--- _id: '9644' abstract: - lang: eng text: 'We present a new approach to proving non-termination of non-deterministic integer programs. Our technique is rather simple but efficient. It relies on a purely syntactic reversal of the program''s transition system followed by a constraint-based invariant synthesis with constraints coming from both the original and the reversed transition system. The latter task is performed by a simple call to an off-the-shelf SMT-solver, which allows us to leverage the latest advances in SMT-solving. Moreover, our method offers a combination of features not present (as a whole) in previous approaches: it handles programs with non-determinism, provides relative completeness guarantees and supports programs with polynomial arithmetic. The experiments performed with our prototype tool RevTerm show that our approach, despite its simplicity and stronger theoretical guarantees, is at least on par with the state-of-the-art tools, often achieving a non-trivial improvement under a proper configuration of its parameters.' acknowledgement: We thank the anonymous reviewers for their helpful comments. This research was partially supported by the ERCCoG 863818 (ForM-SMArt) and the Czech Science Foundation grant No. GJ19-15134Y. article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Ehsan Kafshdar full_name: Goharshady, Ehsan Kafshdar last_name: Goharshady - first_name: Petr full_name: Novotný, Petr id: 3CC3B868-F248-11E8-B48F-1D18A9856A87 last_name: Novotný - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: 'Chatterjee K, Goharshady EK, Novotný P, Zikelic D. Proving non-termination by program reversal. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. Association for Computing Machinery; 2021:1033-1048. doi:10.1145/3453483.3454093' apa: 'Chatterjee, K., Goharshady, E. K., Novotný, P., & Zikelic, D. (2021). Proving non-termination by program reversal. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation (pp. 1033–1048). Online: Association for Computing Machinery. https://doi.org/10.1145/3453483.3454093' chicago: Chatterjee, Krishnendu, Ehsan Kafshdar Goharshady, Petr Novotný, and Dorde Zikelic. “Proving Non-Termination by Program Reversal.” In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, 1033–48. Association for Computing Machinery, 2021. https://doi.org/10.1145/3453483.3454093. ieee: K. Chatterjee, E. K. Goharshady, P. Novotný, and D. Zikelic, “Proving non-termination by program reversal,” in Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Online, 2021, pp. 1033–1048. ista: 'Chatterjee K, Goharshady EK, Novotný P, Zikelic D. 2021. Proving non-termination by program reversal. Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. PLDI: Programming Language Design and Implementation, 1033–1048.' mla: Chatterjee, Krishnendu, et al. “Proving Non-Termination by Program Reversal.” Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Association for Computing Machinery, 2021, pp. 1033–48, doi:10.1145/3453483.3454093. short: K. Chatterjee, E.K. Goharshady, P. Novotný, D. Zikelic, in:, Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Association for Computing Machinery, 2021, pp. 1033–1048. conference: end_date: 2021-06-26 location: Online name: 'PLDI: Programming Language Design and Implementation' start_date: 2021-06-20 date_created: 2021-07-11T22:01:17Z date_published: 2021-06-01T00:00:00Z date_updated: 2023-11-30T10:55:37Z day: '01' department: - _id: KrCh doi: 10.1145/3453483.3454093 ec_funded: 1 external_id: arxiv: - '2104.01189' isi: - '000723661700067' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2104.01189 month: '06' oa: 1 oa_version: Preprint page: 1033-1048 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation publication_identifier: isbn: - '9781450383912' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: record: - id: '14539' relation: dissertation_contains status: public scopus_import: '1' status: public title: Proving non-termination by program reversal type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '9760' abstract: - lang: eng text: "The quantum approximate optimization algorithm (QAOA) is a prospective near-term quantum algorithm due to its modest circuit depth and promising benchmarks. However, an external parameter optimization required in the QAOA could become a performance bottleneck. This motivates studies of the optimization landscape and search for heuristic ways of parameter initialization. In this work we visualize the optimization landscape of the QAOA applied to the MaxCut problem on random graphs, demonstrating that random initialization of the QAOA is prone to converging to local minima with suboptimal performance. We introduce the initialization of QAOA parameters based on the Trotterized quantum annealing (TQA) protocol, parameterized by the Trotter time step. We find that the TQA initialization allows to circumvent\r\nthe issue of false minima for a broad range of time steps, yielding the same performance as the best result out of an exponentially scaling number of random initializations. Moreover, we demonstrate that the optimal value of the time step coincides with the point of proliferation of Trotter errors in quantum annealing. Our results suggest practical ways of initializing QAOA protocols on near-term quantum devices and reveal new connections between QAOA and quantum annealing." acknowledgement: We would like to thank D. Abanin and R. Medina for fruitful discussions and A. Smith and I. Kim for valuable feedback on the manuscript. We acknowledge support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 850899). article_number: '491' article_processing_charge: Yes article_type: original author: - first_name: Stefan full_name: Sack, Stefan id: dd622248-f6e0-11ea-865d-ce382a1c81a5 last_name: Sack orcid: 0000-0001-5400-8508 - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Sack S, Serbyn M. Quantum annealing initialization of the quantum approximate optimization algorithm. Quantum. 2021;5. doi:10.22331/Q-2021-07-01-491 apa: Sack, S., & Serbyn, M. (2021). Quantum annealing initialization of the quantum approximate optimization algorithm. Quantum. Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften. https://doi.org/10.22331/Q-2021-07-01-491 chicago: Sack, Stefan, and Maksym Serbyn. “Quantum Annealing Initialization of the Quantum Approximate Optimization Algorithm.” Quantum. Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2021. https://doi.org/10.22331/Q-2021-07-01-491. ieee: S. Sack and M. Serbyn, “Quantum annealing initialization of the quantum approximate optimization algorithm,” Quantum, vol. 5. Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2021. ista: Sack S, Serbyn M. 2021. Quantum annealing initialization of the quantum approximate optimization algorithm. Quantum. 5, 491. mla: Sack, Stefan, and Maksym Serbyn. “Quantum Annealing Initialization of the Quantum Approximate Optimization Algorithm.” Quantum, vol. 5, 491, Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2021, doi:10.22331/Q-2021-07-01-491. short: S. Sack, M. Serbyn, Quantum 5 (2021). date_created: 2021-08-01T22:01:21Z date_published: 2021-07-01T00:00:00Z date_updated: 2023-12-13T14:47:25Z day: '01' ddc: - '530' department: - _id: GradSch - _id: MaSe doi: 10.22331/Q-2021-07-01-491 ec_funded: 1 external_id: arxiv: - '2101.05742' isi: - '000669830600001' file: - access_level: open_access checksum: 9706c2bb8e748e9b5b138381995a7f6f content_type: application/pdf creator: cchlebak date_created: 2021-08-06T06:44:31Z date_updated: 2021-08-06T06:44:31Z file_id: '9774' file_name: 2021_Quantum_Sack.pdf file_size: 2312482 relation: main_file file_date_updated: 2021-08-06T06:44:31Z has_accepted_license: '1' intvolume: ' 5' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Quantum publication_identifier: eissn: - 2521-327X publication_status: published publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften quality_controlled: '1' related_material: record: - id: '14622' relation: dissertation_contains status: public scopus_import: '1' status: public title: Quantum annealing initialization of the quantum approximate optimization algorithm tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2021' ... --- _id: '10414' abstract: - lang: eng text: 'We consider the almost-sure (a.s.) termination problem for probabilistic programs, which are a stochastic extension of classical imperative programs. Lexicographic ranking functions provide a sound and practical approach for termination of non-probabilistic programs, and their extension to probabilistic programs is achieved via lexicographic ranking supermartingales (LexRSMs). However, LexRSMs introduced in the previous work have a limitation that impedes their automation: all of their components have to be non-negative in all reachable states. This might result in LexRSM not existing even for simple terminating programs. Our contributions are twofold: First, we introduce a generalization of LexRSMs which allows for some components to be negative. This standard feature of non-probabilistic termination proofs was hitherto not known to be sound in the probabilistic setting, as the soundness proof requires a careful analysis of the underlying stochastic process. Second, we present polynomial-time algorithms using our generalized LexRSMs for proving a.s. termination in broad classes of linear-arithmetic programs.' acknowledgement: This research was partially supported by the ERC CoG 863818 (ForM-SMArt), the Czech Science Foundation grant No. GJ19-15134Y, and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. alternative_title: - LNCS article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Ehsan Kafshdar full_name: Goharshady, Ehsan Kafshdar last_name: Goharshady - first_name: Petr full_name: Novotný, Petr id: 3CC3B868-F248-11E8-B48F-1D18A9856A87 last_name: Novotný - first_name: Jiří full_name: Zárevúcky, Jiří last_name: Zárevúcky - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: 'Chatterjee K, Goharshady EK, Novotný P, Zárevúcky J, Zikelic D. On lexicographic proof rules for probabilistic termination. In: 24th International Symposium on Formal Methods. Vol 13047. Springer Nature; 2021:619-639. doi:10.1007/978-3-030-90870-6_33' apa: 'Chatterjee, K., Goharshady, E. K., Novotný, P., Zárevúcky, J., & Zikelic, D. (2021). On lexicographic proof rules for probabilistic termination. In 24th International Symposium on Formal Methods (Vol. 13047, pp. 619–639). Virtual: Springer Nature. https://doi.org/10.1007/978-3-030-90870-6_33' chicago: Chatterjee, Krishnendu, Ehsan Kafshdar Goharshady, Petr Novotný, Jiří Zárevúcky, and Dorde Zikelic. “On Lexicographic Proof Rules for Probabilistic Termination.” In 24th International Symposium on Formal Methods, 13047:619–39. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-90870-6_33. ieee: K. Chatterjee, E. K. Goharshady, P. Novotný, J. Zárevúcky, and D. Zikelic, “On lexicographic proof rules for probabilistic termination,” in 24th International Symposium on Formal Methods, Virtual, 2021, vol. 13047, pp. 619–639. ista: 'Chatterjee K, Goharshady EK, Novotný P, Zárevúcky J, Zikelic D. 2021. On lexicographic proof rules for probabilistic termination. 24th International Symposium on Formal Methods. FM: Formal Methods, LNCS, vol. 13047, 619–639.' mla: Chatterjee, Krishnendu, et al. “On Lexicographic Proof Rules for Probabilistic Termination.” 24th International Symposium on Formal Methods, vol. 13047, Springer Nature, 2021, pp. 619–39, doi:10.1007/978-3-030-90870-6_33. short: K. Chatterjee, E.K. Goharshady, P. Novotný, J. Zárevúcky, D. Zikelic, in:, 24th International Symposium on Formal Methods, Springer Nature, 2021, pp. 619–639. conference: end_date: 2021-11-26 location: Virtual name: 'FM: Formal Methods' start_date: 2021-11-20 date_created: 2021-12-05T23:01:45Z date_published: 2021-11-10T00:00:00Z date_updated: 2024-01-17T08:19:41Z day: '10' department: - _id: KrCh doi: 10.1007/978-3-030-90870-6_33 ec_funded: 1 external_id: arxiv: - '2108.02188' isi: - '000758218600033' intvolume: ' 13047' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2108.02188 month: '11' oa: 1 oa_version: Preprint page: 619-639 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: 24th International Symposium on Formal Methods publication_identifier: eisbn: - 978-3-030-90870-6 eissn: - 1611-3349 isbn: - 9-783-0309-0869-0 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '14539' relation: dissertation_contains status: public - id: '14778' relation: later_version status: public scopus_import: '1' status: public title: On lexicographic proof rules for probabilistic termination type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13047 year: '2021' ... --- _id: '14800' abstract: - lang: eng text: 'Research on two-dimensional (2D) materials has been explosively increasing in last seventeen years in varying subjects including condensed matter physics, electronic engineering, materials science, and chemistry since the mechanical exfoliation of graphene in 2004. Starting from graphene, 2D materials now have become a big family with numerous members and diverse categories. The unique structural features and physicochemical properties of 2D materials make them one class of the most appealing candidates for a wide range of potential applications. In particular, we have seen some major breakthroughs made in the field of 2D materials in last five years not only in developing novel synthetic methods and exploring new structures/properties but also in identifying innovative applications and pushing forward commercialisation. In this review, we provide a critical summary on the recent progress made in the field of 2D materials with a particular focus on last five years. After a brief background introduction, we first discuss the major synthetic methods for 2D materials, including the mechanical exfoliation, liquid exfoliation, vapor phase deposition, and wet-chemical synthesis as well as phase engineering of 2D materials belonging to the field of phase engineering of nanomaterials (PEN). We then introduce the superconducting/optical/magnetic properties and chirality of 2D materials along with newly emerging magic angle 2D superlattices. Following that, the promising applications of 2D materials in electronics, optoelectronics, catalysis, energy storage, solar cells, biomedicine, sensors, environments, etc. are described sequentially. Thereafter, we present the theoretic calculations and simulations of 2D materials. Finally, after concluding the current progress, we provide some personal discussions on the existing challenges and future outlooks in this rapidly developing field. ' article_number: '2108017' article_processing_charge: No article_type: review author: - first_name: Cheng full_name: Chang, Cheng id: 9E331C2E-9F27-11E9-AE48-5033E6697425 last_name: Chang orcid: 0000-0002-9515-4277 - first_name: Wei full_name: Chen, Wei last_name: Chen - first_name: Ye full_name: Chen, Ye last_name: Chen - first_name: Yonghua full_name: Chen, Yonghua last_name: Chen - first_name: Yu full_name: Chen, Yu last_name: Chen - first_name: Feng full_name: Ding, Feng last_name: Ding - first_name: Chunhai full_name: Fan, Chunhai last_name: Fan - first_name: Hong Jin full_name: Fan, Hong Jin last_name: Fan - first_name: Zhanxi full_name: Fan, Zhanxi last_name: Fan - first_name: Cheng full_name: Gong, Cheng last_name: Gong - first_name: Yongji full_name: Gong, Yongji last_name: Gong - first_name: Qiyuan full_name: He, Qiyuan last_name: He - first_name: Xun full_name: Hong, Xun last_name: Hong - first_name: Sheng full_name: Hu, Sheng last_name: Hu - first_name: Weida full_name: Hu, Weida last_name: Hu - first_name: Wei full_name: Huang, Wei last_name: Huang - first_name: Yuan full_name: Huang, Yuan last_name: Huang - first_name: Wei full_name: Ji, Wei last_name: Ji - first_name: Dehui full_name: Li, Dehui last_name: Li - first_name: Lain Jong full_name: Li, Lain Jong last_name: Li - first_name: Qiang full_name: Li, Qiang last_name: Li - first_name: Li full_name: Lin, Li last_name: Lin - first_name: Chongyi full_name: Ling, Chongyi last_name: Ling - first_name: Minghua full_name: Liu, Minghua last_name: Liu - first_name: 'Nan' full_name: Liu, Nan last_name: Liu - first_name: Zhuang full_name: Liu, Zhuang last_name: Liu - first_name: Kian Ping full_name: Loh, Kian Ping last_name: Loh - first_name: Jianmin full_name: Ma, Jianmin last_name: Ma - first_name: Feng full_name: Miao, Feng last_name: Miao - first_name: Hailin full_name: Peng, Hailin last_name: Peng - first_name: Mingfei full_name: Shao, Mingfei last_name: Shao - first_name: Li full_name: Song, Li last_name: Song - first_name: Shao full_name: Su, Shao last_name: Su - first_name: Shuo full_name: Sun, Shuo last_name: Sun - first_name: Chaoliang full_name: Tan, Chaoliang last_name: Tan - first_name: Zhiyong full_name: Tang, Zhiyong last_name: Tang - first_name: Dingsheng full_name: Wang, Dingsheng last_name: Wang - first_name: Huan full_name: Wang, Huan last_name: Wang - first_name: Jinlan full_name: Wang, Jinlan last_name: Wang - first_name: Xin full_name: Wang, Xin last_name: Wang - first_name: Xinran full_name: Wang, Xinran last_name: Wang - first_name: Andrew T.S. full_name: Wee, Andrew T.S. last_name: Wee - first_name: Zhongming full_name: Wei, Zhongming last_name: Wei - first_name: Yuen full_name: Wu, Yuen last_name: Wu - first_name: Zhong Shuai full_name: Wu, Zhong Shuai last_name: Wu - first_name: Jie full_name: Xiong, Jie last_name: Xiong - first_name: Qihua full_name: Xiong, Qihua last_name: Xiong - first_name: Weigao full_name: Xu, Weigao last_name: Xu - first_name: Peng full_name: Yin, Peng last_name: Yin - first_name: Haibo full_name: Zeng, Haibo last_name: Zeng - first_name: Zhiyuan full_name: Zeng, Zhiyuan last_name: Zeng - first_name: Tianyou full_name: Zhai, Tianyou last_name: Zhai - first_name: Han full_name: Zhang, Han last_name: Zhang - first_name: Hui full_name: Zhang, Hui last_name: Zhang - first_name: Qichun full_name: Zhang, Qichun last_name: Zhang - first_name: Tierui full_name: Zhang, Tierui last_name: Zhang - first_name: Xiang full_name: Zhang, Xiang last_name: Zhang - first_name: Li Dong full_name: Zhao, Li Dong last_name: Zhao - first_name: Meiting full_name: Zhao, Meiting last_name: Zhao - first_name: Weijie full_name: Zhao, Weijie last_name: Zhao - first_name: Yunxuan full_name: Zhao, Yunxuan last_name: Zhao - first_name: Kai Ge full_name: Zhou, Kai Ge last_name: Zhou - first_name: Xing full_name: Zhou, Xing last_name: Zhou - first_name: Yu full_name: Zhou, Yu last_name: Zhou - first_name: Hongwei full_name: Zhu, Hongwei last_name: Zhu - first_name: Hua full_name: Zhang, Hua last_name: Zhang - first_name: Zhongfan full_name: Liu, Zhongfan last_name: Liu citation: ama: Chang C, Chen W, Chen Y, et al. Recent progress on two-dimensional materials. Acta Physico-Chimica Sinica. 2021;37(12). doi:10.3866/PKU.WHXB202108017 apa: Chang, C., Chen, W., Chen, Y., Chen, Y., Chen, Y., Ding, F., … Liu, Z. (2021). Recent progress on two-dimensional materials. Acta Physico-Chimica Sinica. Peking University. https://doi.org/10.3866/PKU.WHXB202108017 chicago: Chang, Cheng, Wei Chen, Ye Chen, Yonghua Chen, Yu Chen, Feng Ding, Chunhai Fan, et al. “Recent Progress on Two-Dimensional Materials.” Acta Physico-Chimica Sinica. Peking University, 2021. https://doi.org/10.3866/PKU.WHXB202108017. ieee: C. Chang et al., “Recent progress on two-dimensional materials,” Acta Physico-Chimica Sinica, vol. 37, no. 12. Peking University, 2021. ista: Chang C, Chen W, Chen Y, Chen Y, Chen Y, Ding F, Fan C, Fan HJ, Fan Z, Gong C, Gong Y, He Q, Hong X, Hu S, Hu W, Huang W, Huang Y, Ji W, Li D, Li LJ, Li Q, Lin L, Ling C, Liu M, Liu N, Liu Z, Loh KP, Ma J, Miao F, Peng H, Shao M, Song L, Su S, Sun S, Tan C, Tang Z, Wang D, Wang H, Wang J, Wang X, Wang X, Wee ATS, Wei Z, Wu Y, Wu ZS, Xiong J, Xiong Q, Xu W, Yin P, Zeng H, Zeng Z, Zhai T, Zhang H, Zhang H, Zhang Q, Zhang T, Zhang X, Zhao LD, Zhao M, Zhao W, Zhao Y, Zhou KG, Zhou X, Zhou Y, Zhu H, Zhang H, Liu Z. 2021. Recent progress on two-dimensional materials. Acta Physico-Chimica Sinica. 37(12), 2108017. mla: Chang, Cheng, et al. “Recent Progress on Two-Dimensional Materials.” Acta Physico-Chimica Sinica, vol. 37, no. 12, 2108017, Peking University, 2021, doi:10.3866/PKU.WHXB202108017. short: C. Chang, W. Chen, Y. Chen, Y. Chen, Y. Chen, F. Ding, C. Fan, H.J. Fan, Z. Fan, C. Gong, Y. Gong, Q. He, X. Hong, S. Hu, W. Hu, W. Huang, Y. Huang, W. Ji, D. Li, L.J. Li, Q. Li, L. Lin, C. Ling, M. Liu, N. Liu, Z. Liu, K.P. Loh, J. Ma, F. Miao, H. Peng, M. Shao, L. Song, S. Su, S. Sun, C. Tan, Z. Tang, D. Wang, H. Wang, J. Wang, X. Wang, X. Wang, A.T.S. Wee, Z. Wei, Y. Wu, Z.S. Wu, J. Xiong, Q. Xiong, W. Xu, P. Yin, H. Zeng, Z. Zeng, T. Zhai, H. Zhang, H. Zhang, Q. Zhang, T. Zhang, X. Zhang, L.D. Zhao, M. Zhao, W. Zhao, Y. Zhao, K.G. Zhou, X. Zhou, Y. Zhou, H. Zhu, H. Zhang, Z. Liu, Acta Physico-Chimica Sinica 37 (2021). date_created: 2024-01-14T23:00:58Z date_published: 2021-10-13T00:00:00Z date_updated: 2024-01-17T11:29:33Z day: '13' department: - _id: MaIb doi: 10.3866/PKU.WHXB202108017 intvolume: ' 37' issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.3866/PKU.WHXB202108017 month: '10' oa: 1 oa_version: Submitted Version publication: Acta Physico-Chimica Sinica publication_identifier: issn: - 1001-4861 publication_status: published publisher: Peking University quality_controlled: '1' scopus_import: '1' status: public title: Recent progress on two-dimensional materials type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 37 year: '2021' ... --- _id: '10206' abstract: - lang: eng text: Neural-network classifiers achieve high accuracy when predicting the class of an input that they were trained to identify. Maintaining this accuracy in dynamic environments, where inputs frequently fall outside the fixed set of initially known classes, remains a challenge. The typical approach is to detect inputs from novel classes and retrain the classifier on an augmented dataset. However, not only the classifier but also the detection mechanism needs to adapt in order to distinguish between newly learned and yet unknown input classes. To address this challenge, we introduce an algorithmic framework for active monitoring of a neural network. A monitor wrapped in our framework operates in parallel with the neural network and interacts with a human user via a series of interpretable labeling queries for incremental adaptation. In addition, we propose an adaptive quantitative monitor to improve precision. An experimental evaluation on a diverse set of benchmarks with varying numbers of classes confirms the benefits of our active monitoring framework in dynamic scenarios. acknowledgement: We thank Christoph Lampert and Alex Greengold for fruitful discussions. This research was supported in part by the Simons Institute for the Theory of Computing, the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award), and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754411. alternative_title: - LNCS article_processing_charge: No author: - first_name: Anna full_name: Lukina, Anna id: CBA4D1A8-0FE8-11E9-BDE6-07BFE5697425 last_name: Lukina - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Lukina A, Schilling C, Henzinger TA. Into the unknown: active monitoring of neural networks. In: 21st International Conference on Runtime Verification. Vol 12974. Cham: Springer Nature; 2021:42-61. doi:10.1007/978-3-030-88494-9_3' apa: 'Lukina, A., Schilling, C., & Henzinger, T. A. (2021). Into the unknown: active monitoring of neural networks. In 21st International Conference on Runtime Verification (Vol. 12974, pp. 42–61). Cham: Springer Nature. https://doi.org/10.1007/978-3-030-88494-9_3' chicago: 'Lukina, Anna, Christian Schilling, and Thomas A Henzinger. “Into the Unknown: Active Monitoring of Neural Networks.” In 21st International Conference on Runtime Verification, 12974:42–61. Cham: Springer Nature, 2021. https://doi.org/10.1007/978-3-030-88494-9_3.' ieee: 'A. Lukina, C. Schilling, and T. A. Henzinger, “Into the unknown: active monitoring of neural networks,” in 21st International Conference on Runtime Verification, Virtual, 2021, vol. 12974, pp. 42–61.' ista: 'Lukina A, Schilling C, Henzinger TA. 2021. Into the unknown: active monitoring of neural networks. 21st International Conference on Runtime Verification. RV: Runtime Verification, LNCS, vol. 12974, 42–61.' mla: 'Lukina, Anna, et al. “Into the Unknown: Active Monitoring of Neural Networks.” 21st International Conference on Runtime Verification, vol. 12974, Springer Nature, 2021, pp. 42–61, doi:10.1007/978-3-030-88494-9_3.' short: A. Lukina, C. Schilling, T.A. Henzinger, in:, 21st International Conference on Runtime Verification, Springer Nature, Cham, 2021, pp. 42–61. conference: end_date: 2021-10-14 location: Virtual name: 'RV: Runtime Verification' start_date: 2021-10-11 date_created: 2021-10-31T23:01:31Z date_published: 2021-10-06T00:00:00Z date_updated: 2024-01-30T12:06:56Z day: '06' department: - _id: ToHe doi: 10.1007/978-3-030-88494-9_3 ec_funded: 1 external_id: arxiv: - '2009.06429' isi: - '000719383800003' isi: 1 keyword: - monitoring - neural networks - novelty detection language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2009.06429 month: '10' oa: 1 oa_version: Preprint page: 42-61 place: Cham project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 21st International Conference on Runtime Verification publication_identifier: eisbn: - 978-3-030-88494-9 eissn: - 1611-3349 isbn: - 9-783-0308-8493-2 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '13234' relation: extended_version status: public scopus_import: '1' status: public title: 'Into the unknown: active monitoring of neural networks' type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: '12974 ' year: '2021' ... --- _id: '14889' abstract: - lang: eng text: We consider the Fröhlich Hamiltonian with large coupling constant α. For initial data of Pekar product form with coherent phonon field and with the electron minimizing the corresponding energy, we provide a norm approximation of the evolution, valid up to times of order α2. The approximation is given in terms of a Pekar product state, evolved through the Landau-Pekar equations, corrected by a Bogoliubov dynamics taking quantum fluctuations into account. This allows us to show that the Landau-Pekar equations approximately describe the evolution of the electron- and one-phonon reduced density matrices under the Fröhlich dynamics up to times of order α2. acknowledgement: "Financial support by the European Union’s Horizon 2020 research and innovation programme\r\nunder the Marie Skłodowska-Curie grant agreement No. 754411 (S.R.) and the European\r\nResearch Council under grant agreement No. 694227 (N.L. and R.S.), as well as by the SNSF\r\nEccellenza project PCEFP2 181153 (N.L.), the NCCR SwissMAP (N.L. and B.S.) and by the\r\nDeutsche Forschungsgemeinschaft (DFG) through the Research Training Group 1838: Spectral\r\nTheory and Dynamics of Quantum Systems (D.M.) is gratefully acknowledged. B.S. gratefully\r\nacknowledges financial support from the Swiss National Science Foundation through the Grant\r\n“Dynamical and energetic properties of Bose-Einstein condensates” and from the European\r\nResearch Council through the ERC-AdG CLaQS (grant agreement No 834782). D.M. thanks\r\nMarcel Griesemer for helpful discussions." article_processing_charge: No article_type: original author: - first_name: Nikolai K full_name: Leopold, Nikolai K id: 4BC40BEC-F248-11E8-B48F-1D18A9856A87 last_name: Leopold orcid: 0000-0002-0495-6822 - first_name: David Johannes full_name: Mitrouskas, David Johannes id: cbddacee-2b11-11eb-a02e-a2e14d04e52d last_name: Mitrouskas - first_name: Simone Anna Elvira full_name: Rademacher, Simone Anna Elvira id: 856966FE-A408-11E9-977E-802DE6697425 last_name: Rademacher orcid: 0000-0001-5059-4466 - first_name: Benjamin full_name: Schlein, Benjamin last_name: Schlein - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Leopold NK, Mitrouskas DJ, Rademacher SAE, Schlein B, Seiringer R. Landau–Pekar equations and quantum fluctuations for the dynamics of a strongly coupled polaron. Pure and Applied Analysis. 2021;3(4):653-676. doi:10.2140/paa.2021.3.653 apa: Leopold, N. K., Mitrouskas, D. J., Rademacher, S. A. E., Schlein, B., & Seiringer, R. (2021). Landau–Pekar equations and quantum fluctuations for the dynamics of a strongly coupled polaron. Pure and Applied Analysis. Mathematical Sciences Publishers. https://doi.org/10.2140/paa.2021.3.653 chicago: Leopold, Nikolai K, David Johannes Mitrouskas, Simone Anna Elvira Rademacher, Benjamin Schlein, and Robert Seiringer. “Landau–Pekar Equations and Quantum Fluctuations for the Dynamics of a Strongly Coupled Polaron.” Pure and Applied Analysis. Mathematical Sciences Publishers, 2021. https://doi.org/10.2140/paa.2021.3.653. ieee: N. K. Leopold, D. J. Mitrouskas, S. A. E. Rademacher, B. Schlein, and R. Seiringer, “Landau–Pekar equations and quantum fluctuations for the dynamics of a strongly coupled polaron,” Pure and Applied Analysis, vol. 3, no. 4. Mathematical Sciences Publishers, pp. 653–676, 2021. ista: Leopold NK, Mitrouskas DJ, Rademacher SAE, Schlein B, Seiringer R. 2021. Landau–Pekar equations and quantum fluctuations for the dynamics of a strongly coupled polaron. Pure and Applied Analysis. 3(4), 653–676. mla: Leopold, Nikolai K., et al. “Landau–Pekar Equations and Quantum Fluctuations for the Dynamics of a Strongly Coupled Polaron.” Pure and Applied Analysis, vol. 3, no. 4, Mathematical Sciences Publishers, 2021, pp. 653–76, doi:10.2140/paa.2021.3.653. short: N.K. Leopold, D.J. Mitrouskas, S.A.E. Rademacher, B. Schlein, R. Seiringer, Pure and Applied Analysis 3 (2021) 653–676. date_created: 2024-01-28T23:01:43Z date_published: 2021-10-01T00:00:00Z date_updated: 2024-02-05T10:02:45Z day: '01' department: - _id: RoSe doi: 10.2140/paa.2021.3.653 ec_funded: 1 external_id: arxiv: - '2005.02098' intvolume: ' 3' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2005.02098 month: '10' oa: 1 oa_version: Preprint page: 653-676 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: Pure and Applied Analysis publication_identifier: eissn: - 2578-5885 issn: - 2578-5893 publication_status: published publisher: Mathematical Sciences Publishers quality_controlled: '1' scopus_import: '1' status: public title: Landau–Pekar equations and quantum fluctuations for the dynamics of a strongly coupled polaron type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 3 year: '2021' ... --- _id: '14890' abstract: - lang: eng text: We consider a system of N interacting bosons in the mean-field scaling regime and construct corrections to the Bogoliubov dynamics that approximate the true N-body dynamics in norm to arbitrary precision. The N-independent corrections are given in terms of the solutions of the Bogoliubov and Hartree equations and satisfy a generalized form of Wick's theorem. We determine the n-point correlation functions of the excitations around the condensate, as well as the reduced densities of the N-body system, to arbitrary accuracy, given only the knowledge of the two-point functions of a quasi-free state and the solution of the Hartree equation. In this way, the complex problem of computing all n-point correlation functions for an interacting N-body system is essentially reduced to the problem of solving the Hartree equation and the PDEs for the Bogoliubov two-point functions. acknowledgement: "We are grateful for the hospitality of Central China Normal University (CCNU),\r\nwhere parts of this work were done, and thank Phan Th`anh Nam, Simone\r\nRademacher, Robert Seiringer and Stefan Teufel for helpful discussions. L.B. gratefully acknowledges the support by the German Research Foundation (DFG) within the Research\r\nTraining Group 1838 “Spectral Theory and Dynamics of Quantum Systems”, and the funding\r\nfrom the European Union’s Horizon 2020 research and innovation programme under the Marie\r\nSk lodowska-Curie Grant Agreement No. 754411." article_processing_charge: No article_type: original author: - first_name: Lea full_name: Bossmann, Lea id: A2E3BCBE-5FCC-11E9-AA4B-76F3E5697425 last_name: Bossmann orcid: 0000-0002-6854-1343 - first_name: Sören P full_name: Petrat, Sören P id: 40AC02DC-F248-11E8-B48F-1D18A9856A87 last_name: Petrat orcid: 0000-0002-9166-5889 - first_name: Peter full_name: Pickl, Peter last_name: Pickl - first_name: Avy full_name: Soffer, Avy last_name: Soffer citation: ama: Bossmann L, Petrat SP, Pickl P, Soffer A. Beyond Bogoliubov dynamics. Pure and Applied Analysis. 2021;3(4):677-726. doi:10.2140/paa.2021.3.677 apa: Bossmann, L., Petrat, S. P., Pickl, P., & Soffer, A. (2021). Beyond Bogoliubov dynamics. Pure and Applied Analysis. Mathematical Sciences Publishers. https://doi.org/10.2140/paa.2021.3.677 chicago: Bossmann, Lea, Sören P Petrat, Peter Pickl, and Avy Soffer. “Beyond Bogoliubov Dynamics.” Pure and Applied Analysis. Mathematical Sciences Publishers, 2021. https://doi.org/10.2140/paa.2021.3.677. ieee: L. Bossmann, S. P. Petrat, P. Pickl, and A. Soffer, “Beyond Bogoliubov dynamics,” Pure and Applied Analysis, vol. 3, no. 4. Mathematical Sciences Publishers, pp. 677–726, 2021. ista: Bossmann L, Petrat SP, Pickl P, Soffer A. 2021. Beyond Bogoliubov dynamics. Pure and Applied Analysis. 3(4), 677–726. mla: Bossmann, Lea, et al. “Beyond Bogoliubov Dynamics.” Pure and Applied Analysis, vol. 3, no. 4, Mathematical Sciences Publishers, 2021, pp. 677–726, doi:10.2140/paