurosurgery. Elsevier, 2020. https://doi.org/10.1016/j.wneu.2019.11.038. ieee: P. Dodier et al., “Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography,” World Neurosurgery, vol. 134, no. 2. Elsevier, pp. e892–e902, 2020. ista: Dodier P, Auzinger T, Mistelbauer G, Wang WT, Ferraz-Leite H, Gruber A, Marik W, Winter F, Fischer G, Frischer JM, Bavinzski G. 2020. Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography. World Neurosurgery. 134(2), e892–e902. mla: Dodier, Philippe, et al. “Novel Software-Derived Workflow in Extracranial–Intracranial Bypass Surgery Validated by Transdural Indocyanine Green Videoangiography.” World Neurosurgery, vol. 134, no. 2, Elsevier, 2020, pp. e892–902, doi:10.1016/j.wneu.2019.11.038. short: P. Dodier, T. Auzinger, G. Mistelbauer, W.T. Wang, H. Ferraz-Leite, A. Gruber, W. Marik, F. Winter, G. Fischer, J.M. Frischer, G. Bavinzski, World Neurosurgery 134 (2020) e892–e902. date_created: 2019-12-29T23:00:48Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:14:23Z day: '01' department: - _id: BeBi doi: 10.1016/j.wneu.2019.11.038 external_id: isi: - '000512878200104' pmid: - '31733380' intvolume: ' 134' isi: 1 issue: '2' language: - iso: eng month: '02' oa_version: None page: e892-e902 pmid: 1 publication: World Neurosurgery publication_identifier: eissn: - 1878-8769 issn: - 1878-8750 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Novel software-derived workflow in extracranial–intracranial bypass surgery validated by transdural indocyanine green videoangiography type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 134 year: '2020' ... --- _id: '7142' abstract: - lang: eng text: The phytohormone auxin acts as an amazingly versatile coordinator of plant growth and development. With its morphogen-like properties, auxin controls sites and timing of differentiation and/or growth responses both, in quantitative and qualitative terms. Specificity in the auxin response depends largely on distinct modes of signal transmission, by which individual cells perceive and convert auxin signals into a remarkable diversity of responses. The best understood, or so-called canonical mechanism of auxin perception ultimately results in variable adjustments of the cellular transcriptome, via a short, nuclear signal transduction pathway. Additional findings that accumulated over decades implied that an additional, presumably, cell surface-based auxin perception mechanism mediates very rapid cellular responses and decisively contributes to the cell's overall hormonal response. Recent investigations into both, nuclear and cell surface auxin signalling challenged this assumed partition of roles for different auxin signalling pathways and revealed an unexpected complexity in transcriptional and non-transcriptional cellular responses mediated by auxin. acknowledgement: Research in J.F. laboratory is funded by the European Union's Horizon 2020 program (ERC grant agreement n° 742985); C.L. is supported by the Austrian Science Fund (FWF grant P 31493). article_processing_charge: No article_type: original author: - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Christian full_name: Luschnig, Christian last_name: Luschnig - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Gallei MC, Luschnig C, Friml J. Auxin signalling in growth: Schrödinger’s cat out of the bag. Current Opinion in Plant Biology. 2020;53(2):43-49. doi:10.1016/j.pbi.2019.10.003' apa: 'Gallei, M. C., Luschnig, C., & Friml, J. (2020). Auxin signalling in growth: Schrödinger’s cat out of the bag. Current Opinion in Plant Biology. Elsevier. https://doi.org/10.1016/j.pbi.2019.10.003' chicago: 'Gallei, Michelle C, Christian Luschnig, and Jiří Friml. “Auxin Signalling in Growth: Schrödinger’s Cat out of the Bag.” Current Opinion in Plant Biology. Elsevier, 2020. https://doi.org/10.1016/j.pbi.2019.10.003.' ieee: 'M. C. Gallei, C. Luschnig, and J. Friml, “Auxin signalling in growth: Schrödinger’s cat out of the bag,” Current Opinion in Plant Biology, vol. 53, no. 2. Elsevier, pp. 43–49, 2020.' ista: 'Gallei MC, Luschnig C, Friml J. 2020. Auxin signalling in growth: Schrödinger’s cat out of the bag. Current Opinion in Plant Biology. 53(2), 43–49.' mla: 'Gallei, Michelle C., et al. “Auxin Signalling in Growth: Schrödinger’s Cat out of the Bag.” Current Opinion in Plant Biology, vol. 53, no. 2, Elsevier, 2020, pp. 43–49, doi:10.1016/j.pbi.2019.10.003.' short: M.C. Gallei, C. Luschnig, J. Friml, Current Opinion in Plant Biology 53 (2020) 43–49. date_created: 2019-12-02T12:05:26Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:07:22Z day: '01' department: - _id: JiFr doi: 10.1016/j.pbi.2019.10.003 ec_funded: 1 external_id: isi: - '000521120600007' pmid: - '31760231' intvolume: ' 53' isi: 1 issue: '2' language: - iso: eng month: '02' oa_version: None page: 43-49 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Current Opinion in Plant Biology publication_identifier: eissn: - 1879-0356 issn: - 1369-5266 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '11626' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Auxin signalling in growth: Schrödinger''s cat out of the bag' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 53 year: '2020' ... --- _id: '7166' abstract: - lang: eng text: In the living cell, we encounter a large variety of motile processes such as organelle transport and cytoskeleton remodeling. These processes are driven by motor proteins that generate force by transducing chemical free energy into mechanical work. In many cases, the molecular motors work in teams to collectively generate larger forces. Recent optical trapping experiments on small teams of cytoskeletal motors indicated that the collectively generated force increases with the size of the motor team but that this increase depends on the motor type and on whether the motors are studied in vitro or in vivo. Here, we use the theory of stochastic processes to describe the motion of N motors in a stationary optical trap and to compute the N-dependence of the collectively generated forces. We consider six distinct motor types, two kinesins, two dyneins, and two myosins. We show that the force increases always linearly with N but with a prefactor that depends on the performance of the single motor. Surprisingly, this prefactor increases for weaker motors with a lower stall force. This counter-intuitive behavior reflects the increased probability with which stronger motors detach from the filament during strain generation. Our theoretical results are in quantitative agreement with experimental data on small teams of kinesin-1 motors. article_processing_charge: No article_type: letter_note author: - first_name: Mehmet C full_name: Ucar, Mehmet C id: 50B2A802-6007-11E9-A42B-EB23E6697425 last_name: Ucar orcid: 0000-0003-0506-4217 - first_name: Reinhard full_name: Lipowsky, Reinhard last_name: Lipowsky citation: ama: Ucar MC, Lipowsky R. Collective force generation by molecular motors is determined by strain-induced unbinding. Nano Letters. 2020;20(1):669-676. doi:10.1021/acs.nanolett.9b04445 apa: Ucar, M. C., & Lipowsky, R. (2020). Collective force generation by molecular motors is determined by strain-induced unbinding. Nano Letters. American Chemical Society. https://doi.org/10.1021/acs.nanolett.9b04445 chicago: Ucar, Mehmet C, and Reinhard Lipowsky. “Collective Force Generation by Molecular Motors Is Determined by Strain-Induced Unbinding.” Nano Letters. American Chemical Society, 2020. https://doi.org/10.1021/acs.nanolett.9b04445. ieee: M. C. Ucar and R. Lipowsky, “Collective force generation by molecular motors is determined by strain-induced unbinding,” Nano Letters, vol. 20, no. 1. American Chemical Society, pp. 669–676, 2020. ista: Ucar MC, Lipowsky R. 2020. Collective force generation by molecular motors is determined by strain-induced unbinding. Nano Letters. 20(1), 669–676. mla: Ucar, Mehmet C., and Reinhard Lipowsky. “Collective Force Generation by Molecular Motors Is Determined by Strain-Induced Unbinding.” Nano Letters, vol. 20, no. 1, American Chemical Society, 2020, pp. 669–76, doi:10.1021/acs.nanolett.9b04445. short: M.C. Ucar, R. Lipowsky, Nano Letters 20 (2020) 669–676. date_created: 2019-12-10T15:36:05Z date_published: 2020-01-08T00:00:00Z date_updated: 2023-08-17T14:07:52Z day: '08' department: - _id: EdHa doi: 10.1021/acs.nanolett.9b04445 external_id: isi: - '000507151600087' pmid: - '31797672' intvolume: ' 20' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1021/acs.nanolett.9b04445 month: '01' oa: 1 oa_version: Published Version page: 669-676 pmid: 1 publication: Nano Letters publication_identifier: eissn: - 1530-6992 issn: - 1530-6984 publication_status: published publisher: American Chemical Society quality_controlled: '1' related_material: record: - id: '9726' relation: research_data status: public - id: '9885' relation: research_data status: public scopus_import: '1' status: public title: Collective force generation by molecular motors is determined by strain-induced unbinding type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 20 year: '2020' ... --- _id: '9885' abstract: - lang: eng text: Data obtained from the fine-grained simulations used in Figures 2-5, data obtained from the coarse-grained numerical calculations used in Figure 6, and a sample script for the fine-grained simulation as a Jupyter notebook (ZIP) article_processing_charge: No author: - first_name: Mehmet C full_name: Ucar, Mehmet C id: 50B2A802-6007-11E9-A42B-EB23E6697425 last_name: Ucar orcid: 0000-0003-0506-4217 - first_name: Reinhard full_name: Lipowsky, Reinhard last_name: Lipowsky citation: ama: Ucar MC, Lipowsky R. MURL_Dataz. 2020. doi:10.1021/acs.nanolett.9b04445.s002 apa: Ucar, M. C., & Lipowsky, R. (2020). MURL_Dataz. American Chemical Society . https://doi.org/10.1021/acs.nanolett.9b04445.s002 chicago: Ucar, Mehmet C, and Reinhard Lipowsky. “MURL_Dataz.” American Chemical Society , 2020. https://doi.org/10.1021/acs.nanolett.9b04445.s002. ieee: M. C. Ucar and R. Lipowsky, “MURL_Dataz.” American Chemical Society , 2020. ista: Ucar MC, Lipowsky R. 2020. MURL_Dataz, American Chemical Society , 10.1021/acs.nanolett.9b04445.s002. mla: Ucar, Mehmet C., and Reinhard Lipowsky. MURL_Dataz. American Chemical Society , 2020, doi:10.1021/acs.nanolett.9b04445.s002. short: M.C. Ucar, R. Lipowsky, (2020). date_created: 2021-08-11T13:16:03Z date_published: 2020-01-08T00:00:00Z date_updated: 2023-08-17T14:07:52Z day: '08' department: - _id: EdHa doi: 10.1021/acs.nanolett.9b04445.s002 month: '01' oa_version: Published Version publisher: 'American Chemical Society ' related_material: record: - id: '7166' relation: used_in_publication status: public status: public title: MURL_Dataz type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '7218' abstract: - lang: eng text: The combined resection of skull-infiltrating tumours and immediate cranioplastic reconstruction predominantly relies on freehand-moulded solutions. Techniques that enable this procedure to be performed easily in routine clinical practice would be useful. A cadaveric study was developed in which a new software tool was used to perform single-stage reconstructions with prefabricated implants after the resection of skull-infiltrating pathologies. A novel 3D visualization and interaction framework was developed to create 10 virtual craniotomies in five cadaveric specimens. Polyether ether ketone (PEEK) implants were manufactured according to the bone defects. The image-guided craniotomy was reconstructed with PEEK and compared to polymethyl methacrylate (PMMA). Navigational accuracy and surgical precision were assessed. The PEEK workflow resulted in up to 10-fold shorter reconstruction times than the standard technique. Surgical precision was reflected by the mean 1.1 ± 0.29 mm distance between the virtual and real craniotomy, with submillimetre precision in 50%. Assessment of the global offset between virtual and actual craniotomy revealed an average shift of 4.5 ± 3.6 mm. The results validated the ‘elective single-stage cranioplasty’ technique as a state-of-the-art virtual planning method and surgical workflow. This patient-tailored workflow could significantly reduce surgical times compared to the traditional, intraoperative acrylic moulding method and may be an option for the reconstruction of bone defects in the craniofacial region. article_processing_charge: No article_type: original author: - first_name: Philippe full_name: Dodier, Philippe last_name: Dodier - first_name: Fabian full_name: Winter, Fabian last_name: Winter - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Gabriel full_name: Mistelbauer, Gabriel last_name: Mistelbauer - first_name: Josa M. full_name: Frischer, Josa M. last_name: Frischer - first_name: Wei Te full_name: Wang, Wei Te last_name: Wang - first_name: Ammar full_name: Mallouhi, Ammar last_name: Mallouhi - first_name: Wolfgang full_name: Marik, Wolfgang last_name: Marik - first_name: Stefan full_name: Wolfsberger, Stefan last_name: Wolfsberger - first_name: Lukas full_name: Reissig, Lukas last_name: Reissig - first_name: Firas full_name: Hammadi, Firas last_name: Hammadi - first_name: Christian full_name: Matula, Christian last_name: Matula - first_name: Arnulf full_name: Baumann, Arnulf last_name: Baumann - first_name: Gerhard full_name: Bavinzski, Gerhard last_name: Bavinzski citation: ama: 'Dodier P, Winter F, Auzinger T, et al. Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method. International Journal of Oral and Maxillofacial Surgery. 2020;49(8):P1007-1015. doi:10.1016/j.ijom.2019.11.011' apa: 'Dodier, P., Winter, F., Auzinger, T., Mistelbauer, G., Frischer, J. M., Wang, W. T., … Bavinzski, G. (2020). Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method. International Journal of Oral and Maxillofacial Surgery. Elsevier. https://doi.org/10.1016/j.ijom.2019.11.011' chicago: 'Dodier, Philippe, Fabian Winter, Thomas Auzinger, Gabriel Mistelbauer, Josa M. Frischer, Wei Te Wang, Ammar Mallouhi, et al. “Single-Stage Bone Resection and Cranioplastic Reconstruction: Comparison of a Novel Software-Derived PEEK Workflow with the Standard Reconstructive Method.” International Journal of Oral and Maxillofacial Surgery. Elsevier, 2020. https://doi.org/10.1016/j.ijom.2019.11.011.' ieee: 'P. Dodier et al., “Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method,” International Journal of Oral and Maxillofacial Surgery, vol. 49, no. 8. Elsevier, pp. P1007-1015, 2020.' ista: 'Dodier P, Winter F, Auzinger T, Mistelbauer G, Frischer JM, Wang WT, Mallouhi A, Marik W, Wolfsberger S, Reissig L, Hammadi F, Matula C, Baumann A, Bavinzski G. 2020. Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method. International Journal of Oral and Maxillofacial Surgery. 49(8), P1007-1015.' mla: 'Dodier, Philippe, et al. “Single-Stage Bone Resection and Cranioplastic Reconstruction: Comparison of a Novel Software-Derived PEEK Workflow with the Standard Reconstructive Method.” International Journal of Oral and Maxillofacial Surgery, vol. 49, no. 8, Elsevier, 2020, pp. P1007-1015, doi:10.1016/j.ijom.2019.11.011.' short: P. Dodier, F. Winter, T. Auzinger, G. Mistelbauer, J.M. Frischer, W.T. Wang, A. Mallouhi, W. Marik, S. Wolfsberger, L. Reissig, F. Hammadi, C. Matula, A. Baumann, G. Bavinzski, International Journal of Oral and Maxillofacial Surgery 49 (2020) P1007-1015. date_created: 2019-12-29T23:00:47Z date_published: 2020-08-01T00:00:00Z date_updated: 2023-08-17T14:15:22Z day: '01' department: - _id: BeBi doi: 10.1016/j.ijom.2019.11.011 external_id: isi: - '000556819800005' pmid: - '31866145' intvolume: ' 49' isi: 1 issue: '8' language: - iso: eng month: '08' oa_version: None page: P1007-1015 pmid: 1 publication: International Journal of Oral and Maxillofacial Surgery publication_identifier: eissn: - 1399-0020 issn: - 0901-5027 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 49 year: '2020' ... --- _id: '7219' abstract: - lang: eng text: Root system architecture (RSA), governed by the phytohormone auxin, endows plants with an adaptive advantage in particular environments. Using geographically representative arabidopsis (Arabidopsis thaliana) accessions as a resource for GWA mapping, Waidmann et al. and Ogura et al. recently identified two novel components involved in modulating auxin-mediated RSA and conferring plant fitness in particular habitats. article_processing_charge: No article_type: original author: - first_name: Guanghui full_name: Xiao, Guanghui last_name: Xiao - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 citation: ama: 'Xiao G, Zhang Y. Adaptive growth: Shaping auxin-mediated root system architecture. Trends in Plant Science. 2020;25(2):P121-123. doi:10.1016/j.tplants.2019.12.001' apa: 'Xiao, G., & Zhang, Y. (2020). Adaptive growth: Shaping auxin-mediated root system architecture. Trends in Plant Science. Elsevier. https://doi.org/10.1016/j.tplants.2019.12.001' chicago: 'Xiao, Guanghui, and Yuzhou Zhang. “Adaptive Growth: Shaping Auxin-Mediated Root System Architecture.” Trends in Plant Science. Elsevier, 2020. https://doi.org/10.1016/j.tplants.2019.12.001.' ieee: 'G. Xiao and Y. Zhang, “Adaptive growth: Shaping auxin-mediated root system architecture,” Trends in Plant Science, vol. 25, no. 2. Elsevier, pp. P121-123, 2020.' ista: 'Xiao G, Zhang Y. 2020. Adaptive growth: Shaping auxin-mediated root system architecture. Trends in Plant Science. 25(2), P121-123.' mla: 'Xiao, Guanghui, and Yuzhou Zhang. “Adaptive Growth: Shaping Auxin-Mediated Root System Architecture.” Trends in Plant Science, vol. 25, no. 2, Elsevier, 2020, pp. P121-123, doi:10.1016/j.tplants.2019.12.001.' short: G. Xiao, Y. Zhang, Trends in Plant Science 25 (2020) P121-123. date_created: 2019-12-29T23:00:48Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:14:50Z day: '01' department: - _id: JiFr doi: 10.1016/j.tplants.2019.12.001 external_id: isi: - '000508637500001' pmid: - '31843370' intvolume: ' 25' isi: 1 issue: '2' language: - iso: eng month: '02' oa_version: None page: P121-123 pmid: 1 publication: Trends in Plant Science publication_identifier: issn: - '13601385' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Adaptive growth: Shaping auxin-mediated root system architecture' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 25 year: '2020' ... --- _id: '7234' abstract: - lang: eng text: T lymphocytes utilize amoeboid migration to navigate effectively within complex microenvironments. The precise rearrangement of the actin cytoskeleton required for cellular forward propulsion is mediated by actin regulators, including the actin‐related protein 2/3 (Arp2/3) complex, a macromolecular machine that nucleates branched actin filaments at the leading edge. The consequences of modulating Arp2/3 activity on the biophysical properties of the actomyosin cortex and downstream T cell function are incompletely understood. We report that even a moderate decrease of Arp3 levels in T cells profoundly affects actin cortex integrity. Reduction in total F‐actin content leads to reduced cortical tension and disrupted lamellipodia formation. Instead, in Arp3‐knockdown cells, the motility mode is dominated by blebbing migration characterized by transient, balloon‐like protrusions at the leading edge. Although this migration mode seems to be compatible with interstitial migration in three‐dimensional environments, diminished locomotion kinetics and impaired cytotoxicity interfere with optimal T cell function. These findings define the importance of finely tuned, Arp2/3‐dependent mechanophysical membrane integrity in cytotoxic effector T lymphocyte activities. article_processing_charge: No article_type: original author: - first_name: Peyman full_name: Obeidy, Peyman last_name: Obeidy - first_name: Lining A. full_name: Ju, Lining A. last_name: Ju - first_name: Stefan H. full_name: Oehlers, Stefan H. last_name: Oehlers - first_name: Nursafwana S. full_name: Zulkhernain, Nursafwana S. last_name: Zulkhernain - first_name: Quintin full_name: Lee, Quintin last_name: Lee - first_name: Jorge L. full_name: Galeano Niño, Jorge L. last_name: Galeano Niño - first_name: Rain Y.Q. full_name: Kwan, Rain Y.Q. last_name: Kwan - first_name: Shweta full_name: Tikoo, Shweta last_name: Tikoo - first_name: Lois L. full_name: Cavanagh, Lois L. last_name: Cavanagh - first_name: Paulus full_name: Mrass, Paulus last_name: Mrass - first_name: Adam J.L. full_name: Cook, Adam J.L. last_name: Cook - first_name: Shaun P. full_name: Jackson, Shaun P. last_name: Jackson - first_name: Maté full_name: Biro, Maté last_name: Biro - first_name: Ben full_name: Roediger, Ben last_name: Roediger - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Wolfgang full_name: Weninger, Wolfgang last_name: Weninger citation: ama: Obeidy P, Ju LA, Oehlers SH, et al. Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes. Immunology and Cell Biology. 2020;98(2):93-113. doi:10.1111/imcb.12304 apa: Obeidy, P., Ju, L. A., Oehlers, S. H., Zulkhernain, N. S., Lee, Q., Galeano Niño, J. L., … Weninger, W. (2020). Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes. Immunology and Cell Biology. Wiley. https://doi.org/10.1111/imcb.12304 chicago: Obeidy, Peyman, Lining A. Ju, Stefan H. Oehlers, Nursafwana S. Zulkhernain, Quintin Lee, Jorge L. Galeano Niño, Rain Y.Q. Kwan, et al. “Partial Loss of Actin Nucleator Actin-Related Protein 2/3 Activity Triggers Blebbing in Primary T Lymphocytes.” Immunology and Cell Biology. Wiley, 2020. https://doi.org/10.1111/imcb.12304. ieee: P. Obeidy et al., “Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes,” Immunology and Cell Biology, vol. 98, no. 2. Wiley, pp. 93–113, 2020. ista: Obeidy P, Ju LA, Oehlers SH, Zulkhernain NS, Lee Q, Galeano Niño JL, Kwan RYQ, Tikoo S, Cavanagh LL, Mrass P, Cook AJL, Jackson SP, Biro M, Roediger B, Sixt MK, Weninger W. 2020. Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes. Immunology and Cell Biology. 98(2), 93–113. mla: Obeidy, Peyman, et al. “Partial Loss of Actin Nucleator Actin-Related Protein 2/3 Activity Triggers Blebbing in Primary T Lymphocytes.” Immunology and Cell Biology, vol. 98, no. 2, Wiley, 2020, pp. 93–113, doi:10.1111/imcb.12304. short: P. Obeidy, L.A. Ju, S.H. Oehlers, N.S. Zulkhernain, Q. Lee, J.L. Galeano Niño, R.Y.Q. Kwan, S. Tikoo, L.L. Cavanagh, P. Mrass, A.J.L. Cook, S.P. Jackson, M. Biro, B. Roediger, M.K. Sixt, W. Weninger, Immunology and Cell Biology 98 (2020) 93–113. date_created: 2020-01-05T23:00:48Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:21:12Z day: '01' ddc: - '570' department: - _id: MiSi doi: 10.1111/imcb.12304 external_id: isi: - '000503885600001' pmid: - '31698518' file: - access_level: open_access checksum: c389477b4b52172ef76afff8a06c6775 content_type: application/pdf creator: dernst date_created: 2020-11-19T11:22:33Z date_updated: 2020-11-19T11:22:33Z file_id: '8775' file_name: 2020_ImmunologyCellBio_Obeidy.pdf file_size: 8569945 relation: main_file success: 1 file_date_updated: 2020-11-19T11:22:33Z has_accepted_license: '1' intvolume: ' 98' isi: 1 issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 93-113 pmid: 1 publication: Immunology and Cell Biology publication_identifier: eissn: - '14401711' issn: - '08189641' publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 98 year: '2020' ... --- _id: '7253' abstract: - lang: eng text: The cyclin-dependent kinase inhibitor p57KIP2 is encoded by the imprinted Cdkn1c locus, exhibits maternal expression, and is essential for cerebral cortex development. How Cdkn1c regulates corticogenesis is however not clear. To this end we employ Mosaic Analysis with Double Markers (MADM) technology to genetically dissect Cdkn1c gene function in corticogenesis at single cell resolution. We find that the previously described growth-inhibitory Cdkn1c function is a non-cell-autonomous one, acting on the whole organism. In contrast we reveal a growth-promoting cell-autonomous Cdkn1c function which at the mechanistic level mediates radial glial progenitor cell and nascent projection neuron survival. Strikingly, the growth-promoting function of Cdkn1c is highly dosage sensitive but not subject to genomic imprinting. Collectively, our results suggest that the Cdkn1c locus regulates cortical development through distinct cell-autonomous and non-cell-autonomous mechanisms. More generally, our study highlights the importance to probe the relative contributions of cell intrinsic gene function and tissue-wide mechanisms to the overall phenotype. acknowledged_ssus: - _id: PreCl article_number: '195' article_processing_charge: No article_type: original author: - first_name: Susanne full_name: Laukoter, Susanne id: 2D6B7A9A-F248-11E8-B48F-1D18A9856A87 last_name: Laukoter orcid: 0000-0002-7903-3010 - first_name: Robert J full_name: Beattie, Robert J id: 2E26DF60-F248-11E8-B48F-1D18A9856A87 last_name: Beattie orcid: 0000-0002-8483-8753 - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler orcid: 0000-0002-7462-0048 - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Keiichi I. full_name: Nakayama, Keiichi I. last_name: Nakayama - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Laukoter S, Beattie RJ, Pauler F, Amberg N, Nakayama KI, Hippenmeyer S. Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nature Communications. 2020;11. doi:10.1038/s41467-019-14077-2 apa: Laukoter, S., Beattie, R. J., Pauler, F., Amberg, N., Nakayama, K. I., & Hippenmeyer, S. (2020). Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-019-14077-2 chicago: Laukoter, Susanne, Robert J Beattie, Florian Pauler, Nicole Amberg, Keiichi I. Nakayama, and Simon Hippenmeyer. “Imprinted Cdkn1c Genomic Locus Cell-Autonomously Promotes Cell Survival in Cerebral Cortex Development.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-019-14077-2. ieee: S. Laukoter, R. J. Beattie, F. Pauler, N. Amberg, K. I. Nakayama, and S. Hippenmeyer, “Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Laukoter S, Beattie RJ, Pauler F, Amberg N, Nakayama KI, Hippenmeyer S. 2020. Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nature Communications. 11, 195. mla: Laukoter, Susanne, et al. “Imprinted Cdkn1c Genomic Locus Cell-Autonomously Promotes Cell Survival in Cerebral Cortex Development.” Nature Communications, vol. 11, 195, Springer Nature, 2020, doi:10.1038/s41467-019-14077-2. short: S. Laukoter, R.J. Beattie, F. Pauler, N. Amberg, K.I. Nakayama, S. Hippenmeyer, Nature Communications 11 (2020). date_created: 2020-01-11T10:42:48Z date_published: 2020-01-10T00:00:00Z date_updated: 2023-08-17T14:23:41Z day: '10' ddc: - '570' department: - _id: SiHi doi: 10.1038/s41467-019-14077-2 ec_funded: 1 external_id: isi: - '000551459000005' file: - access_level: open_access checksum: ebf1ed522f4e0be8d94c939c1806a709 content_type: application/pdf creator: dernst date_created: 2020-01-13T07:42:31Z date_updated: 2020-07-14T12:47:54Z file_id: '7261' file_name: 2020_NatureComm_Laukoter.pdf file_size: 8063333 relation: main_file file_date_updated: 2020-07-14T12:47:54Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression - _id: 264E56E2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02416 name: Molecular Mechanisms Regulating Gliogenesis in the Cerebral Cortex - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development - _id: 25D92700-B435-11E9-9278-68D0E5697425 grant_number: LS13-002 name: Mapping Cell-Type Specificity of the Genomic Imprintome in the Brain publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/new-function-for-potential-tumour-suppressor-in-brain-development/ scopus_import: '1' status: public title: Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '7339' abstract: - lang: eng text: Cytoskeletal filaments such as microtubules (MTs) and filamentous actin (F-actin) dynamically support cell structure and functions. In central presynaptic terminals, F-actin is expressed along the release edge and reportedly plays diverse functional roles, but whether axonal MTs extend deep into terminals and play any physiological role remains controversial. At the calyx of Held in rats of either sex, confocal and high-resolution microscopy revealed that MTs enter deep into presynaptic terminal swellings and partially colocalize with a subset of synaptic vesicles (SVs). Electrophysiological analysis demonstrated that depolymerization of MTs specifically prolonged the slow-recovery time component of EPSCs from short-term depression induced by a train of high-frequency stimulation, whereas depolymerization of F-actin specifically prolonged the fast-recovery component. In simultaneous presynaptic and postsynaptic action potential recordings, depolymerization of MTs or F-actin significantly impaired the fidelity of high-frequency neurotransmission. We conclude that MTs and F-actin differentially contribute to slow and fast SV replenishment, thereby maintaining high-frequency neurotransmission. article_processing_charge: No article_type: original author: - first_name: Lashmi full_name: Piriya Ananda Babu, Lashmi last_name: Piriya Ananda Babu - first_name: Han Ying full_name: Wang, Han Ying last_name: Wang - first_name: Kohgaku full_name: Eguchi, Kohgaku id: 2B7846DC-F248-11E8-B48F-1D18A9856A87 last_name: Eguchi orcid: 0000-0002-6170-2546 - first_name: Laurent full_name: Guillaud, Laurent last_name: Guillaud - first_name: Tomoyuki full_name: Takahashi, Tomoyuki last_name: Takahashi citation: ama: Piriya Ananda Babu L, Wang HY, Eguchi K, Guillaud L, Takahashi T. Microtubule and actin differentially regulate synaptic vesicle cycling to maintain high-frequency neurotransmission. Journal of neuroscience. 2020;40(1):131-142. doi:10.1523/JNEUROSCI.1571-19.2019 apa: Piriya Ananda Babu, L., Wang, H. Y., Eguchi, K., Guillaud, L., & Takahashi, T. (2020). Microtubule and actin differentially regulate synaptic vesicle cycling to maintain high-frequency neurotransmission. Journal of Neuroscience. Society for Neuroscience. https://doi.org/10.1523/JNEUROSCI.1571-19.2019 chicago: Piriya Ananda Babu, Lashmi, Han Ying Wang, Kohgaku Eguchi, Laurent Guillaud, and Tomoyuki Takahashi. “Microtubule and Actin Differentially Regulate Synaptic Vesicle Cycling to Maintain High-Frequency Neurotransmission.” Journal of Neuroscience. Society for Neuroscience, 2020. https://doi.org/10.1523/JNEUROSCI.1571-19.2019. ieee: L. Piriya Ananda Babu, H. Y. Wang, K. Eguchi, L. Guillaud, and T. Takahashi, “Microtubule and actin differentially regulate synaptic vesicle cycling to maintain high-frequency neurotransmission,” Journal of neuroscience, vol. 40, no. 1. Society for Neuroscience, pp. 131–142, 2020. ista: Piriya Ananda Babu L, Wang HY, Eguchi K, Guillaud L, Takahashi T. 2020. Microtubule and actin differentially regulate synaptic vesicle cycling to maintain high-frequency neurotransmission. Journal of neuroscience. 40(1), 131–142. mla: Piriya Ananda Babu, Lashmi, et al. “Microtubule and Actin Differentially Regulate Synaptic Vesicle Cycling to Maintain High-Frequency Neurotransmission.” Journal of Neuroscience, vol. 40, no. 1, Society for Neuroscience, 2020, pp. 131–42, doi:10.1523/JNEUROSCI.1571-19.2019. short: L. Piriya Ananda Babu, H.Y. Wang, K. Eguchi, L. Guillaud, T. Takahashi, Journal of Neuroscience 40 (2020) 131–142. date_created: 2020-01-19T23:00:38Z date_published: 2020-01-02T00:00:00Z date_updated: 2023-08-17T14:25:23Z day: '02' ddc: - '570' department: - _id: RySh doi: 10.1523/JNEUROSCI.1571-19.2019 external_id: isi: - '000505167600013' pmid: - '31767677' file: - access_level: open_access checksum: 92f5e8a47f454fc131fb94cd7f106e60 content_type: application/pdf creator: dernst date_created: 2020-01-20T14:44:10Z date_updated: 2020-07-14T12:47:56Z file_id: '7345' file_name: 2020_JourNeuroscience_Piriya.pdf file_size: 4460781 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 131-142 pmid: 1 publication: Journal of neuroscience publication_identifier: eissn: - '15292401' publication_status: published publisher: Society for Neuroscience quality_controlled: '1' scopus_import: '1' status: public title: Microtubule and actin differentially regulate synaptic vesicle cycling to maintain high-frequency neurotransmission tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2020' ... --- _id: '7350' abstract: - lang: eng text: The ability to sense environmental temperature and to coordinate growth and development accordingly, is critical to the reproductive success of plants. Flowering time is regulated at the level of gene expression by a complex network of factors that integrate environmental and developmental cues. One of the main players, involved in modulating flowering time in response to changes in ambient temperature is FLOWERING LOCUS M (FLM). FLM transcripts can undergo extensive alternative splicing producing multiple variants, of which FLM-β and FLM-δ are the most representative. While FLM-β codes for the flowering repressor FLM protein, translation of FLM-δ has the opposite effect on flowering. Here we show that the cyclin-dependent kinase G2 (CDKG2), together with its cognate cyclin, CYCLYN L1 (CYCL1) affects the alternative splicing of FLM, balancing the levels of FLM-β and FLM-δ across the ambient temperature range. In the absence of the CDKG2/CYCL1 complex, FLM-β expression is reduced while FLM-δ is increased in a temperature dependent manner and these changes are associated with an early flowering phenotype in the cdkg2 mutant lines. In addition, we found that transcript variants retaining the full FLM intron 1 are sequestered in the cell nucleus. Strikingly, FLM intron 1 splicing is also regulated by CDKG2/CYCL1. Our results provide evidence that temperature and CDKs regulate the alternative splicing of FLM, contributing to flowering time definition. article_number: '1680' article_processing_charge: No article_type: original author: - first_name: Candida full_name: Nibau, Candida last_name: Nibau - first_name: Marçal full_name: Gallemi, Marçal id: 460C6802-F248-11E8-B48F-1D18A9856A87 last_name: Gallemi orcid: 0000-0003-4675-6893 - first_name: Despoina full_name: Dadarou, Despoina last_name: Dadarou - first_name: John H. full_name: Doonan, John H. last_name: Doonan - first_name: Nicola full_name: Cavallari, Nicola id: 457160E6-F248-11E8-B48F-1D18A9856A87 last_name: Cavallari citation: ama: Nibau C, Gallemi M, Dadarou D, Doonan JH, Cavallari N. Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2. Frontiers in Plant Science. 2020;10. doi:10.3389/fpls.2019.01680 apa: Nibau, C., Gallemi, M., Dadarou, D., Doonan, J. H., & Cavallari, N. (2020). Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2. Frontiers in Plant Science. Frontiers Media. https://doi.org/10.3389/fpls.2019.01680 chicago: Nibau, Candida, Marçal Gallemi, Despoina Dadarou, John H. Doonan, and Nicola Cavallari. “Thermo-Sensitive Alternative Splicing of FLOWERING LOCUS M Is Modulated by Cyclin-Dependent Kinase G2.” Frontiers in Plant Science. Frontiers Media, 2020. https://doi.org/10.3389/fpls.2019.01680. ieee: C. Nibau, M. Gallemi, D. Dadarou, J. H. Doonan, and N. Cavallari, “Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2,” Frontiers in Plant Science, vol. 10. Frontiers Media, 2020. ista: Nibau C, Gallemi M, Dadarou D, Doonan JH, Cavallari N. 2020. Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2. Frontiers in Plant Science. 10, 1680. mla: Nibau, Candida, et al. “Thermo-Sensitive Alternative Splicing of FLOWERING LOCUS M Is Modulated by Cyclin-Dependent Kinase G2.” Frontiers in Plant Science, vol. 10, 1680, Frontiers Media, 2020, doi:10.3389/fpls.2019.01680. short: C. Nibau, M. Gallemi, D. Dadarou, J.H. Doonan, N. Cavallari, Frontiers in Plant Science 10 (2020). date_created: 2020-01-22T15:23:57Z date_published: 2020-01-22T00:00:00Z date_updated: 2023-08-17T14:21:45Z day: '22' ddc: - '580' department: - _id: EvBe doi: 10.3389/fpls.2019.01680 external_id: isi: - '000511376000001' file: - access_level: open_access checksum: d1f92e60a713fbd15097ce895e5c7ccb content_type: application/pdf creator: dernst date_created: 2020-01-27T09:07:02Z date_updated: 2020-07-14T12:47:56Z file_id: '7366' file_name: 2020_FrontiersPlantScience_Nibau.pdf file_size: 1951438 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 10' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: Frontiers in Plant Science publication_identifier: issn: - 1664-462X publication_status: published publisher: Frontiers Media quality_controlled: '1' scopus_import: '1' status: public title: Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2020' ... --- _id: '7369' abstract: - lang: eng text: Neuronal responses to complex stimuli and tasks can encompass a wide range of time scales. Understanding these responses requires measures that characterize how the information on these response patterns are represented across multiple temporal resolutions. In this paper we propose a metric – which we call multiscale relevance (MSR) – to capture the dynamical variability of the activity of single neurons across different time scales. The MSR is a non-parametric, fully featureless indicator in that it uses only the time stamps of the firing activity without resorting to any a priori covariate or invoking any specific structure in the tuning curve for neural activity. When applied to neural data from the mEC and from the ADn and PoS regions of freely-behaving rodents, we found that neurons having low MSR tend to have low mutual information and low firing sparsity across the correlates that are believed to be encoded by the region of the brain where the recordings were made. In addition, neurons with high MSR contain significant information on spatial navigation and allow to decode spatial position or head direction as efficiently as those neurons whose firing activity has high mutual information with the covariate to be decoded and significantly better than the set of neurons with high local variations in their interspike intervals. Given these results, we propose that the MSR can be used as a measure to rank and select neurons for their information content without the need to appeal to any a priori covariate. acknowledgement: This research was supported by the Kavli Foundation and the Centre of Excellence scheme of the Research Council of Norway (Centre for Neural Computation). RJC is currently receiving funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Ryan J full_name: Cubero, Ryan J id: 850B2E12-9CD4-11E9-837F-E719E6697425 last_name: Cubero orcid: 0000-0003-0002-1867 - first_name: Matteo full_name: Marsili, Matteo last_name: Marsili - first_name: Yasser full_name: Roudi, Yasser last_name: Roudi citation: ama: Cubero RJ, Marsili M, Roudi Y. Multiscale relevance and informative encoding in neuronal spike trains. Journal of Computational Neuroscience. 2020;48:85-102. doi:10.1007/s10827-020-00740-x apa: Cubero, R. J., Marsili, M., & Roudi, Y. (2020). Multiscale relevance and informative encoding in neuronal spike trains. Journal of Computational Neuroscience. Springer Nature. https://doi.org/10.1007/s10827-020-00740-x chicago: Cubero, Ryan J, Matteo Marsili, and Yasser Roudi. “Multiscale Relevance and Informative Encoding in Neuronal Spike Trains.” Journal of Computational Neuroscience. Springer Nature, 2020. https://doi.org/10.1007/s10827-020-00740-x. ieee: R. J. Cubero, M. Marsili, and Y. Roudi, “Multiscale relevance and informative encoding in neuronal spike trains,” Journal of Computational Neuroscience, vol. 48. Springer Nature, pp. 85–102, 2020. ista: Cubero RJ, Marsili M, Roudi Y. 2020. Multiscale relevance and informative encoding in neuronal spike trains. Journal of Computational Neuroscience. 48, 85–102. mla: Cubero, Ryan J., et al. “Multiscale Relevance and Informative Encoding in Neuronal Spike Trains.” Journal of Computational Neuroscience, vol. 48, Springer Nature, 2020, pp. 85–102, doi:10.1007/s10827-020-00740-x. short: R.J. Cubero, M. Marsili, Y. Roudi, Journal of Computational Neuroscience 48 (2020) 85–102. date_created: 2020-01-28T10:34:00Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:35:22Z day: '01' ddc: - '004' - '519' - '570' department: - _id: SaSi doi: 10.1007/s10827-020-00740-x ec_funded: 1 external_id: isi: - '000515321800006' file: - access_level: open_access checksum: 036e9451d6cd0c190ad25791bf82393b content_type: application/pdf creator: rcubero date_created: 2020-01-28T09:31:09Z date_updated: 2020-07-14T12:47:56Z file_id: '7380' file_name: 10827_2020_740_MOESM1_ESM.pdf file_size: 1941355 relation: supplementary_material - access_level: open_access checksum: 4dd8b1fd4b54486f79d82ac7b2a412b2 content_type: application/pdf creator: rcubero date_created: 2020-01-28T09:31:09Z date_updated: 2020-07-14T12:47:56Z file_id: '7381' file_name: Cubero2020_Article_MultiscaleRelevanceAndInformat.pdf file_size: 3257880 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 48' isi: 1 keyword: - Time series analysis - Multiple time scale analysis - Spike train data - Information theory - Bayesian decoding language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 85-102 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Journal of Computational Neuroscience publication_identifier: eissn: - 1573-6873 issn: - 0929-5313 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Multiscale relevance and informative encoding in neuronal spike trains tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 48 year: '2020' ... --- _id: '7364' abstract: - lang: eng text: We present nsCouette, a highly scalable software tool to solve the Navier–Stokes equations for incompressible fluid flow between differentially heated and independently rotating, concentric cylinders. It is based on a pseudospectral spatial discretization and dynamic time-stepping. It is implemented in modern Fortran with a hybrid MPI-OpenMP parallelization scheme and thus designed to compute turbulent flows at high Reynolds and Rayleigh numbers. An additional GPU implementation (C-CUDA) for intermediate problem sizes and a version for pipe flow (nsPipe) are also provided. article_number: '100395' article_processing_charge: No article_type: original author: - first_name: Jose M full_name: Lopez Alonso, Jose M id: 40770848-F248-11E8-B48F-1D18A9856A87 last_name: Lopez Alonso orcid: 0000-0002-0384-2022 - first_name: Daniel full_name: Feldmann, Daniel last_name: Feldmann - first_name: Markus full_name: Rampp, Markus last_name: Rampp - first_name: Alberto full_name: Vela-Martín, Alberto last_name: Vela-Martín - first_name: Liang full_name: Shi, Liang id: 374A3F1A-F248-11E8-B48F-1D18A9856A87 last_name: Shi - first_name: Marc full_name: Avila, Marc last_name: Avila citation: ama: Lopez Alonso JM, Feldmann D, Rampp M, Vela-Martín A, Shi L, Avila M. nsCouette – A high-performance code for direct numerical simulations of turbulent Taylor–Couette flow. SoftwareX. 2020;11. doi:10.1016/j.softx.2019.100395 apa: Lopez Alonso, J. M., Feldmann, D., Rampp, M., Vela-Martín, A., Shi, L., & Avila, M. (2020). nsCouette – A high-performance code for direct numerical simulations of turbulent Taylor–Couette flow. SoftwareX. Elsevier. https://doi.org/10.1016/j.softx.2019.100395 chicago: Lopez Alonso, Jose M, Daniel Feldmann, Markus Rampp, Alberto Vela-Martín, Liang Shi, and Marc Avila. “NsCouette – A High-Performance Code for Direct Numerical Simulations of Turbulent Taylor–Couette Flow.” SoftwareX. Elsevier, 2020. https://doi.org/10.1016/j.softx.2019.100395. ieee: J. M. Lopez Alonso, D. Feldmann, M. Rampp, A. Vela-Martín, L. Shi, and M. Avila, “nsCouette – A high-performance code for direct numerical simulations of turbulent Taylor–Couette flow,” SoftwareX, vol. 11. Elsevier, 2020. ista: Lopez Alonso JM, Feldmann D, Rampp M, Vela-Martín A, Shi L, Avila M. 2020. nsCouette – A high-performance code for direct numerical simulations of turbulent Taylor–Couette flow. SoftwareX. 11, 100395. mla: Lopez Alonso, Jose M., et al. “NsCouette – A High-Performance Code for Direct Numerical Simulations of Turbulent Taylor–Couette Flow.” SoftwareX, vol. 11, 100395, Elsevier, 2020, doi:10.1016/j.softx.2019.100395. short: J.M. Lopez Alonso, D. Feldmann, M. Rampp, A. Vela-Martín, L. Shi, M. Avila, SoftwareX 11 (2020). date_created: 2020-01-26T23:00:35Z date_published: 2020-01-17T00:00:00Z date_updated: 2023-08-17T14:29:59Z day: '17' ddc: - '000' department: - _id: BjHo doi: 10.1016/j.softx.2019.100395 external_id: arxiv: - '1908.00587' isi: - '000552271200011' file: - access_level: open_access checksum: 2af1a1a3cc33557b345145276f221668 content_type: application/pdf creator: dernst date_created: 2020-01-27T07:32:46Z date_updated: 2020-07-14T12:47:56Z file_id: '7365' file_name: 2020_SoftwareX_Lopez.pdf file_size: 679707 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '01' oa: 1 oa_version: Published Version publication: SoftwareX publication_identifier: eissn: - '23527110' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: nsCouette – A high-performance code for direct numerical simulations of turbulent Taylor–Couette flow tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '7431' abstract: - lang: eng text: 'In many real-world systems, information can be transmitted in two qualitatively different ways: by copying or by transformation. Copying occurs when messages are transmitted without modification, e.g. when an offspring receives an unaltered copy of a gene from its parent. Transformation occurs when messages are modified systematically during transmission, e.g. when mutational biases occur during genetic replication. Standard information-theoretic measures do not distinguish these two modes of information transfer, although they may reflect different mechanisms and have different functional consequences. Starting from a few simple axioms, we derive a decomposition of mutual information into the information transmitted by copying versus the information transmitted by transformation. We begin with a decomposition that applies when the source and destination of the channel have the same set of messages and a notion of message identity exists. We then generalize our decomposition to other kinds of channels, which can involve different source and destination sets and broader notions of similarity. In addition, we show that copy information can be interpreted as the minimal work needed by a physical copying process, which is relevant for understanding the physics of replication. We use the proposed decomposition to explore a model of amino acid substitution rates. Our results apply to any system in which the fidelity of copying, rather than simple predictability, is of critical relevance.' acknowledgement: "AK was supported by Grant No. FQXi-RFP-1622 from the FQXi foundation, and Grant No. CHE-1648973 from the U.S.\r\nNational Science Foundation. AK would like to thank the Santa Fe Institute for supporting this research. The authors\r\nthank Jordi Fortuny, Rudolf Hanel, Joshua Garland, and Blai Vidiella for helpful discussions, as well as the anonymous\r\nreviewers for their insightful suggestions. " article_number: '0623' article_processing_charge: No article_type: original author: - first_name: Artemy full_name: Kolchinsky, Artemy last_name: Kolchinsky - first_name: Bernat full_name: Corominas-Murtra, Bernat id: 43BE2298-F248-11E8-B48F-1D18A9856A87 last_name: Corominas-Murtra orcid: 0000-0001-9806-5643 citation: ama: Kolchinsky A, Corominas-Murtra B. Decomposing information into copying versus transformation. Journal of the Royal Society Interface. 2020;17(162). doi:10.1098/rsif.2019.0623 apa: Kolchinsky, A., & Corominas-Murtra, B. (2020). Decomposing information into copying versus transformation. Journal of the Royal Society Interface. The Royal Society. https://doi.org/10.1098/rsif.2019.0623 chicago: Kolchinsky, Artemy, and Bernat Corominas-Murtra. “Decomposing Information into Copying versus Transformation.” Journal of the Royal Society Interface. The Royal Society, 2020. https://doi.org/10.1098/rsif.2019.0623. ieee: A. Kolchinsky and B. Corominas-Murtra, “Decomposing information into copying versus transformation,” Journal of the Royal Society Interface, vol. 17, no. 162. The Royal Society, 2020. ista: Kolchinsky A, Corominas-Murtra B. 2020. Decomposing information into copying versus transformation. Journal of the Royal Society Interface. 17(162), 0623. mla: Kolchinsky, Artemy, and Bernat Corominas-Murtra. “Decomposing Information into Copying versus Transformation.” Journal of the Royal Society Interface, vol. 17, no. 162, 0623, The Royal Society, 2020, doi:10.1098/rsif.2019.0623. short: A. Kolchinsky, B. Corominas-Murtra, Journal of the Royal Society Interface 17 (2020). date_created: 2020-02-02T23:01:03Z date_published: 2020-01-29T00:00:00Z date_updated: 2023-08-17T14:31:28Z day: '29' department: - _id: EdHa doi: 10.1098/rsif.2019.0623 external_id: arxiv: - '1903.10693' isi: - '000538369800002' pmid: - '31964273' intvolume: ' 17' isi: 1 issue: '162' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.10693 month: '01' oa: 1 oa_version: Preprint pmid: 1 publication: Journal of the Royal Society Interface publication_identifier: eissn: - '17425662' publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: '1' status: public title: Decomposing information into copying versus transformation type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2020' ... --- _id: '7389' abstract: - lang: eng text: "Recently Kloeckner described the structure of the isometry group of the quadratic Wasserstein space W_2(R^n). It turned out that the case of the real line is exceptional in the sense that there exists an exotic isometry flow. Following this line of investigation, we compute Isom(W_p(R)), the isometry group of the Wasserstein space\r\nW_p(R) for all p \\in [1,\\infty) \\setminus {2}. We show that W_2(R) is also exceptional regarding the\r\nparameter p: W_p(R) is isometrically rigid if and only if p is not equal to 2. Regarding the underlying\r\nspace, we prove that the exceptionality of p = 2 disappears if we replace R by the compact\r\ninterval [0,1]. Surprisingly, in that case, W_p([0,1]) is isometrically rigid if and only if\r\np is not equal to 1. Moreover, W_1([0,1]) admits isometries that split mass, and Isom(W_1([0,1]))\r\ncannot be embedded into Isom(W_1(R))." article_processing_charge: No article_type: original author: - first_name: Gyorgy Pal full_name: Geher, Gyorgy Pal last_name: Geher - first_name: Tamas full_name: Titkos, Tamas last_name: Titkos - first_name: Daniel full_name: Virosztek, Daniel id: 48DB45DA-F248-11E8-B48F-1D18A9856A87 last_name: Virosztek orcid: 0000-0003-1109-5511 citation: ama: Geher GP, Titkos T, Virosztek D. Isometric study of Wasserstein spaces - the real line. Transactions of the American Mathematical Society. 2020;373(8):5855-5883. doi:10.1090/tran/8113 apa: Geher, G. P., Titkos, T., & Virosztek, D. (2020). Isometric study of Wasserstein spaces - the real line. Transactions of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/tran/8113 chicago: Geher, Gyorgy Pal, Tamas Titkos, and Daniel Virosztek. “Isometric Study of Wasserstein Spaces - the Real Line.” Transactions of the American Mathematical Society. American Mathematical Society, 2020. https://doi.org/10.1090/tran/8113. ieee: G. P. Geher, T. Titkos, and D. Virosztek, “Isometric study of Wasserstein spaces - the real line,” Transactions of the American Mathematical Society, vol. 373, no. 8. American Mathematical Society, pp. 5855–5883, 2020. ista: Geher GP, Titkos T, Virosztek D. 2020. Isometric study of Wasserstein spaces - the real line. Transactions of the American Mathematical Society. 373(8), 5855–5883. mla: Geher, Gyorgy Pal, et al. “Isometric Study of Wasserstein Spaces - the Real Line.” Transactions of the American Mathematical Society, vol. 373, no. 8, American Mathematical Society, 2020, pp. 5855–83, doi:10.1090/tran/8113. short: G.P. Geher, T. Titkos, D. Virosztek, Transactions of the American Mathematical Society 373 (2020) 5855–5883. date_created: 2020-01-29T10:20:46Z date_published: 2020-08-01T00:00:00Z date_updated: 2023-08-17T14:31:03Z day: '01' ddc: - '515' department: - _id: LaEr doi: 10.1090/tran/8113 ec_funded: 1 external_id: arxiv: - '2002.00859' isi: - '000551418100018' intvolume: ' 373' isi: 1 issue: '8' keyword: - Wasserstein space - isometric embeddings - isometric rigidity - exotic isometry flow language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2002.00859 month: '08' oa: 1 oa_version: Preprint page: 5855-5883 project: - _id: 26A455A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '846294' name: Geometric study of Wasserstein spaces and free probability publication: Transactions of the American Mathematical Society publication_identifier: eissn: - '10886850' issn: - '00029947' publication_status: published publisher: American Mathematical Society quality_controlled: '1' status: public title: Isometric study of Wasserstein spaces - the real line type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 373 year: '2020' ... --- _id: '7467' abstract: - lang: eng text: Nanomaterials produced from the bottom-up assembly of nanocrystals may incorporate ∼1020–1021 cm–3 not fully coordinated surface atoms, i.e., ∼1020–1021 cm–3 potential donor or acceptor states that can strongly affect transport properties. Therefore, to exploit the full potential of nanocrystal building blocks to produce functional nanomaterials and thin films, a proper control of their surface chemistry is required. Here, we analyze how the ligand stripping procedure influences the charge and heat transport properties of sintered PbSe nanomaterials produced from the bottom-up assembly of colloidal PbSe nanocrystals. First, we show that the removal of the native organic ligands by thermal decomposition in an inert atmosphere leaves relatively large amounts of carbon at the crystal interfaces. This carbon blocks crystal growth during consolidation and at the same time hampers charge and heat transport through the final nanomaterial. Second, we demonstrate that, by stripping ligands from the nanocrystal surface before consolidation, nanomaterials with larger crystal domains, lower porosity, and higher charge carrier concentrations are obtained, thus resulting in nanomaterials with higher electrical and thermal conductivities. In addition, the ligand displacement leaves the nanocrystal surface unprotected, facilitating oxidation and chalcogen evaporation. The influence of the ligand displacement on the nanomaterial charge transport properties is rationalized here using a two-band model based on the standard Boltzmann transport equation with the relaxation time approximation. Finally, we present an application of the produced functional nanomaterials by modeling, fabricating, and testing a simple PbSe-based thermoelectric device with a ring geometry. acknowledgement: This work was supported by the Spanish Ministerio de Economía y Competitividad through the project SEHTOP (ENE2016-77798-C4-3-R) and the Generalitat de Catalunya through the project 2017SGR1246. D.C. acknowledges support from Universidad Nacional de Colombia. Y.L. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 754411. M.I. acknowledges financial support from IST Austria. article_processing_charge: No article_type: original author: - first_name: Doris full_name: Cadavid, Doris last_name: Cadavid - first_name: Silvia full_name: Ortega, Silvia last_name: Ortega - first_name: Sergio full_name: Illera, Sergio last_name: Illera - first_name: Yu full_name: Liu, Yu id: 2A70014E-F248-11E8-B48F-1D18A9856A87 last_name: Liu orcid: 0000-0001-7313-6740 - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Alexey full_name: Shavel, Alexey last_name: Shavel - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Mengyao full_name: Li, Mengyao last_name: Li - first_name: Antonio M. full_name: López, Antonio M. last_name: López - first_name: Germán full_name: Noriega, Germán last_name: Noriega - first_name: Oscar Juan full_name: Durá, Oscar Juan last_name: Durá - first_name: M. A. full_name: López De La Torre, M. A. last_name: López De La Torre - first_name: Joan Daniel full_name: Prades, Joan Daniel last_name: Prades - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: Cadavid D, Ortega S, Illera S, et al. Influence of the ligand stripping on the transport properties of nanoparticle-based PbSe nanomaterials. ACS Applied Energy Materials. 2020;3(3):2120-2129. doi:10.1021/acsaem.9b02137 apa: Cadavid, D., Ortega, S., Illera, S., Liu, Y., Ibáñez, M., Shavel, A., … Cabot, A. (2020). Influence of the ligand stripping on the transport properties of nanoparticle-based PbSe nanomaterials. ACS Applied Energy Materials. American Chemical Society. https://doi.org/10.1021/acsaem.9b02137 chicago: Cadavid, Doris, Silvia Ortega, Sergio Illera, Yu Liu, Maria Ibáñez, Alexey Shavel, Yu Zhang, et al. “Influence of the Ligand Stripping on the Transport Properties of Nanoparticle-Based PbSe Nanomaterials.” ACS Applied Energy Materials. American Chemical Society, 2020. https://doi.org/10.1021/acsaem.9b02137. ieee: D. Cadavid et al., “Influence of the ligand stripping on the transport properties of nanoparticle-based PbSe nanomaterials,” ACS Applied Energy Materials, vol. 3, no. 3. American Chemical Society, pp. 2120–2129, 2020. ista: Cadavid D, Ortega S, Illera S, Liu Y, Ibáñez M, Shavel A, Zhang Y, Li M, López AM, Noriega G, Durá OJ, López De La Torre MA, Prades JD, Cabot A. 2020. Influence of the ligand stripping on the transport properties of nanoparticle-based PbSe nanomaterials. ACS Applied Energy Materials. 3(3), 2120–2129. mla: Cadavid, Doris, et al. “Influence of the Ligand Stripping on the Transport Properties of Nanoparticle-Based PbSe Nanomaterials.” ACS Applied Energy Materials, vol. 3, no. 3, American Chemical Society, 2020, pp. 2120–29, doi:10.1021/acsaem.9b02137. short: D. Cadavid, S. Ortega, S. Illera, Y. Liu, M. Ibáñez, A. Shavel, Y. Zhang, M. Li, A.M. López, G. Noriega, O.J. Durá, M.A. López De La Torre, J.D. Prades, A. Cabot, ACS Applied Energy Materials 3 (2020) 2120–2129. date_created: 2020-02-09T23:00:52Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-08-17T14:36:16Z day: '01' ddc: - '540' department: - _id: MaIb doi: 10.1021/acsaem.9b02137 ec_funded: 1 external_id: isi: - '000526598300012' file: - access_level: open_access checksum: f23be731a766a480c77c962c1380315c content_type: application/pdf creator: dernst date_created: 2022-08-23T08:34:17Z date_updated: 2022-08-23T08:34:17Z file_id: '11942' file_name: 2020_ACSAppliedEnergyMat_Cadavid.pdf file_size: 6423548 relation: main_file success: 1 file_date_updated: 2022-08-23T08:34:17Z has_accepted_license: '1' intvolume: ' 3' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version page: 2120-2129 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: ACS Applied Energy Materials publication_identifier: eissn: - 2574-0962 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Influence of the ligand stripping on the transport properties of nanoparticle-based PbSe nanomaterials type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 3 year: '2020' ... --- _id: '7465' abstract: - lang: eng text: The flexible development of plants is characterized by a high capacity for post-embryonic organ formation and tissue regeneration, processes, which require tightly regulated intercellular communication and coordinated tissue (re-)polarization. The phytohormone auxin, the main driver for these processes, is able to establish polarized auxin transport channels, which are characterized by the expression and polar, subcellular localization of the PIN1 auxin transport proteins. These channels are demarcating the position of future vascular strands necessary for organ formation and tissue regeneration. Major progress has been made in the last years to understand how PINs can change their polarity in different contexts and thus guide auxin flow through the plant. However, it still remains elusive how auxin mediates the establishment of auxin conducting channels and the formation of vascular tissue and which cellular processes are involved. By the means of sophisticated regeneration experiments combined with local auxin applications in Arabidopsis thaliana inflorescence stems we show that (i) PIN subcellular dynamics, (ii) PIN internalization by clathrin-mediated trafficking and (iii) an intact actin cytoskeleton required for post-endocytic trafficking are indispensable for auxin channel formation, de novo vascular formation and vascular regeneration after wounding. These observations provide novel insights into cellular mechanism of coordinated tissue polarization during auxin canalization. article_number: '110414' article_processing_charge: No article_type: original author: - first_name: Ewa full_name: Mazur, Ewa last_name: Mazur - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Hélène S. full_name: Robert, Hélène S. last_name: Robert - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Mazur E, Gallei MC, Adamowski M, Han H, Robert HS, Friml J. Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis. Plant Science. 2020;293(4). doi:10.1016/j.plantsci.2020.110414 apa: Mazur, E., Gallei, M. C., Adamowski, M., Han, H., Robert, H. S., & Friml, J. (2020). Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis. Plant Science. Elsevier. https://doi.org/10.1016/j.plantsci.2020.110414 chicago: Mazur, Ewa, Michelle C Gallei, Maciek Adamowski, Huibin Han, Hélène S. Robert, and Jiří Friml. “Clathrin-Mediated Trafficking and PIN Trafficking Are Required for Auxin Canalization and Vascular Tissue Formation in Arabidopsis.” Plant Science. Elsevier, 2020. https://doi.org/10.1016/j.plantsci.2020.110414. ieee: E. Mazur, M. C. Gallei, M. Adamowski, H. Han, H. S. Robert, and J. Friml, “Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis,” Plant Science, vol. 293, no. 4. Elsevier, 2020. ista: Mazur E, Gallei MC, Adamowski M, Han H, Robert HS, Friml J. 2020. Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis. Plant Science. 293(4), 110414. mla: Mazur, Ewa, et al. “Clathrin-Mediated Trafficking and PIN Trafficking Are Required for Auxin Canalization and Vascular Tissue Formation in Arabidopsis.” Plant Science, vol. 293, no. 4, 110414, Elsevier, 2020, doi:10.1016/j.plantsci.2020.110414. short: E. Mazur, M.C. Gallei, M. Adamowski, H. Han, H.S. Robert, J. Friml, Plant Science 293 (2020). date_created: 2020-02-09T23:00:50Z date_published: 2020-04-01T00:00:00Z date_updated: 2023-08-17T14:37:32Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.plantsci.2020.110414 ec_funded: 1 external_id: isi: - '000520609800009' file: - access_level: open_access checksum: f7f27c6a8fea985ceb9279be2204461c content_type: application/pdf creator: dernst date_created: 2020-02-10T08:59:36Z date_updated: 2020-07-14T12:47:59Z file_id: '7471' file_name: 2020_PlantScience_Mazur.pdf file_size: 3499069 relation: main_file file_date_updated: 2020-07-14T12:47:59Z has_accepted_license: '1' intvolume: ' 293' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Plant Science publication_identifier: eissn: - '18732259' issn: - '01689452' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '11626' relation: dissertation_contains status: public scopus_import: '1' status: public title: Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 293 year: '2020' ... --- _id: '7466' abstract: - lang: eng text: Unpaired ligands are secreted signals that act via a GP130-like receptor, domeless, to activate JAK/STAT signalling in Drosophila. Like many mammalian cytokines, unpaireds can be activated by infection and other stresses and can promote insulin resistance in target tissues. However, the importance of this effect in non-inflammatory physiology is unknown. Here, we identify a requirement for unpaired-JAK signalling as a metabolic regulator in healthy adult Drosophila muscle. Adult muscles show basal JAK-STAT signalling activity in the absence of any immune challenge. Plasmatocytes (Drosophila macrophages) are an important source of this tonic signal. Loss of the dome receptor on adult muscles significantly reduces lifespan and causes local and systemic metabolic pathology. These pathologies result from hyperactivation of AKT and consequent deregulation of metabolism. Thus, we identify a cytokine signal that must be received in muscle to control AKT activity and metabolic homeostasis. article_number: e51595 article_processing_charge: No article_type: original author: - first_name: Katrin full_name: Kierdorf, Katrin last_name: Kierdorf - first_name: Fabian full_name: Hersperger, Fabian last_name: Hersperger - first_name: Jessica full_name: Sharrock, Jessica last_name: Sharrock - first_name: Crystal M. full_name: Vincent, Crystal M. last_name: Vincent - first_name: Pinar full_name: Ustaoglu, Pinar last_name: Ustaoglu - first_name: Jiawen full_name: Dou, Jiawen last_name: Dou - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Olaf full_name: Groß, Olaf last_name: Groß - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 - first_name: Marc S. full_name: Dionne, Marc S. last_name: Dionne citation: ama: Kierdorf K, Hersperger F, Sharrock J, et al. Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila. eLife. 2020;9. doi:10.7554/eLife.51595 apa: Kierdorf, K., Hersperger, F., Sharrock, J., Vincent, C. M., Ustaoglu, P., Dou, J., … Dionne, M. S. (2020). Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.51595 chicago: Kierdorf, Katrin, Fabian Hersperger, Jessica Sharrock, Crystal M. Vincent, Pinar Ustaoglu, Jiawen Dou, Attila György, Olaf Groß, Daria E Siekhaus, and Marc S. Dionne. “Muscle Function and Homeostasis Require Cytokine Inhibition of AKT Activity in Drosophila.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/eLife.51595. ieee: K. Kierdorf et al., “Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila,” eLife, vol. 9. eLife Sciences Publications, 2020. ista: Kierdorf K, Hersperger F, Sharrock J, Vincent CM, Ustaoglu P, Dou J, György A, Groß O, Siekhaus DE, Dionne MS. 2020. Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila. eLife. 9, e51595. mla: Kierdorf, Katrin, et al. “Muscle Function and Homeostasis Require Cytokine Inhibition of AKT Activity in Drosophila.” ELife, vol. 9, e51595, eLife Sciences Publications, 2020, doi:10.7554/eLife.51595. short: K. Kierdorf, F. Hersperger, J. Sharrock, C.M. Vincent, P. Ustaoglu, J. Dou, A. György, O. Groß, D.E. Siekhaus, M.S. Dionne, ELife 9 (2020). date_created: 2020-02-09T23:00:51Z date_published: 2020-01-20T00:00:00Z date_updated: 2023-08-17T14:36:39Z day: '20' ddc: - '570' department: - _id: DaSi doi: 10.7554/eLife.51595 external_id: isi: - '000512304800001' file: - access_level: open_access checksum: 3a072be843f416c7a7d532a51dc0addb content_type: application/pdf creator: dernst date_created: 2020-02-10T08:53:16Z date_updated: 2020-07-14T12:47:59Z file_id: '7470' file_name: 2020_eLife_Kierdorf.pdf file_size: 4959933 relation: main_file file_date_updated: 2020-07-14T12:47:59Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 253B6E48-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29638 name: Drosophila TNFa´s Funktion in Immunzellen publication: eLife publication_identifier: eissn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '7472' abstract: - lang: eng text: Temporally organized reactivation of experiences during awake immobility periods is thought to underlie cognitive processes like planning and evaluation. While replay of trajectories is well established for the hippocampus, it is unclear whether the medial prefrontal cortex (mPFC) can reactivate sequential behavioral experiences in the awake state to support task execution. We simultaneously recorded from hippocampal and mPFC principal neurons in rats performing a mPFC-dependent rule-switching task on a plus maze. We found that mPFC neuronal activity encoded relative positions between the start and goal. During awake immobility periods, the mPFC replayed temporally organized sequences of these generalized positions, resembling entire spatial trajectories. The occurrence of mPFC trajectory replay positively correlated with rule-switching performance. However, hippocampal and mPFC trajectory replay occurred independently, indicating different functions. These results demonstrate that the mPFC can replay ordered activity patterns representing generalized locations and suggest that mPFC replay might have a role in flexible behavior. acknowledged_ssus: - _id: M-Shop acknowledgement: We thank Todor Asenov and Thomas Menner from the Machine Shop for the drive design and production, Hugo Malagon-Vina for assistance in maze automatization, Jago Wallenschus for taking the images of the histology, and Federico Stella and Juan Felipe Ramirez-Villegas for comments on an earlier version of the manuscript. This work was supported by the EU-FP7 MC-ITN IN-SENS (grant 607616 ). article_processing_charge: No article_type: original author: - first_name: Karola full_name: Käfer, Karola id: 2DAA49AA-F248-11E8-B48F-1D18A9856A87 last_name: Käfer - first_name: Michele full_name: Nardin, Michele id: 30BD0376-F248-11E8-B48F-1D18A9856A87 last_name: Nardin orcid: 0000-0001-8849-6570 - first_name: Karel full_name: Blahna, Karel id: 3EA859AE-F248-11E8-B48F-1D18A9856A87 last_name: Blahna - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Käfer K, Nardin M, Blahna K, Csicsvari JL. Replay of behavioral sequences in the medial prefrontal cortex during rule switching. Neuron. 2020;106(1):P154-165.e6. doi:10.1016/j.neuron.2020.01.015 apa: Käfer, K., Nardin, M., Blahna, K., & Csicsvari, J. L. (2020). Replay of behavioral sequences in the medial prefrontal cortex during rule switching. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2020.01.015 chicago: Käfer, Karola, Michele Nardin, Karel Blahna, and Jozsef L Csicsvari. “Replay of Behavioral Sequences in the Medial Prefrontal Cortex during Rule Switching.” Neuron. Elsevier, 2020. https://doi.org/10.1016/j.neuron.2020.01.015. ieee: K. Käfer, M. Nardin, K. Blahna, and J. L. Csicsvari, “Replay of behavioral sequences in the medial prefrontal cortex during rule switching,” Neuron, vol. 106, no. 1. Elsevier, p. P154–165.e6, 2020. ista: Käfer K, Nardin M, Blahna K, Csicsvari JL. 2020. Replay of behavioral sequences in the medial prefrontal cortex during rule switching. Neuron. 106(1), P154–165.e6. mla: Käfer, Karola, et al. “Replay of Behavioral Sequences in the Medial Prefrontal Cortex during Rule Switching.” Neuron, vol. 106, no. 1, Elsevier, 2020, p. P154–165.e6, doi:10.1016/j.neuron.2020.01.015. short: K. Käfer, M. Nardin, K. Blahna, J.L. Csicsvari, Neuron 106 (2020) P154–165.e6. date_created: 2020-02-10T15:45:48Z date_published: 2020-04-08T00:00:00Z date_updated: 2023-08-17T14:38:02Z day: '08' department: - _id: JoCs doi: 10.1016/j.neuron.2020.01.015 ec_funded: 1 external_id: isi: - '000525319300016' pmid: - '32032512' intvolume: ' 106' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.neuron.2020.01.015 month: '04' oa: 1 oa_version: Published Version page: P154-165.e6 pmid: 1 project: - _id: 257BBB4C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '607616' name: Inter-and intracellular signalling in schizophrenia publication: Neuron publication_identifier: issn: - 0896-6273 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/this-brain-area-helps-us-decide/ scopus_import: '1' status: public title: Replay of behavioral sequences in the medial prefrontal cortex during rule switching type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 106 year: '2020' ... --- _id: '7388' abstract: - lang: eng text: We give a Wong-Zakai type characterisation of the solutions of quasilinear heat equations driven by space-time white noise in 1 + 1 dimensions. In order to show that the renormalisation counterterms are local in the solution, a careful arrangement of a few hundred terms is required. The main tool in this computation is a general ‘integration by parts’ formula that provides a number of linear identities for the renormalisation constants. article_processing_charge: No article_type: original author: - first_name: Mate full_name: Gerencser, Mate id: 44ECEDF2-F248-11E8-B48F-1D18A9856A87 last_name: Gerencser citation: ama: Gerencser M. Nondivergence form quasilinear heat equations driven by space-time white noise. Annales de l’Institut Henri Poincaré C, Analyse non linéaire. 2020;37(3):663-682. doi:10.1016/j.anihpc.2020.01.003 apa: Gerencser, M. (2020). Nondivergence form quasilinear heat equations driven by space-time white noise. Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire. Elsevier. https://doi.org/10.1016/j.anihpc.2020.01.003 chicago: Gerencser, Mate. “Nondivergence Form Quasilinear Heat Equations Driven by Space-Time White Noise.” Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire. Elsevier, 2020. https://doi.org/10.1016/j.anihpc.2020.01.003. ieee: M. Gerencser, “Nondivergence form quasilinear heat equations driven by space-time white noise,” Annales de l’Institut Henri Poincaré C, Analyse non linéaire, vol. 37, no. 3. Elsevier, pp. 663–682, 2020. ista: Gerencser M. 2020. Nondivergence form quasilinear heat equations driven by space-time white noise. Annales de l’Institut Henri Poincaré C, Analyse non linéaire. 37(3), 663–682. mla: Gerencser, Mate. “Nondivergence Form Quasilinear Heat Equations Driven by Space-Time White Noise.” Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, vol. 37, no. 3, Elsevier, 2020, pp. 663–82, doi:10.1016/j.anihpc.2020.01.003. short: M. Gerencser, Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire 37 (2020) 663–682. date_created: 2020-01-29T09:39:41Z date_published: 2020-05-01T00:00:00Z date_updated: 2023-08-17T14:35:46Z day: '01' department: - _id: JaMa doi: 10.1016/j.anihpc.2020.01.003 external_id: arxiv: - '1902.07635' isi: - '000531049800007' intvolume: ' 37' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1902.07635 month: '05' oa: 1 oa_version: Preprint page: 663-682 publication: Annales de l'Institut Henri Poincaré C, Analyse non linéaire publication_identifier: issn: - 0294-1449 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Nondivergence form quasilinear heat equations driven by space-time white noise type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 37 year: '2020' ... --- _id: '7487' abstract: - lang: eng text: 'Glutaminase (GA) catalyzes the first step in mitochondrial glutaminolysis playing a key role in cancer metabolic reprogramming. Humans express two types of GA isoforms: GLS and GLS2. GLS isozymes have been consistently related to cell proliferation, but the role of GLS2 in cancer remains poorly understood. GLS2 is repressed in many tumor cells and a better understanding of its function in tumorigenesis may further the development of new therapeutic approaches. We analyzed GLS2 expression in HCC, GBM and neuroblastoma cells, as well as in monkey COS-7 cells. We studied GLS2 expression after induction of differentiation with phorbol ester (PMA) and transduction with the full-length cDNA of GLS2. In parallel, we investigated cell cycle progression and levels of p53, p21 and c-Myc proteins. Using the baculovirus system, human GLS2 protein was overexpressed, purified and analyzed for posttranslational modifications employing a proteomics LC-MS/MS platform. We have demonstrated a dual targeting of GLS2 in human cancer cells. Immunocytochemistry and subcellular fractionation gave consistent results demonstrating nuclear and mitochondrial locations, with the latter being predominant. Nuclear targeting was confirmed in cancer cells overexpressing c-Myc- and GFP-tagged GLS2 proteins. We assessed the subnuclear location finding a widespread distribution of GLS2 in the nucleoplasm without clear overlapping with specific nuclear substructures. GLS2 expression and nuclear accrual notably increased by treatment of SH-SY5Y cells with PMA and it correlated with cell cycle arrest at G2/M, upregulation of tumor suppressor p53 and p21 protein. A similar response was obtained by overexpression of GLS2 in T98G glioma cells, including downregulation of oncogene c-Myc. Furthermore, human GLS2 was identified as being hypusinated by MS analysis, a posttranslational modification which may be relevant for its nuclear targeting and/or function. Our studies provide evidence for a tumor suppressor role of GLS2 in certain types of cancer. The data imply that GLS2 can be regarded as a highly mobile and multilocalizing protein translocated to both mitochondria and nuclei. Upregulation of GLS2 in cancer cells induced an antiproliferative response with cell cycle arrest at the G2/M phase.' article_number: '2259' article_processing_charge: No article_type: original author: - first_name: Amada R. full_name: López De La Oliva, Amada R. last_name: López De La Oliva - first_name: José A. full_name: Campos-Sandoval, José A. last_name: Campos-Sandoval - first_name: María C. full_name: Gómez-García, María C. last_name: Gómez-García - first_name: Carolina full_name: Cardona, Carolina last_name: Cardona - first_name: Mercedes full_name: Martín-Rufián, Mercedes last_name: Martín-Rufián - first_name: Fernando J. full_name: Sialana, Fernando J. last_name: Sialana - first_name: Laura full_name: Castilla, Laura last_name: Castilla - first_name: Narkhyun full_name: Bae, Narkhyun id: 3A5F7CD8-F248-11E8-B48F-1D18A9856A87 last_name: Bae - first_name: Carolina full_name: Lobo, Carolina last_name: Lobo - first_name: Ana full_name: Peñalver, Ana last_name: Peñalver - first_name: Marina full_name: García-Frutos, Marina last_name: García-Frutos - first_name: David full_name: Carro, David last_name: Carro - first_name: Victoria full_name: Enrique, Victoria last_name: Enrique - first_name: José C. full_name: Paz, José C. last_name: Paz - first_name: Raghavendra G. full_name: Mirmira, Raghavendra G. last_name: Mirmira - first_name: Antonia full_name: Gutiérrez, Antonia last_name: Gutiérrez - first_name: Francisco J. full_name: Alonso, Francisco J. last_name: Alonso - first_name: Juan A. full_name: Segura, Juan A. last_name: Segura - first_name: José M. full_name: Matés, José M. last_name: Matés - first_name: Gert full_name: Lubec, Gert last_name: Lubec - first_name: Javier full_name: Márquez, Javier last_name: Márquez citation: ama: López De La Oliva AR, Campos-Sandoval JA, Gómez-García MC, et al. Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation. Scientific reports. 2020;10(1). doi:10.1038/s41598-020-58264-4 apa: López De La Oliva, A. R., Campos-Sandoval, J. A., Gómez-García, M. C., Cardona, C., Martín-Rufián, M., Sialana, F. J., … Márquez, J. (2020). Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-020-58264-4 chicago: López De La Oliva, Amada R., José A. Campos-Sandoval, María C. Gómez-García, Carolina Cardona, Mercedes Martín-Rufián, Fernando J. Sialana, Laura Castilla, et al. “Nuclear Translocation of Glutaminase GLS2 in Human Cancer Cells Associates with Proliferation Arrest and Differentiation.” Scientific Reports. Springer Nature, 2020. https://doi.org/10.1038/s41598-020-58264-4. ieee: A. R. López De La Oliva et al., “Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation,” Scientific reports, vol. 10, no. 1. Springer Nature, 2020. ista: López De La Oliva AR, Campos-Sandoval JA, Gómez-García MC, Cardona C, Martín-Rufián M, Sialana FJ, Castilla L, Bae N, Lobo C, Peñalver A, García-Frutos M, Carro D, Enrique V, Paz JC, Mirmira RG, Gutiérrez A, Alonso FJ, Segura JA, Matés JM, Lubec G, Márquez J. 2020. Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation. Scientific reports. 10(1), 2259. mla: López De La Oliva, Amada R., et al. “Nuclear Translocation of Glutaminase GLS2 in Human Cancer Cells Associates with Proliferation Arrest and Differentiation.” Scientific Reports, vol. 10, no. 1, 2259, Springer Nature, 2020, doi:10.1038/s41598-020-58264-4. short: A.R. López De La Oliva, J.A. Campos-Sandoval, M.C. Gómez-García, C. Cardona, M. Martín-Rufián, F.J. Sialana, L. Castilla, N. Bae, C. Lobo, A. Peñalver, M. García-Frutos, D. Carro, V. Enrique, J.C. Paz, R.G. Mirmira, A. Gutiérrez, F.J. Alonso, J.A. Segura, J.M. Matés, G. Lubec, J. Márquez, Scientific Reports 10 (2020). date_created: 2020-02-16T23:00:49Z date_published: 2020-02-10T00:00:00Z date_updated: 2023-08-18T06:35:13Z day: '10' ddc: - '570' department: - _id: CaBe doi: 10.1038/s41598-020-58264-4 external_id: isi: - '000560694800012' pmid: - '32042057' file: - access_level: open_access checksum: c780bd87476a9c9e12668ff66de3dc96 content_type: application/pdf creator: dernst date_created: 2020-02-18T07:43:21Z date_updated: 2020-07-14T12:47:59Z file_id: '7495' file_name: 2020_ScientificReport_Lopez.pdf file_size: 4703751 relation: main_file file_date_updated: 2020-07-14T12:47:59Z has_accepted_license: '1' intvolume: ' 10' isi: 1 issue: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 publication: Scientific reports publication_identifier: eissn: - '20452322' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41598-020-80651-0 scopus_import: '1' status: public title: Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2020' ... --- _id: '7490' abstract: - lang: eng text: In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes. acknowledged_ssus: - _id: LifeSc - _id: Bio - _id: EM-Fac article_number: e52067 article_processing_charge: No article_type: original author: - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Roshan full_name: Prizak, Roshan id: 4456104E-F248-11E8-B48F-1D18A9856A87 last_name: Prizak - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Barbara E full_name: Casillas Perez, Barbara E id: 351ED2AA-F248-11E8-B48F-1D18A9856A87 last_name: Casillas Perez - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Narasimhan M, Johnson AJ, Prizak R, et al. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife. 2020;9. doi:10.7554/eLife.52067 apa: Narasimhan, M., Johnson, A. J., Prizak, R., Kaufmann, W., Tan, S., Casillas Perez, B. E., & Friml, J. (2020). Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.52067 chicago: Narasimhan, Madhumitha, Alexander J Johnson, Roshan Prizak, Walter Kaufmann, Shutang Tan, Barbara E Casillas Perez, and Jiří Friml. “Evolutionarily Unique Mechanistic Framework of Clathrin-Mediated Endocytosis in Plants.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/eLife.52067. ieee: M. Narasimhan et al., “Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants,” eLife, vol. 9. eLife Sciences Publications, 2020. ista: Narasimhan M, Johnson AJ, Prizak R, Kaufmann W, Tan S, Casillas Perez BE, Friml J. 2020. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife. 9, e52067. mla: Narasimhan, Madhumitha, et al. “Evolutionarily Unique Mechanistic Framework of Clathrin-Mediated Endocytosis in Plants.” ELife, vol. 9, e52067, eLife Sciences Publications, 2020, doi:10.7554/eLife.52067. short: M. Narasimhan, A.J. Johnson, R. Prizak, W. Kaufmann, S. Tan, B.E. Casillas Perez, J. Friml, ELife 9 (2020). date_created: 2020-02-16T23:00:50Z date_published: 2020-01-23T00:00:00Z date_updated: 2023-08-18T06:33:07Z day: '23' ddc: - '570' - '580' department: - _id: JiFr - _id: GaTk - _id: EM-Fac - _id: SyCr doi: 10.7554/eLife.52067 ec_funded: 1 external_id: isi: - '000514104100001' pmid: - '31971511' file: - access_level: open_access checksum: 2052daa4be5019534f3a42f200a09f32 content_type: application/pdf creator: dernst date_created: 2020-02-18T07:21:16Z date_updated: 2020-07-14T12:47:59Z file_id: '7494' file_name: 2020_eLife_Narasimhan.pdf file_size: 7247468 relation: main_file file_date_updated: 2020-07-14T12:47:59Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '7488' abstract: - lang: eng text: Characteristic or classic phenotype of Cornelia de Lange syndrome (CdLS) is associated with a recognisable facial pattern. However, the heterogeneity in causal genes and the presence of overlapping syndromes have made it increasingly difficult to diagnose only by clinical features. DeepGestalt technology, and its app Face2Gene, is having a growing impact on the diagnosis and management of genetic diseases by analysing the features of affected individuals. Here, we performed a phenotypic study on a cohort of 49 individuals harbouring causative variants in known CdLS genes in order to evaluate Face2Gene utility and sensitivity in the clinical diagnosis of CdLS. Based on the profile images of patients, a diagnosis of CdLS was within the top five predicted syndromes for 97.9% of our cases and even listed as first prediction for 83.7%. The age of patients did not seem to affect the prediction accuracy, whereas our results indicate a correlation between the clinical score and affected genes. Furthermore, each gene presents a different pattern recognition that may be used to develop new neural networks with the goal of separating different genetic subtypes in CdLS. Overall, we conclude that computer-assisted image analysis based on deep learning could support the clinical diagnosis of CdLS. article_number: '1042' article_processing_charge: No article_type: original author: - first_name: Ana full_name: Latorre-Pellicer, Ana last_name: Latorre-Pellicer - first_name: Ángela full_name: Ascaso, Ángela last_name: Ascaso - first_name: Laura full_name: Trujillano, Laura last_name: Trujillano - first_name: Marta full_name: Gil-Salvador, Marta last_name: Gil-Salvador - first_name: Maria full_name: Arnedo, Maria last_name: Arnedo - first_name: Cristina full_name: Lucia-Campos, Cristina last_name: Lucia-Campos - first_name: Rebeca full_name: Antoñanzas-Pérez, Rebeca last_name: Antoñanzas-Pérez - first_name: Iñigo full_name: Marcos-Alcalde, Iñigo last_name: Marcos-Alcalde - first_name: Ilaria full_name: Parenti, Ilaria id: D93538B0-5B71-11E9-AC62-02EBE5697425 last_name: Parenti - first_name: Gloria full_name: Bueno-Lozano, Gloria last_name: Bueno-Lozano - first_name: Antonio full_name: Musio, Antonio last_name: Musio - first_name: Beatriz full_name: Puisac, Beatriz last_name: Puisac - first_name: Frank J. full_name: Kaiser, Frank J. last_name: Kaiser - first_name: Feliciano J. full_name: Ramos, Feliciano J. last_name: Ramos - first_name: Paulino full_name: Gómez-Puertas, Paulino last_name: Gómez-Puertas - first_name: Juan full_name: Pié, Juan last_name: Pié citation: ama: Latorre-Pellicer A, Ascaso Á, Trujillano L, et al. Evaluating Face2Gene as a tool to identify Cornelia de Lange syndrome by facial phenotypes. International Journal of Molecular Sciences. 2020;21(3). doi:10.3390/ijms21031042 apa: Latorre-Pellicer, A., Ascaso, Á., Trujillano, L., Gil-Salvador, M., Arnedo, M., Lucia-Campos, C., … Pié, J. (2020). Evaluating Face2Gene as a tool to identify Cornelia de Lange syndrome by facial phenotypes. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms21031042 chicago: Latorre-Pellicer, Ana, Ángela Ascaso, Laura Trujillano, Marta Gil-Salvador, Maria Arnedo, Cristina Lucia-Campos, Rebeca Antoñanzas-Pérez, et al. “Evaluating Face2Gene as a Tool to Identify Cornelia de Lange Syndrome by Facial Phenotypes.” International Journal of Molecular Sciences. MDPI, 2020. https://doi.org/10.3390/ijms21031042. ieee: A. Latorre-Pellicer et al., “Evaluating Face2Gene as a tool to identify Cornelia de Lange syndrome by facial phenotypes,” International Journal of Molecular Sciences, vol. 21, no. 3. MDPI, 2020. ista: Latorre-Pellicer A, Ascaso Á, Trujillano L, Gil-Salvador M, Arnedo M, Lucia-Campos C, Antoñanzas-Pérez R, Marcos-Alcalde I, Parenti I, Bueno-Lozano G, Musio A, Puisac B, Kaiser FJ, Ramos FJ, Gómez-Puertas P, Pié J. 2020. Evaluating Face2Gene as a tool to identify Cornelia de Lange syndrome by facial phenotypes. International Journal of Molecular Sciences. 21(3), 1042. mla: Latorre-Pellicer, Ana, et al. “Evaluating Face2Gene as a Tool to Identify Cornelia de Lange Syndrome by Facial Phenotypes.” International Journal of Molecular Sciences, vol. 21, no. 3, 1042, MDPI, 2020, doi:10.3390/ijms21031042. short: A. Latorre-Pellicer, Á. Ascaso, L. Trujillano, M. Gil-Salvador, M. Arnedo, C. Lucia-Campos, R. Antoñanzas-Pérez, I. Marcos-Alcalde, I. Parenti, G. Bueno-Lozano, A. Musio, B. Puisac, F.J. Kaiser, F.J. Ramos, P. Gómez-Puertas, J. Pié, International Journal of Molecular Sciences 21 (2020). date_created: 2020-02-16T23:00:49Z date_published: 2020-02-04T00:00:00Z date_updated: 2023-08-18T06:35:41Z day: '04' ddc: - '570' department: - _id: GaNo doi: 10.3390/ijms21031042 external_id: isi: - '000522551606028' file: - access_level: open_access checksum: 0e6658c4fe329d55d4d9bef01c5b15d0 content_type: application/pdf creator: dernst date_created: 2020-02-18T07:49:22Z date_updated: 2020-07-14T12:47:59Z file_id: '7496' file_name: 2020_IntMolecSciences_Latorre.pdf file_size: 4271234 relation: main_file file_date_updated: 2020-07-14T12:47:59Z has_accepted_license: '1' intvolume: ' 21' isi: 1 issue: '3' language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: International Journal of Molecular Sciences publication_identifier: eissn: - '14220067' issn: - '16616596' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Evaluating Face2Gene as a tool to identify Cornelia de Lange syndrome by facial phenotypes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 21 year: '2020' ... --- _id: '7505' abstract: - lang: eng text: Neural networks have demonstrated unmatched performance in a range of classification tasks. Despite numerous efforts of the research community, novelty detection remains one of the significant limitations of neural networks. The ability to identify previously unseen inputs as novel is crucial for our understanding of the decisions made by neural networks. At runtime, inputs not falling into any of the categories learned during training cannot be classified correctly by the neural network. Existing approaches treat the neural network as a black box and try to detect novel inputs based on the confidence of the output predictions. However, neural networks are not trained to reduce their confidence for novel inputs, which limits the effectiveness of these approaches. We propose a framework to monitor a neural network by observing the hidden layers. We employ a common abstraction from program analysis - boxes - to identify novel behaviors in the monitored layers, i.e., inputs that cause behaviors outside the box. For each neuron, the boxes range over the values seen in training. The framework is efficient and flexible to achieve a desired trade-off between raising false warnings and detecting novel inputs. We illustrate the performance and the robustness to variability in the unknown classes on popular image-classification benchmarks. acknowledgement: We thank Christoph Lampert and Nikolaus Mayer for fruitful discussions. This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award) and the European Union’s Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No. 754411. alternative_title: - Frontiers in Artificial Intelligence and Applications article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Anna full_name: Lukina, Anna id: CBA4D1A8-0FE8-11E9-BDE6-07BFE5697425 last_name: Lukina - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Henzinger TA, Lukina A, Schilling C. Outside the box: Abstraction-based monitoring of neural networks. In: 24th European Conference on Artificial Intelligence. Vol 325. IOS Press; 2020:2433-2440. doi:10.3233/FAIA200375' apa: 'Henzinger, T. A., Lukina, A., & Schilling, C. (2020). Outside the box: Abstraction-based monitoring of neural networks. In 24th European Conference on Artificial Intelligence (Vol. 325, pp. 2433–2440). Santiago de Compostela, Spain: IOS Press. https://doi.org/10.3233/FAIA200375' chicago: 'Henzinger, Thomas A, Anna Lukina, and Christian Schilling. “Outside the Box: Abstraction-Based Monitoring of Neural Networks.” In 24th European Conference on Artificial Intelligence, 325:2433–40. IOS Press, 2020. https://doi.org/10.3233/FAIA200375.' ieee: 'T. A. Henzinger, A. Lukina, and C. Schilling, “Outside the box: Abstraction-based monitoring of neural networks,” in 24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 2020, vol. 325, pp. 2433–2440.' ista: 'Henzinger TA, Lukina A, Schilling C. 2020. Outside the box: Abstraction-based monitoring of neural networks. 24th European Conference on Artificial Intelligence. ECAI: European Conference on Artificial Intelligence, Frontiers in Artificial Intelligence and Applications, vol. 325, 2433–2440.' mla: 'Henzinger, Thomas A., et al. “Outside the Box: Abstraction-Based Monitoring of Neural Networks.” 24th European Conference on Artificial Intelligence, vol. 325, IOS Press, 2020, pp. 2433–40, doi:10.3233/FAIA200375.' short: T.A. Henzinger, A. Lukina, C. Schilling, in:, 24th European Conference on Artificial Intelligence, IOS Press, 2020, pp. 2433–2440. conference: end_date: 2020-09-08 location: Santiago de Compostela, Spain name: 'ECAI: European Conference on Artificial Intelligence' start_date: 2020-08-29 date_created: 2020-02-21T16:44:03Z date_published: 2020-02-24T00:00:00Z date_updated: 2023-08-18T06:38:16Z day: '24' ddc: - '000' department: - _id: ToHe doi: 10.3233/FAIA200375 ec_funded: 1 external_id: arxiv: - '1911.09032' isi: - '000650971303002' file: - access_level: open_access checksum: 80642fa0b6cd7da95dcd87d63789ad5e content_type: application/pdf creator: dernst date_created: 2020-09-21T07:12:32Z date_updated: 2020-09-21T07:12:32Z file_id: '8540' file_name: 2020_ECAI_Henzinger.pdf file_size: 1692214 relation: main_file success: 1 file_date_updated: 2020-09-21T07:12:32Z has_accepted_license: '1' intvolume: ' 325' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '02' oa: 1 oa_version: Published Version page: 2433-2440 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 24th European Conference on Artificial Intelligence publication_status: published publisher: IOS Press quality_controlled: '1' status: public title: 'Outside the box: Abstraction-based monitoring of neural networks' tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 325 year: '2020' ... --- _id: '7508' abstract: - lang: eng text: In this paper, we introduce a novel method for deriving higher order corrections to the mean-field description of the dynamics of interacting bosons. More precisely, we consider the dynamics of N d-dimensional bosons for large N. The bosons initially form a Bose–Einstein condensate and interact with each other via a pair potential of the form (N−1)−1Ndβv(Nβ·)forβ∈[0,14d). We derive a sequence of N-body functions which approximate the true many-body dynamics in L2(RdN)-norm to arbitrary precision in powers of N−1. The approximating functions are constructed as Duhamel expansions of finite order in terms of the first quantised analogue of a Bogoliubov time evolution. acknowledgement: "Open access funding provided by Institute of Science and Technology (IST Austria).\r\nL.B. gratefully acknowledges the support by the German Research Foundation (DFG) within the Research Training Group 1838 “Spectral Theory and Dynamics of Quantum Systems”, and wishes to thank Stefan Teufel, Sören Petrat and Marcello Porta for helpful discussions. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411. N.P. gratefully acknowledges support from NSF grant DMS-1516228 and DMS-1840314. P.P.’s research was funded by DFG Grant no. PI 1114/3-1. Part of this work was done when N.P. and P.P. were visiting CCNU, Wuhan. N.P. and P.P. thank A.S. for his hospitality at CCNU." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Lea full_name: Bossmann, Lea id: A2E3BCBE-5FCC-11E9-AA4B-76F3E5697425 last_name: Bossmann orcid: 0000-0002-6854-1343 - first_name: Nataša full_name: Pavlović, Nataša last_name: Pavlović - first_name: Peter full_name: Pickl, Peter last_name: Pickl - first_name: Avy full_name: Soffer, Avy last_name: Soffer citation: ama: Bossmann L, Pavlović N, Pickl P, Soffer A. Higher order corrections to the mean-field description of the dynamics of interacting bosons. Journal of Statistical Physics. 2020;178:1362-1396. doi:10.1007/s10955-020-02500-8 apa: Bossmann, L., Pavlović, N., Pickl, P., & Soffer, A. (2020). Higher order corrections to the mean-field description of the dynamics of interacting bosons. Journal of Statistical Physics. Springer Nature. https://doi.org/10.1007/s10955-020-02500-8 chicago: Bossmann, Lea, Nataša Pavlović, Peter Pickl, and Avy Soffer. “Higher Order Corrections to the Mean-Field Description of the Dynamics of Interacting Bosons.” Journal of Statistical Physics. Springer Nature, 2020. https://doi.org/10.1007/s10955-020-02500-8. ieee: L. Bossmann, N. Pavlović, P. Pickl, and A. Soffer, “Higher order corrections to the mean-field description of the dynamics of interacting bosons,” Journal of Statistical Physics, vol. 178. Springer Nature, pp. 1362–1396, 2020. ista: Bossmann L, Pavlović N, Pickl P, Soffer A. 2020. Higher order corrections to the mean-field description of the dynamics of interacting bosons. Journal of Statistical Physics. 178, 1362–1396. mla: Bossmann, Lea, et al. “Higher Order Corrections to the Mean-Field Description of the Dynamics of Interacting Bosons.” Journal of Statistical Physics, vol. 178, Springer Nature, 2020, pp. 1362–96, doi:10.1007/s10955-020-02500-8. short: L. Bossmann, N. Pavlović, P. Pickl, A. Soffer, Journal of Statistical Physics 178 (2020) 1362–1396. date_created: 2020-02-23T09:45:51Z date_published: 2020-02-21T00:00:00Z date_updated: 2023-08-18T06:37:46Z day: '21' ddc: - '510' department: - _id: RoSe doi: 10.1007/s10955-020-02500-8 ec_funded: 1 external_id: arxiv: - '1905.06164' isi: - '000516342200001' file: - access_level: open_access checksum: 643e230bf147e64d9cdb3f6cc573679d content_type: application/pdf creator: dernst date_created: 2020-11-20T09:26:46Z date_updated: 2020-11-20T09:26:46Z file_id: '8780' file_name: 2020_JournStatPhysics_Bossmann.pdf file_size: 576726 relation: main_file success: 1 file_date_updated: 2020-11-20T09:26:46Z has_accepted_license: '1' intvolume: ' 178' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 1362-1396 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Journal of Statistical Physics publication_identifier: eissn: - 1572-9613 issn: - 0022-4715 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Higher order corrections to the mean-field description of the dynamics of interacting bosons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 178 year: '2020' ... --- _id: '7511' abstract: - lang: eng text: Cryo electron tomography with subsequent subtomogram averaging is a powerful technique to structurally analyze macromolecular complexes in their native context. Although close to atomic resolution in principle can be obtained, it is not clear how individual experimental parameters contribute to the attainable resolution. Here, we have used immature HIV-1 lattice as a benchmarking sample to optimize the attainable resolution for subtomogram averaging. We systematically tested various experimental parameters such as the order of projections, different angular increments and the use of the Volta phase plate. We find that although any of the prominently used acquisition schemes is sufficient to obtain subnanometer resolution, dose-symmetric acquisition provides considerably better outcome. We discuss our findings in order to provide guidance for data acquisition. Our data is publicly available and might be used to further develop processing routines. article_number: '876' article_processing_charge: No article_type: original author: - first_name: Beata full_name: Turoňová, Beata last_name: Turoňová - first_name: Wim J.H. full_name: Hagen, Wim J.H. last_name: Hagen - first_name: Martin full_name: Obr, Martin id: 4741CA5A-F248-11E8-B48F-1D18A9856A87 last_name: Obr orcid: 0000-0003-1756-6564 - first_name: Shyamal full_name: Mosalaganti, Shyamal last_name: Mosalaganti - first_name: J. Wouter full_name: Beugelink, J. Wouter last_name: Beugelink - first_name: Christian E. full_name: Zimmerli, Christian E. last_name: Zimmerli - first_name: Hans Georg full_name: Kräusslich, Hans Georg last_name: Kräusslich - first_name: Martin full_name: Beck, Martin last_name: Beck citation: ama: Turoňová B, Hagen WJH, Obr M, et al. Benchmarking tomographic acquisition schemes for high-resolution structural biology. Nature Communications. 2020;11. doi:10.1038/s41467-020-14535-2 apa: Turoňová, B., Hagen, W. J. H., Obr, M., Mosalaganti, S., Beugelink, J. W., Zimmerli, C. E., … Beck, M. (2020). Benchmarking tomographic acquisition schemes for high-resolution structural biology. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-14535-2 chicago: Turoňová, Beata, Wim J.H. Hagen, Martin Obr, Shyamal Mosalaganti, J. Wouter Beugelink, Christian E. Zimmerli, Hans Georg Kräusslich, and Martin Beck. “Benchmarking Tomographic Acquisition Schemes for High-Resolution Structural Biology.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-14535-2. ieee: B. Turoňová et al., “Benchmarking tomographic acquisition schemes for high-resolution structural biology,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Turoňová B, Hagen WJH, Obr M, Mosalaganti S, Beugelink JW, Zimmerli CE, Kräusslich HG, Beck M. 2020. Benchmarking tomographic acquisition schemes for high-resolution structural biology. Nature Communications. 11, 876. mla: Turoňová, Beata, et al. “Benchmarking Tomographic Acquisition Schemes for High-Resolution Structural Biology.” Nature Communications, vol. 11, 876, Springer Nature, 2020, doi:10.1038/s41467-020-14535-2. short: B. Turoňová, W.J.H. Hagen, M. Obr, S. Mosalaganti, J.W. Beugelink, C.E. Zimmerli, H.G. Kräusslich, M. Beck, Nature Communications 11 (2020). date_created: 2020-02-23T23:00:35Z date_published: 2020-02-13T00:00:00Z date_updated: 2023-08-18T06:36:41Z day: '13' ddc: - '570' department: - _id: FlSc doi: 10.1038/s41467-020-14535-2 external_id: isi: - '000514928000017' file: - access_level: open_access checksum: 2c8d10475e1b0d397500760e28bdf561 content_type: application/pdf creator: dernst date_created: 2020-02-24T14:00:54Z date_updated: 2020-07-14T12:47:59Z file_id: '7517' file_name: 2020_NatureComm_Turonova.pdf file_size: 2027529 relation: main_file file_date_updated: 2020-07-14T12:47:59Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Benchmarking tomographic acquisition schemes for high-resolution structural biology tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '7497' abstract: - lang: eng text: Endophytic fungi can be beneficial to plant growth. However, the molecular mechanisms underlying colonization of Acremonium spp. remain unclear. In this study, a novel endophytic Acremonium strain was isolated from the buds of Panax notoginseng and named Acremonium sp. D212. The Acremonium sp. D212 could colonize the roots of P. notoginseng, enhance the resistance of P. notoginseng to root rot disease, and promote root growth and saponin biosynthesis in P. notoginseng. Acremonium sp. D212 could secrete indole‐3‐acetic acid (IAA) and jasmonic acid (JA), and inoculation with the fungus increased the endogenous levels of IAA and JA in P. notoginseng. Colonization of the Acremonium sp. D212 in the roots of the rice line Nipponbare was dependent on the concentration of methyl jasmonate (MeJA) (2 to 15 μM) and 1‐naphthalenacetic acid (NAA) (10 to 20 μM). Moreover, the roots of the JA signalling‐defective coi1‐18 mutant were colonized by Acremonium sp. D212 to a lesser degree than those of the wild‐type Nipponbare and miR393b‐overexpressing lines, and the colonization was rescued by MeJA but not by NAA. It suggests that the cross‐talk between JA signalling and the auxin biosynthetic pathway plays a crucial role in the colonization of Acremonium sp. D212 in host plants. acknowledgement: We thank Professor Jianqiang Wu (Kunming Institute of Botany, Chinese Academy of Sciences) for providing generous support with the IAA and JA measurements. We thank Professor Guohua Xu (Nanjing Agricultural University) for generously providing the Nipponbare rice expressing DR5::GUS. We thank Professor Muyuan Zhu (Zhejiang University) for generously providing a rice line expressing 35S::miR393b. We thank Professor Yinong Yang (Pennsylvania State University) for generously providing the rice line coi1-18. This work was supported by grants from the National Natural Science Foundation of China (31660501, 31460453, 31860064 and 31470382), the Major Special Program for Scientific Research, Education Department of Yunnan Province (ZD2015005), the Project sponsored by SRF for ROCS, SEM ([2013] 1792), the Major Science and Technique Programs in Yunnan Province (2016ZF001), the Key Projects of the Applied Basic Research Plan of Yunnan Province (2017FA018), the National Key R&D Program of China (2018YFD0201100) and the China Agriculture Research System (CARS-21). article_processing_charge: No article_type: original author: - first_name: L full_name: Han, L last_name: Han - first_name: X full_name: Zhou, X last_name: Zhou - first_name: Y full_name: Zhao, Y last_name: Zhao - first_name: S full_name: Zhu, S last_name: Zhu - first_name: L full_name: Wu, L last_name: Wu - first_name: Y full_name: He, Y last_name: He - first_name: X full_name: Ping, X last_name: Ping - first_name: X full_name: Lu, X last_name: Lu - first_name: W full_name: Huang, W last_name: Huang - first_name: J full_name: Qian, J last_name: Qian - first_name: L full_name: Zhang, L last_name: Zhang - first_name: X full_name: Jiang, X last_name: Jiang - first_name: D full_name: Zhu, D last_name: Zhu - first_name: C full_name: Luo, C last_name: Luo - first_name: S full_name: Li, S last_name: Li - first_name: Q full_name: Dong, Q last_name: Dong - first_name: Q full_name: Fu, Q last_name: Fu - first_name: K full_name: Deng, K last_name: Deng - first_name: X full_name: Wang, X last_name: Wang - first_name: L full_name: Wang, L last_name: Wang - first_name: S full_name: Peng, S last_name: Peng - first_name: J full_name: Wu, J last_name: Wu - first_name: W full_name: Li, W last_name: Li - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Y full_name: Zhu, Y last_name: Zhu - first_name: X full_name: He, X last_name: He - first_name: Y full_name: Du, Y last_name: Du citation: ama: Han L, Zhou X, Zhao Y, et al. Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid. Journal of Integrative Plant Biology. 2020;62(9):1433-1451. doi:10.1111/jipb.12905 apa: Han, L., Zhou, X., Zhao, Y., Zhu, S., Wu, L., He, Y., … Du, Y. (2020). Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid. Journal of Integrative Plant Biology. Wiley. https://doi.org/10.1111/jipb.12905 chicago: Han, L, X Zhou, Y Zhao, S Zhu, L Wu, Y He, X Ping, et al. “Colonization of Endophyte Acremonium Sp. D212 in Panax Notoginseng and Rice Mediated by Auxin and Jasmonic Acid.” Journal of Integrative Plant Biology. Wiley, 2020. https://doi.org/10.1111/jipb.12905. ieee: L. Han et al., “Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid,” Journal of Integrative Plant Biology, vol. 62, no. 9. Wiley, pp. 1433–1451, 2020. ista: Han L, Zhou X, Zhao Y, Zhu S, Wu L, He Y, Ping X, Lu X, Huang W, Qian J, Zhang L, Jiang X, Zhu D, Luo C, Li S, Dong Q, Fu Q, Deng K, Wang X, Wang L, Peng S, Wu J, Li W, Friml J, Zhu Y, He X, Du Y. 2020. Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid. Journal of Integrative Plant Biology. 62(9), 1433–1451. mla: Han, L., et al. “Colonization of Endophyte Acremonium Sp. D212 in Panax Notoginseng and Rice Mediated by Auxin and Jasmonic Acid.” Journal of Integrative Plant Biology, vol. 62, no. 9, Wiley, 2020, pp. 1433–51, doi:10.1111/jipb.12905. short: L. Han, X. Zhou, Y. Zhao, S. Zhu, L. Wu, Y. He, X. Ping, X. Lu, W. Huang, J. Qian, L. Zhang, X. Jiang, D. Zhu, C. Luo, S. Li, Q. Dong, Q. Fu, K. Deng, X. Wang, L. Wang, S. Peng, J. Wu, W. Li, J. Friml, Y. Zhu, X. He, Y. Du, Journal of Integrative Plant Biology 62 (2020) 1433–1451. date_created: 2020-02-18T10:02:25Z date_published: 2020-09-01T00:00:00Z date_updated: 2023-08-18T06:44:16Z day: '01' department: - _id: JiFr doi: 10.1111/jipb.12905 external_id: isi: - '000515803000001' pmid: - '31912615' intvolume: ' 62' isi: 1 issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/jipb.12905 month: '09' oa: 1 oa_version: Published Version page: 1433-1451 pmid: 1 publication: Journal of Integrative Plant Biology publication_identifier: eissn: - 1744-7909 issn: - 1672-9072 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 62 year: '2020' ... --- _id: '7534' abstract: - lang: eng text: 'In the past two decades, our understanding of the transition to turbulence in shear flows with linearly stable laminar solutions has greatly improved. Regarding the susceptibility of the laminar flow, two concepts have been particularly useful: the edge states and the minimal seeds. In this nonlinear picture of the transition, the basin boundary of turbulence is set by the edge state''s stable manifold and this manifold comes closest in energy to the laminar equilibrium at the minimal seed. We begin this paper by presenting numerical experiments in which three-dimensional perturbations are too energetic to trigger turbulence in pipe flow but they do lead to turbulence when their amplitude is reduced. We show that this seemingly counterintuitive observation is in fact consistent with the fully nonlinear description of the transition mediated by the edge state. In order to understand the physical mechanisms behind this process, we measure the turbulent kinetic energy production and dissipation rates as a function of the radial coordinate. Our main observation is that the transition to turbulence relies on the energy amplification away from the wall, as opposed to the turbulence itself, whose energy is predominantly produced near the wall. This observation is further supported by the similar analyses on the minimal seeds and the edge states. Furthermore, we show that the time evolution of production-over-dissipation curves provides a clear distinction between the different initial amplification stages of the transition to turbulence from the minimal seed.' article_number: '023903' article_processing_charge: No article_type: original author: - first_name: Nazmi B full_name: Budanur, Nazmi B id: 3EA1010E-F248-11E8-B48F-1D18A9856A87 last_name: Budanur orcid: 0000-0003-0423-5010 - first_name: Elena full_name: Marensi, Elena last_name: Marensi - first_name: Ashley P. full_name: Willis, Ashley P. last_name: Willis - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Budanur NB, Marensi E, Willis AP, Hof B. Upper edge of chaos and the energetics of transition in pipe flow. Physical Review Fluids. 2020;5(2). doi:10.1103/physrevfluids.5.023903 apa: Budanur, N. B., Marensi, E., Willis, A. P., & Hof, B. (2020). Upper edge of chaos and the energetics of transition in pipe flow. Physical Review Fluids. American Physical Society. https://doi.org/10.1103/physrevfluids.5.023903 chicago: Budanur, Nazmi B, Elena Marensi, Ashley P. Willis, and Björn Hof. “Upper Edge of Chaos and the Energetics of Transition in Pipe Flow.” Physical Review Fluids. American Physical Society, 2020. https://doi.org/10.1103/physrevfluids.5.023903. ieee: N. B. Budanur, E. Marensi, A. P. Willis, and B. Hof, “Upper edge of chaos and the energetics of transition in pipe flow,” Physical Review Fluids, vol. 5, no. 2. American Physical Society, 2020. ista: Budanur NB, Marensi E, Willis AP, Hof B. 2020. Upper edge of chaos and the energetics of transition in pipe flow. Physical Review Fluids. 5(2), 023903. mla: Budanur, Nazmi B., et al. “Upper Edge of Chaos and the Energetics of Transition in Pipe Flow.” Physical Review Fluids, vol. 5, no. 2, 023903, American Physical Society, 2020, doi:10.1103/physrevfluids.5.023903. short: N.B. Budanur, E. Marensi, A.P. Willis, B. Hof, Physical Review Fluids 5 (2020). date_created: 2020-02-27T10:26:57Z date_published: 2020-02-21T00:00:00Z date_updated: 2023-08-18T06:44:46Z day: '21' department: - _id: BjHo doi: 10.1103/physrevfluids.5.023903 external_id: arxiv: - '1912.09270' isi: - '000515065100001' intvolume: ' 5' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.09270 month: '02' oa: 1 oa_version: Preprint publication: Physical Review Fluids publication_identifier: issn: - 2469-990X publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Upper edge of chaos and the energetics of transition in pipe flow type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2020' ... --- _id: '7512' abstract: - lang: eng text: We consider general self-adjoint polynomials in several independent random matrices whose entries are centered and have the same variance. We show that under certain conditions the local law holds up to the optimal scale, i.e., the eigenvalue density on scales just above the eigenvalue spacing follows the global density of states which is determined by free probability theory. We prove that these conditions hold for general homogeneous polynomials of degree two and for symmetrized products of independent matrices with i.i.d. entries, thus establishing the optimal bulk local law for these classes of ensembles. In particular, we generalize a similar result of Anderson for anticommutator. For more general polynomials our conditions are effectively checkable numerically. acknowledgement: "The authors are grateful to Oskari Ajanki for his invaluable help at the initial stage of this project, to Serban Belinschi for useful discussions, to Alexander Tikhomirov for calling our attention to the model example in Section 6.2 and to the anonymous referee for suggesting to simplify certain proofs. Erdös: Partially funded by ERC Advanced Grant RANMAT No. 338804\r\n" article_number: '108507' article_processing_charge: No article_type: original author: - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Torben H full_name: Krüger, Torben H id: 3020C786-F248-11E8-B48F-1D18A9856A87 last_name: Krüger orcid: 0000-0002-4821-3297 - first_name: Yuriy full_name: Nemish, Yuriy id: 4D902E6A-F248-11E8-B48F-1D18A9856A87 last_name: Nemish orcid: 0000-0002-7327-856X citation: ama: Erdös L, Krüger TH, Nemish Y. Local laws for polynomials of Wigner matrices. Journal of Functional Analysis. 2020;278(12). doi:10.1016/j.jfa.2020.108507 apa: Erdös, L., Krüger, T. H., & Nemish, Y. (2020). Local laws for polynomials of Wigner matrices. Journal of Functional Analysis. Elsevier. https://doi.org/10.1016/j.jfa.2020.108507 chicago: Erdös, László, Torben H Krüger, and Yuriy Nemish. “Local Laws for Polynomials of Wigner Matrices.” Journal of Functional Analysis. Elsevier, 2020. https://doi.org/10.1016/j.jfa.2020.108507. ieee: L. Erdös, T. H. Krüger, and Y. Nemish, “Local laws for polynomials of Wigner matrices,” Journal of Functional Analysis, vol. 278, no. 12. Elsevier, 2020. ista: Erdös L, Krüger TH, Nemish Y. 2020. Local laws for polynomials of Wigner matrices. Journal of Functional Analysis. 278(12), 108507. mla: Erdös, László, et al. “Local Laws for Polynomials of Wigner Matrices.” Journal of Functional Analysis, vol. 278, no. 12, 108507, Elsevier, 2020, doi:10.1016/j.jfa.2020.108507. short: L. Erdös, T.H. Krüger, Y. Nemish, Journal of Functional Analysis 278 (2020). date_created: 2020-02-23T23:00:36Z date_published: 2020-07-01T00:00:00Z date_updated: 2023-08-18T06:36:10Z day: '01' department: - _id: LaEr doi: 10.1016/j.jfa.2020.108507 ec_funded: 1 external_id: arxiv: - '1804.11340' isi: - '000522798900001' intvolume: ' 278' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1804.11340 month: '07' oa: 1 oa_version: Preprint project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication: Journal of Functional Analysis publication_identifier: eissn: - '10960783' issn: - '00221236' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Local laws for polynomials of Wigner matrices type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 278 year: '2020' ... --- _id: '7509' abstract: - lang: eng text: "In this paper we study the joint convexity/concavity of the trace functions Ψp,q,s(A,B)=Tr(Bq2K∗ApKBq2)s, p,q,s∈R,\r\nwhere A and B are positive definite matrices and K is any fixed invertible matrix. We will give full range of (p,q,s)∈R3 for Ψp,q,s to be jointly convex/concave for all K. As a consequence, we confirm a conjecture of Carlen, Frank and Lieb. In particular, we confirm a weaker conjecture of Audenaert and Datta and obtain the full range of (α,z) for α-z Rényi relative entropies to be monotone under completely positive trace preserving maps. We also give simpler proofs of many known results, including the concavity of Ψp,0,1/p for 0Advances in Mathematics. 2020;365. doi:10.1016/j.aim.2020.107053 apa: Zhang, H. (2020). From Wigner-Yanase-Dyson conjecture to Carlen-Frank-Lieb conjecture. Advances in Mathematics. Elsevier. https://doi.org/10.1016/j.aim.2020.107053 chicago: Zhang, Haonan. “From Wigner-Yanase-Dyson Conjecture to Carlen-Frank-Lieb Conjecture.” Advances in Mathematics. Elsevier, 2020. https://doi.org/10.1016/j.aim.2020.107053. ieee: H. Zhang, “From Wigner-Yanase-Dyson conjecture to Carlen-Frank-Lieb conjecture,” Advances in Mathematics, vol. 365. Elsevier, 2020. ista: Zhang H. 2020. From Wigner-Yanase-Dyson conjecture to Carlen-Frank-Lieb conjecture. Advances in Mathematics. 365, 107053. mla: Zhang, Haonan. “From Wigner-Yanase-Dyson Conjecture to Carlen-Frank-Lieb Conjecture.” Advances in Mathematics, vol. 365, 107053, Elsevier, 2020, doi:10.1016/j.aim.2020.107053. short: H. Zhang, Advances in Mathematics 365 (2020). date_created: 2020-02-23T21:43:50Z date_published: 2020-05-13T00:00:00Z date_updated: 2023-08-18T06:37:09Z day: '13' ddc: - '515' department: - _id: JaMa doi: 10.1016/j.aim.2020.107053 ec_funded: 1 external_id: arxiv: - '1811.01205' isi: - '000522798000001' intvolume: ' 365' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1811.01205 month: '05' oa: 1 oa_version: Preprint project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Advances in Mathematics publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: From Wigner-Yanase-Dyson conjecture to Carlen-Frank-Lieb conjecture type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 365 year: '2020' ... --- _id: '7546' abstract: - lang: eng text: The extent to which behavior is shaped by experience varies between individuals. Genetic differences contribute to this variation, but the neural mechanisms are not understood. Here, we dissect natural variation in the behavioral flexibility of two Caenorhabditis elegans wild strains. In one strain, a memory of exposure to 21% O2 suppresses CO2-evoked locomotory arousal; in the other, CO2 evokes arousal regardless of previous O2 experience. We map that variation to a polymorphic dendritic scaffold protein, ARCP-1, expressed in sensory neurons. ARCP-1 binds the Ca2+-dependent phosphodiesterase PDE-1 and co-localizes PDE-1 with molecular sensors for CO2 at dendritic ends. Reducing ARCP-1 or PDE-1 activity promotes CO2 escape by altering neuropeptide expression in the BAG CO2 sensors. Variation in ARCP-1 alters behavioral plasticity in multiple paradigms. Our findings are reminiscent of genetic accommodation, an evolutionary process by which phenotypic flexibility in response to environmental variation is reset by genetic change. article_processing_charge: No article_type: original author: - first_name: Isabel full_name: Beets, Isabel last_name: Beets - first_name: Gaotian full_name: Zhang, Gaotian last_name: Zhang - first_name: Lorenz A. full_name: Fenk, Lorenz A. last_name: Fenk - first_name: Changchun full_name: Chen, Changchun last_name: Chen - first_name: Geoffrey M. full_name: Nelson, Geoffrey M. last_name: Nelson - first_name: Marie-Anne full_name: Félix, Marie-Anne last_name: Félix - first_name: Mario full_name: de Bono, Mario id: 4E3FF80E-F248-11E8-B48F-1D18A9856A87 last_name: de Bono orcid: 0000-0001-8347-0443 citation: ama: Beets I, Zhang G, Fenk LA, et al. Natural variation in a dendritic scaffold protein remodels experience-dependent plasticity by altering neuropeptide expression. Neuron. 2020;105(1):106-121.e10. doi:10.1016/j.neuron.2019.10.001 apa: Beets, I., Zhang, G., Fenk, L. A., Chen, C., Nelson, G. M., Félix, M.-A., & de Bono, M. (2020). Natural variation in a dendritic scaffold protein remodels experience-dependent plasticity by altering neuropeptide expression. Neuron. Cell Press. https://doi.org/10.1016/j.neuron.2019.10.001 chicago: Beets, Isabel, Gaotian Zhang, Lorenz A. Fenk, Changchun Chen, Geoffrey M. Nelson, Marie-Anne Félix, and Mario de Bono. “Natural Variation in a Dendritic Scaffold Protein Remodels Experience-Dependent Plasticity by Altering Neuropeptide Expression.” Neuron. Cell Press, 2020. https://doi.org/10.1016/j.neuron.2019.10.001. ieee: I. Beets et al., “Natural variation in a dendritic scaffold protein remodels experience-dependent plasticity by altering neuropeptide expression,” Neuron, vol. 105, no. 1. Cell Press, p. 106–121.e10, 2020. ista: Beets I, Zhang G, Fenk LA, Chen C, Nelson GM, Félix M-A, de Bono M. 2020. Natural variation in a dendritic scaffold protein remodels experience-dependent plasticity by altering neuropeptide expression. Neuron. 105(1), 106–121.e10. mla: Beets, Isabel, et al. “Natural Variation in a Dendritic Scaffold Protein Remodels Experience-Dependent Plasticity by Altering Neuropeptide Expression.” Neuron, vol. 105, no. 1, Cell Press, 2020, p. 106–121.e10, doi:10.1016/j.neuron.2019.10.001. short: I. Beets, G. Zhang, L.A. Fenk, C. Chen, G.M. Nelson, M.-A. Félix, M. de Bono, Neuron 105 (2020) 106–121.e10. date_created: 2020-02-28T10:43:39Z date_published: 2020-01-08T00:00:00Z date_updated: 2023-08-18T06:46:23Z day: '08' ddc: - '570' department: - _id: MaDe doi: 10.1016/j.neuron.2019.10.001 external_id: isi: - '000507341300012' pmid: - '31757604' file: - access_level: open_access checksum: 799bfd297a008753a688b30d3958fa48 content_type: application/pdf creator: dernst date_created: 2020-03-02T15:43:57Z date_updated: 2020-07-14T12:48:00Z file_id: '7558' file_name: 2020_Neuron_Beets.pdf file_size: 3294066 relation: main_file file_date_updated: 2020-07-14T12:48:00Z has_accepted_license: '1' intvolume: ' 105' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 106-121.e10 pmid: 1 publication: Neuron publication_identifier: issn: - 0896-6273 publication_status: published publisher: Cell Press quality_controlled: '1' status: public title: Natural variation in a dendritic scaffold protein remodels experience-dependent plasticity by altering neuropeptide expression tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 105 year: '2020' ... --- _id: '7563' abstract: - lang: eng text: "We introduce “state space persistence analysis” for deducing the symbolic dynamics of time series data obtained from high-dimensional chaotic attractors. To this end, we adapt a topological data analysis technique known as persistent homology for the characterization of state space projections of chaotic trajectories and periodic orbits. By comparing the shapes along a chaotic trajectory to those of the periodic orbits, state space persistence analysis quantifies the shape similarity of chaotic trajectory segments and periodic orbits. We demonstrate the method by applying it to the three-dimensional Rössler system and a 30-dimensional discretization of the Kuramoto–Sivashinsky partial differential equation in (1+1) dimensions.\r\nOne way of studying chaotic attractors systematically is through their symbolic dynamics, in which one partitions the state space into qualitatively different regions and assigns a symbol to each such region.1–3 This yields a “coarse-grained” state space of the system, which can then be reduced to a Markov chain encoding all possible transitions between the states of the system. While it is possible to obtain the symbolic dynamics of low-dimensional chaotic systems with standard tools such as Poincaré maps, when applied to high-dimensional systems such as turbulent flows, these tools alone are not sufficient to determine symbolic dynamics.4,5 In this paper, we develop “state space persistence analysis” and demonstrate that it can be utilized to infer the symbolic dynamics in very high-dimensional settings." article_number: '033109' article_processing_charge: No article_type: original author: - first_name: Gökhan full_name: Yalniz, Gökhan id: 66E74FA2-D8BF-11E9-8249-8DE2E5697425 last_name: Yalniz orcid: 0000-0002-8490-9312 - first_name: Nazmi B full_name: Budanur, Nazmi B id: 3EA1010E-F248-11E8-B48F-1D18A9856A87 last_name: Budanur orcid: 0000-0003-0423-5010 citation: ama: Yalniz G, Budanur NB. Inferring symbolic dynamics of chaotic flows from persistence. Chaos. 2020;30(3). doi:10.1063/1.5122969 apa: Yalniz, G., & Budanur, N. B. (2020). Inferring symbolic dynamics of chaotic flows from persistence. Chaos. AIP Publishing. https://doi.org/10.1063/1.5122969 chicago: Yalniz, Gökhan, and Nazmi B Budanur. “Inferring Symbolic Dynamics of Chaotic Flows from Persistence.” Chaos. AIP Publishing, 2020. https://doi.org/10.1063/1.5122969. ieee: G. Yalniz and N. B. Budanur, “Inferring symbolic dynamics of chaotic flows from persistence,” Chaos, vol. 30, no. 3. AIP Publishing, 2020. ista: Yalniz G, Budanur NB. 2020. Inferring symbolic dynamics of chaotic flows from persistence. Chaos. 30(3), 033109. mla: Yalniz, Gökhan, and Nazmi B. Budanur. “Inferring Symbolic Dynamics of Chaotic Flows from Persistence.” Chaos, vol. 30, no. 3, 033109, AIP Publishing, 2020, doi:10.1063/1.5122969. short: G. Yalniz, N.B. Budanur, Chaos 30 (2020). date_created: 2020-03-04T08:06:25Z date_published: 2020-03-03T00:00:00Z date_updated: 2023-08-18T06:47:16Z day: '03' department: - _id: BjHo doi: 10.1063/1.5122969 external_id: arxiv: - '1910.04584' isi: - '000519254800002' intvolume: ' 30' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1063/1.5122969 month: '03' oa: 1 oa_version: Published Version publication: Chaos publication_identifier: eissn: - 1089-7682 issn: - 1054-1500 publication_status: published publisher: AIP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Inferring symbolic dynamics of chaotic flows from persistence type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 30 year: '2020' ... --- _id: '7554' abstract: - lang: eng text: Slicing a Voronoi tessellation in ${R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as a power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the $k$-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in ${R}^n$, we study the expected number of simplices in the $k$-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a by-product, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in ${R}^n$. article_processing_charge: No article_type: original author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko orcid: 0000-0002-0659-3201 citation: ama: Edelsbrunner H, Nikitenko A. Weighted Poisson–Delaunay mosaics. Theory of Probability and its Applications. 2020;64(4):595-614. doi:10.1137/S0040585X97T989726 apa: Edelsbrunner, H., & Nikitenko, A. (2020). Weighted Poisson–Delaunay mosaics. Theory of Probability and Its Applications. SIAM. https://doi.org/10.1137/S0040585X97T989726 chicago: Edelsbrunner, Herbert, and Anton Nikitenko. “Weighted Poisson–Delaunay Mosaics.” Theory of Probability and Its Applications. SIAM, 2020. https://doi.org/10.1137/S0040585X97T989726. ieee: H. Edelsbrunner and A. Nikitenko, “Weighted Poisson–Delaunay mosaics,” Theory of Probability and its Applications, vol. 64, no. 4. SIAM, pp. 595–614, 2020. ista: Edelsbrunner H, Nikitenko A. 2020. Weighted Poisson–Delaunay mosaics. Theory of Probability and its Applications. 64(4), 595–614. mla: Edelsbrunner, Herbert, and Anton Nikitenko. “Weighted Poisson–Delaunay Mosaics.” Theory of Probability and Its Applications, vol. 64, no. 4, SIAM, 2020, pp. 595–614, doi:10.1137/S0040585X97T989726. short: H. Edelsbrunner, A. Nikitenko, Theory of Probability and Its Applications 64 (2020) 595–614. date_created: 2020-03-01T23:00:39Z date_published: 2020-02-13T00:00:00Z date_updated: 2023-08-18T06:45:48Z day: '13' department: - _id: HeEd doi: 10.1137/S0040585X97T989726 ec_funded: 1 external_id: arxiv: - '1705.08735' isi: - '000551393100007' intvolume: ' 64' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.08735 month: '02' oa: 1 oa_version: Preprint page: 595-614 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Theory of Probability and its Applications publication_identifier: eissn: - '10957219' issn: - 0040585X publication_status: published publisher: SIAM quality_controlled: '1' scopus_import: '1' status: public title: Weighted Poisson–Delaunay mosaics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 64 year: '2020' ... --- _id: '7540' abstract: - lang: eng text: ' In vitro propagation of the ornamentally interesting species Wikstroemia gemmata is limited by the recalcitrance to form adventitious roots. In this article, two strategies to improve the rooting capacity of in vitro microcuttings are presented. Firstly, the effect of exogenous auxin was evaluated in both light and dark cultivated stem segments and also the sucrose-content of the medium was varied in order to determine better rooting conditions. Secondly, different spectral lights were evaluated and the effect on shoot growth and root induction demonstrated that the exact spectral composition of light is important for successful in vitro growth and development of Wikstroemia gemmata. We show that exogenous auxin cannot compensate for the poor rooting under unfavorable light conditions. Adapting the culture conditions is therefore paramount for successful industrial propagation of Wikstroemia gemmata. ' article_processing_charge: No article_type: original author: - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: H. full_name: Buyle, H. last_name: Buyle - first_name: S. full_name: Werbrouck, S. last_name: Werbrouck - first_name: M.C. full_name: Van Labeke, M.C. last_name: Van Labeke - first_name: D. full_name: Geelen, D. last_name: Geelen citation: ama: Verstraeten I, Buyle H, Werbrouck S, Van Labeke MC, Geelen D. In vitro shoot growth and adventitious rooting of Wikstroemia gemmata depends on light quality. Israel Journal of Plant Sciences. 2020;67(1-2):16-26. doi:10.1163/22238980-20191110 apa: Verstraeten, I., Buyle, H., Werbrouck, S., Van Labeke, M. C., & Geelen, D. (2020). In vitro shoot growth and adventitious rooting of Wikstroemia gemmata depends on light quality. Israel Journal of Plant Sciences. Brill. https://doi.org/10.1163/22238980-20191110 chicago: Verstraeten, Inge, H. Buyle, S. Werbrouck, M.C. Van Labeke, and D. Geelen. “In Vitro Shoot Growth and Adventitious Rooting of Wikstroemia Gemmata Depends on Light Quality.” Israel Journal of Plant Sciences. Brill, 2020. https://doi.org/10.1163/22238980-20191110. ieee: I. Verstraeten, H. Buyle, S. Werbrouck, M. C. Van Labeke, and D. Geelen, “In vitro shoot growth and adventitious rooting of Wikstroemia gemmata depends on light quality,” Israel Journal of Plant Sciences, vol. 67, no. 1–2. Brill, pp. 16–26, 2020. ista: Verstraeten I, Buyle H, Werbrouck S, Van Labeke MC, Geelen D. 2020. In vitro shoot growth and adventitious rooting of Wikstroemia gemmata depends on light quality. Israel Journal of Plant Sciences. 67(1–2), 16–26. mla: Verstraeten, Inge, et al. “In Vitro Shoot Growth and Adventitious Rooting of Wikstroemia Gemmata Depends on Light Quality.” Israel Journal of Plant Sciences, vol. 67, no. 1–2, Brill, 2020, pp. 16–26, doi:10.1163/22238980-20191110. short: I. Verstraeten, H. Buyle, S. Werbrouck, M.C. Van Labeke, D. Geelen, Israel Journal of Plant Sciences 67 (2020) 16–26. date_created: 2020-02-28T09:18:01Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-18T06:45:15Z day: '01' department: - _id: JiFr doi: 10.1163/22238980-20191110 external_id: isi: - '000525343300004' intvolume: ' 67' isi: 1 issue: 1-2 language: - iso: eng month: '02' oa_version: None page: 16-26 publication: Israel Journal of Plant Sciences publication_identifier: eissn: - 2223-8980 issn: - 0792-9978 publication_status: published publisher: Brill quality_controlled: '1' scopus_import: '1' status: public title: In vitro shoot growth and adventitious rooting of Wikstroemia gemmata depends on light quality type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 67 year: '2020' ... --- _id: '9779' article_processing_charge: No author: - first_name: Rok full_name: Grah, Rok id: 483E70DE-F248-11E8-B48F-1D18A9856A87 last_name: Grah orcid: 0000-0003-2539-3560 - first_name: Tamar full_name: Friedlander, Tamar last_name: Friedlander citation: ama: Grah R, Friedlander T. Distribution of crosstalk values. 2020. doi:10.1371/journal.pcbi.1007642.s003 apa: Grah, R., & Friedlander, T. (2020). Distribution of crosstalk values. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1007642.s003 chicago: Grah, Rok, and Tamar Friedlander. “Distribution of Crosstalk Values.” Public Library of Science, 2020. https://doi.org/10.1371/journal.pcbi.1007642.s003. ieee: R. Grah and T. Friedlander, “Distribution of crosstalk values.” Public Library of Science, 2020. ista: Grah R, Friedlander T. 2020. Distribution of crosstalk values, Public Library of Science, 10.1371/journal.pcbi.1007642.s003. mla: Grah, Rok, and Tamar Friedlander. Distribution of Crosstalk Values. Public Library of Science, 2020, doi:10.1371/journal.pcbi.1007642.s003. short: R. Grah, T. Friedlander, (2020). date_created: 2021-08-06T07:24:37Z date_published: 2020-02-25T00:00:00Z date_updated: 2023-08-18T06:47:47Z day: '25' department: - _id: GaTk doi: 10.1371/journal.pcbi.1007642.s003 month: '02' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '7569' relation: research_data status: public status: public title: Distribution of crosstalk values type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '9776' article_processing_charge: No author: - first_name: Rok full_name: Grah, Rok id: 483E70DE-F248-11E8-B48F-1D18A9856A87 last_name: Grah orcid: 0000-0003-2539-3560 - first_name: Tamar full_name: Friedlander, Tamar last_name: Friedlander citation: ama: Grah R, Friedlander T. Supporting information. 2020. doi:10.1371/journal.pcbi.1007642.s001 apa: Grah, R., & Friedlander, T. (2020). Supporting information. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1007642.s001 chicago: Grah, Rok, and Tamar Friedlander. “Supporting Information.” Public Library of Science, 2020. https://doi.org/10.1371/journal.pcbi.1007642.s001. ieee: R. Grah and T. Friedlander, “Supporting information.” Public Library of Science, 2020. ista: Grah R, Friedlander T. 2020. Supporting information, Public Library of Science, 10.1371/journal.pcbi.1007642.s001. mla: Grah, Rok, and Tamar Friedlander. Supporting Information. Public Library of Science, 2020, doi:10.1371/journal.pcbi.1007642.s001. short: R. Grah, T. Friedlander, (2020). date_created: 2021-08-06T07:15:04Z date_published: 2020-02-25T00:00:00Z date_updated: 2023-08-18T06:47:47Z day: '25' department: - _id: GaTk doi: 10.1371/journal.pcbi.1007642.s001 month: '02' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '7569' relation: used_in_publication status: public status: public title: Supporting information type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '7570' abstract: - lang: eng text: The relaxation of few-body quantum systems can strongly depend on the initial state when the system’s semiclassical phase space is mixed; i.e., regions of chaotic motion coexist with regular islands. In recent years, there has been much effort to understand the process of thermalization in strongly interacting quantum systems that often lack an obvious semiclassical limit. The time-dependent variational principle (TDVP) allows one to systematically derive an effective classical (nonlinear) dynamical system by projecting unitary many-body dynamics onto a manifold of weakly entangled variational states. We demonstrate that such dynamical systems generally possess mixed phase space. When TDVP errors are small, the mixed phase space leaves a footprint on the exact dynamics of the quantum model. For example, when the system is initialized in a state belonging to a stable periodic orbit or the surrounding regular region, it exhibits persistent many-body quantum revivals. As a proof of principle, we identify new types of “quantum many-body scars,” i.e., initial states that lead to long-time oscillations in a model of interacting Rydberg atoms in one and two dimensions. Intriguingly, the initial states that give rise to most robust revivals are typically entangled states. On the other hand, even when TDVP errors are large, as in the thermalizing tilted-field Ising model, initializing the system in a regular region of phase space leads to a surprising slowdown of thermalization. Our work establishes TDVP as a method for identifying interacting quantum systems with anomalous dynamics in arbitrary dimensions. Moreover, the mixed phase space classical variational equations allow one to find slowly thermalizing initial conditions in interacting models. Our results shed light on a link between classical and quantum chaos, pointing toward possible extensions of the classical Kolmogorov-Arnold-Moser theorem to quantum systems. article_number: '011055' article_processing_charge: No article_type: original author: - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: C. J. full_name: Turner, C. J. last_name: Turner - first_name: Z. full_name: Papić, Z. last_name: Papić - first_name: D. A. full_name: Abanin, D. A. last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. Slow quantum thermalization and many-body revivals from mixed phase space. Physical Review X. 2020;10(1). doi:10.1103/physrevx.10.011055 apa: Michailidis, A., Turner, C. J., Papić, Z., Abanin, D. A., & Serbyn, M. (2020). Slow quantum thermalization and many-body revivals from mixed phase space. Physical Review X. American Physical Society. https://doi.org/10.1103/physrevx.10.011055 chicago: Michailidis, Alexios, C. J. Turner, Z. Papić, D. A. Abanin, and Maksym Serbyn. “Slow Quantum Thermalization and Many-Body Revivals from Mixed Phase Space.” Physical Review X. American Physical Society, 2020. https://doi.org/10.1103/physrevx.10.011055. ieee: A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and M. Serbyn, “Slow quantum thermalization and many-body revivals from mixed phase space,” Physical Review X, vol. 10, no. 1. American Physical Society, 2020. ista: Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. 2020. Slow quantum thermalization and many-body revivals from mixed phase space. Physical Review X. 10(1), 011055. mla: Michailidis, Alexios, et al. “Slow Quantum Thermalization and Many-Body Revivals from Mixed Phase Space.” Physical Review X, vol. 10, no. 1, 011055, American Physical Society, 2020, doi:10.1103/physrevx.10.011055. short: A. Michailidis, C.J. Turner, Z. Papić, D.A. Abanin, M. Serbyn, Physical Review X 10 (2020). date_created: 2020-03-08T18:02:01Z date_published: 2020-03-04T00:00:00Z date_updated: 2023-08-18T07:01:07Z day: '04' ddc: - '530' department: - _id: MaSe doi: 10.1103/physrevx.10.011055 external_id: arxiv: - '1905.08564' isi: - '000517969300001' file: - access_level: open_access checksum: 4b3f2c13873d35230173c73d0e11c408 content_type: application/pdf creator: dernst date_created: 2020-03-12T12:13:07Z date_updated: 2020-07-14T12:48:00Z file_id: '7581' file_name: 2020_PhysicalReviewX_Michailidis.pdf file_size: 17828638 relation: main_file file_date_updated: 2020-07-14T12:48:00Z has_accepted_license: '1' intvolume: ' 10' isi: 1 issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: Physical Review X publication_identifier: issn: - 2160-3308 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/classical-physics-helps-predict-fate-of-interacting-quantum-systems/ scopus_import: '1' status: public title: Slow quantum thermalization and many-body revivals from mixed phase space tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2020' ... --- _id: '7582' abstract: - lang: eng text: Small RNAs (smRNA, 19–25 nucleotides long), which are transcribed by RNA polymerase II, regulate the expression of genes involved in a multitude of processes in eukaryotes. miRNA biogenesis and the proteins involved in the biogenesis pathway differ across plant and animal lineages. The major proteins constituting the biogenesis pathway, namely, the Dicers (DCL/DCR) and Argonautes (AGOs), have been extensively studied. However, the accessory proteins (DAWDLE (DDL), SERRATE (SE), and TOUGH (TGH)) of the pathway that differs across the two lineages remain largely uncharacterized. We present the first detailed report on the molecular evolution and divergence of these proteins across eukaryotes. Although DDL is present in eukaryotes and prokaryotes, SE and TGH appear to be specific to eukaryotes. The addition/deletion of specific domains and/or domain-specific sequence divergence in the three proteins points to the observed functional divergence of these proteins across the two lineages, which correlates with the differences in miRNA length across the two lineages. Our data enhance the current understanding of the structure–function relationship of these proteins and reveals previous unexplored crucial residues in the three proteins that can be used as a basis for further functional characterization. The data presented here on the number of miRNAs in crown eukaryotic lineages are consistent with the notion of the expansion of the number of miRNA-coding genes in animal and plant lineages correlating with organismal complexity. Whether this difference in functionally correlates with the diversification (or presence/absence) of the three proteins studied here or the miRNA signaling in the plant and animal lineages is unclear. Based on our results of the three proteins studied here and previously available data concerning the evolution of miRNA genes in the plant and animal lineages, we believe that miRNAs probably evolved once in the ancestor to crown eukaryotes and have diversified independently in the eukaryotes. article_number: '299' article_processing_charge: No article_type: original author: - first_name: Taraka Ramji full_name: Moturu, Taraka Ramji last_name: Moturu - first_name: Sansrity full_name: Sinha, Sansrity last_name: Sinha - first_name: Hymavathi full_name: Salava, Hymavathi last_name: Salava - first_name: Sravankumar full_name: Thula, Sravankumar last_name: Thula - first_name: Tomasz full_name: Nodzyński, Tomasz last_name: Nodzyński - first_name: Radka Svobodová full_name: Vařeková, Radka Svobodová last_name: Vařeková - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Sibu full_name: Simon, Sibu id: 4542EF9A-F248-11E8-B48F-1D18A9856A87 last_name: Simon orcid: 0000-0002-1998-6741 citation: ama: Moturu TR, Sinha S, Salava H, et al. Molecular evolution and diversification of proteins involved in miRNA maturation pathway. Plants. 2020;9(3). doi:10.3390/plants9030299 apa: Moturu, T. R., Sinha, S., Salava, H., Thula, S., Nodzyński, T., Vařeková, R. S., … Simon, S. (2020). Molecular evolution and diversification of proteins involved in miRNA maturation pathway. Plants. MDPI. https://doi.org/10.3390/plants9030299 chicago: Moturu, Taraka Ramji, Sansrity Sinha, Hymavathi Salava, Sravankumar Thula, Tomasz Nodzyński, Radka Svobodová Vařeková, Jiří Friml, and Sibu Simon. “Molecular Evolution and Diversification of Proteins Involved in MiRNA Maturation Pathway.” Plants. MDPI, 2020. https://doi.org/10.3390/plants9030299. ieee: T. R. Moturu et al., “Molecular evolution and diversification of proteins involved in miRNA maturation pathway,” Plants, vol. 9, no. 3. MDPI, 2020. ista: Moturu TR, Sinha S, Salava H, Thula S, Nodzyński T, Vařeková RS, Friml J, Simon S. 2020. Molecular evolution and diversification of proteins involved in miRNA maturation pathway. Plants. 9(3), 299. mla: Moturu, Taraka Ramji, et al. “Molecular Evolution and Diversification of Proteins Involved in MiRNA Maturation Pathway.” Plants, vol. 9, no. 3, 299, MDPI, 2020, doi:10.3390/plants9030299. short: T.R. Moturu, S. Sinha, H. Salava, S. Thula, T. Nodzyński, R.S. Vařeková, J. Friml, S. Simon, Plants 9 (2020). date_created: 2020-03-15T23:00:52Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-08-18T07:07:08Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.3390/plants9030299 ec_funded: 1 external_id: isi: - '000525315000035' pmid: - '32121542' file: - access_level: open_access checksum: 6d5af3e17266a48996b4af4e67e88a85 content_type: application/pdf creator: dernst date_created: 2020-03-23T13:37:00Z date_updated: 2020-07-14T12:48:00Z file_id: '7614' file_name: 2020_Plants_Moturu.pdf file_size: 2373484 relation: main_file file_date_updated: 2020-07-14T12:48:00Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Plants publication_identifier: eissn: - '22237747' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Molecular evolution and diversification of proteins involved in miRNA maturation pathway tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '7593' abstract: - lang: eng text: Heterozygous loss of human PAFAH1B1 (coding for LIS1) results in the disruption of neurogenesis and neuronal migration via dysregulation of microtubule (MT) stability and dynein motor function/localization that alters mitotic spindle orientation, chromosomal segregation, and nuclear migration. Recently, human induced pluripotent stem cell (iPSC) models revealed an important role for LIS1 in controlling the length of terminal cell divisions of outer radial glial (oRG) progenitors, suggesting cellular functions of LIS1 in regulating neural progenitor cell (NPC) daughter cell separation. Here we examined the late mitotic stages NPCs in vivo and mouse embryonic fibroblasts (MEFs) in vitro from Pafah1b1-deficient mutants. Pafah1b1-deficient neocortical NPCs and MEFs similarly exhibited cleavage plane displacement with mislocalization of furrow-associated markers, associated with actomyosin dysfunction and cell membrane hyper-contractility. Thus, it suggests LIS1 acts as a key molecular link connecting MTs/dynein and actomyosin, ensuring that cell membrane contractility is tightly controlled to execute proper daughter cell separation. article_number: '51512' article_processing_charge: No article_type: original author: - first_name: Hyang Mi full_name: Moon, Hyang Mi last_name: Moon - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Liqun full_name: Luo, Liqun last_name: Luo - first_name: Anthony full_name: Wynshaw-Boris, Anthony last_name: Wynshaw-Boris citation: ama: Moon HM, Hippenmeyer S, Luo L, Wynshaw-Boris A. LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility. eLife. 2020;9. doi:10.7554/elife.51512 apa: Moon, H. M., Hippenmeyer, S., Luo, L., & Wynshaw-Boris, A. (2020). LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.51512 chicago: Moon, Hyang Mi, Simon Hippenmeyer, Liqun Luo, and Anthony Wynshaw-Boris. “LIS1 Determines Cleavage Plane Positioning by Regulating Actomyosin-Mediated Cell Membrane Contractility.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/elife.51512. ieee: H. M. Moon, S. Hippenmeyer, L. Luo, and A. Wynshaw-Boris, “LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility,” eLife, vol. 9. eLife Sciences Publications, 2020. ista: Moon HM, Hippenmeyer S, Luo L, Wynshaw-Boris A. 2020. LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility. eLife. 9, 51512. mla: Moon, Hyang Mi, et al. “LIS1 Determines Cleavage Plane Positioning by Regulating Actomyosin-Mediated Cell Membrane Contractility.” ELife, vol. 9, 51512, eLife Sciences Publications, 2020, doi:10.7554/elife.51512. short: H.M. Moon, S. Hippenmeyer, L. Luo, A. Wynshaw-Boris, ELife 9 (2020). date_created: 2020-03-20T13:16:41Z date_published: 2020-03-11T00:00:00Z date_updated: 2023-08-18T07:06:31Z day: '11' ddc: - '570' department: - _id: SiHi doi: 10.7554/elife.51512 external_id: isi: - '000522835800001' pmid: - '32159512' file: - access_level: open_access checksum: 396ceb2dd10b102ef4e699666b9342c3 content_type: application/pdf creator: dernst date_created: 2020-09-24T07:03:20Z date_updated: 2020-09-24T07:03:20Z file_id: '8567' file_name: 2020_elife_Moon.pdf file_size: 15089438 relation: main_file success: 1 file_date_updated: 2020-09-24T07:03:20Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/751958 month: '03' oa: 1 oa_version: Published Version pmid: 1 publication: eLife publication_identifier: issn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '7600' abstract: - lang: eng text: Directional intercellular transport of the phytohormone auxin mediated by PIN FORMED (PIN) efflux carriers plays essential roles in both coordinating patterning processes and integrating multiple external cues by rapidly redirecting auxin fluxes. Multilevel regulations of PIN activity under internal and external cues are complicated; however, the underlying molecular mechanism remains elusive. Here we demonstrate that 3’-Phosphoinositide-Dependent Protein Kinase1 (PDK1), which is conserved in plants and mammals, functions as a molecular hub integrating the upstream lipid signalling and the downstream substrate activity through phosphorylation. Genetic analysis uncovers that loss-of-function Arabidopsis mutant pdk1.1 pdk1.2 exhibits a plethora of abnormalities in organogenesis and growth, due to the defective PIN-dependent auxin transport. Further cellular and biochemical analyses reveal that PDK1 phosphorylates D6 Protein Kinase to facilitate its activity towards PIN proteins. Our studies establish a lipid-dependent phosphorylation cascade connecting membrane composition-based cellular signalling with plant growth and patterning by regulating morphogenetic auxin fluxes. acknowledged_ssus: - _id: Bio - _id: LifeSc article_processing_charge: No article_type: original author: - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Wei full_name: Kong, Wei last_name: Kong - first_name: Xiao-Li full_name: Yang, Xiao-Li last_name: Yang - first_name: Gergely full_name: Molnar, Gergely id: 34F1AF46-F248-11E8-B48F-1D18A9856A87 last_name: Molnar - first_name: Zuzana full_name: Vondráková, Zuzana last_name: Vondráková - first_name: Roberta full_name: Filepová, Roberta last_name: Filepová - first_name: Jan full_name: Petrášek, Jan last_name: Petrášek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Hong-Wei full_name: Xue, Hong-Wei last_name: Xue citation: ama: Tan S, Zhang X, Kong W, et al. The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nature Plants. 2020;6:556-569. doi:10.1038/s41477-020-0648-9 apa: Tan, S., Zhang, X., Kong, W., Yang, X.-L., Molnar, G., Vondráková, Z., … Xue, H.-W. (2020). The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nature Plants. Springer Nature. https://doi.org/10.1038/s41477-020-0648-9 chicago: Tan, Shutang, Xixi Zhang, Wei Kong, Xiao-Li Yang, Gergely Molnar, Zuzana Vondráková, Roberta Filepová, Jan Petrášek, Jiří Friml, and Hong-Wei Xue. “The Lipid Code-Dependent Phosphoswitch PDK1–D6PK Activates PIN-Mediated Auxin Efflux in Arabidopsis.” Nature Plants. Springer Nature, 2020. https://doi.org/10.1038/s41477-020-0648-9. ieee: S. Tan et al., “The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis,” Nature Plants, vol. 6. Springer Nature, pp. 556–569, 2020. ista: Tan S, Zhang X, Kong W, Yang X-L, Molnar G, Vondráková Z, Filepová R, Petrášek J, Friml J, Xue H-W. 2020. The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nature Plants. 6, 556–569. mla: Tan, Shutang, et al. “The Lipid Code-Dependent Phosphoswitch PDK1–D6PK Activates PIN-Mediated Auxin Efflux in Arabidopsis.” Nature Plants, vol. 6, Springer Nature, 2020, pp. 556–69, doi:10.1038/s41477-020-0648-9. short: S. Tan, X. Zhang, W. Kong, X.-L. Yang, G. Molnar, Z. Vondráková, R. Filepová, J. Petrášek, J. Friml, H.-W. Xue, Nature Plants 6 (2020) 556–569. date_created: 2020-03-21T16:34:16Z date_published: 2020-05-01T00:00:00Z date_updated: 2023-08-18T07:05:57Z day: '01' department: - _id: JiFr doi: 10.1038/s41477-020-0648-9 ec_funded: 1 external_id: isi: - '000531787500006' pmid: - '32393881' intvolume: ' 6' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/755504 month: '05' oa: 1 oa_version: Preprint page: 556-569 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 256FEF10-B435-11E9-9278-68D0E5697425 grant_number: 723-2015 name: Long Term Fellowship publication: Nature Plants publication_identifier: eissn: - '20550278' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41477-020-0719-y scopus_import: '1' status: public title: The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2020' ... --- _id: '7603' abstract: - lang: eng text: Plants are exposed to a variety of abiotic and biotic stresses that may result in DNA damage. Endogenous processes - such as DNA replication, DNA recombination, respiration, or photosynthesis - are also a threat to DNA integrity. It is therefore essential to understand the strategies plants have developed for DNA damage detection, signaling, and repair. Alternative splicing (AS) is a key post-transcriptional process with a role in regulation of gene expression. Recent studies demonstrate that the majority of intron-containing genes in plants are alternatively spliced, highlighting the importance of AS in plant development and stress response. Not only does AS ensure a versatile proteome and influence the abundance and availability of proteins greatly, it has also emerged as an important player in the DNA damage response (DDR) in animals. Despite extensive studies of DDR carried out in plants, its regulation at the level of AS has not been comprehensively addressed. Here, we provide some insights into the interplay between AS and DDR in plants. article_number: '91' article_processing_charge: No article_type: original author: - first_name: Barbara Anna full_name: Nimeth, Barbara Anna last_name: Nimeth - first_name: Stefan full_name: Riegler, Stefan id: FF6018E0-D806-11E9-8E43-0B14E6697425 last_name: Riegler orcid: 0000-0003-3413-1343 - first_name: Maria full_name: Kalyna, Maria last_name: Kalyna citation: ama: Nimeth BA, Riegler S, Kalyna M. Alternative splicing and DNA damage response in plants. Frontiers in Plant Science. 2020;11. doi:10.3389/fpls.2020.00091 apa: Nimeth, B. A., Riegler, S., & Kalyna, M. (2020). Alternative splicing and DNA damage response in plants. Frontiers in Plant Science. Frontiers. https://doi.org/10.3389/fpls.2020.00091 chicago: Nimeth, Barbara Anna, Stefan Riegler, and Maria Kalyna. “Alternative Splicing and DNA Damage Response in Plants.” Frontiers in Plant Science. Frontiers, 2020. https://doi.org/10.3389/fpls.2020.00091. ieee: B. A. Nimeth, S. Riegler, and M. Kalyna, “Alternative splicing and DNA damage response in plants,” Frontiers in Plant Science, vol. 11. Frontiers, 2020. ista: Nimeth BA, Riegler S, Kalyna M. 2020. Alternative splicing and DNA damage response in plants. Frontiers in Plant Science. 11, 91. mla: Nimeth, Barbara Anna, et al. “Alternative Splicing and DNA Damage Response in Plants.” Frontiers in Plant Science, vol. 11, 91, Frontiers, 2020, doi:10.3389/fpls.2020.00091. short: B.A. Nimeth, S. Riegler, M. Kalyna, Frontiers in Plant Science 11 (2020). date_created: 2020-03-22T23:00:46Z date_published: 2020-02-19T00:00:00Z date_updated: 2023-08-18T07:05:18Z day: '19' ddc: - '580' department: - _id: FyKo doi: 10.3389/fpls.2020.00091 external_id: isi: - '000518903600001' file: - access_level: open_access checksum: 57c37209f7b6712ced86c0f11b2be74e content_type: application/pdf creator: dernst date_created: 2020-03-23T09:03:40Z date_updated: 2020-07-14T12:48:01Z file_id: '7607' file_name: 2020_FrontiersPlants_Nimeth.pdf file_size: 507414 relation: main_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Frontiers in Plant Science publication_identifier: eissn: - 1664462X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: Alternative splicing and DNA damage response in plants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ...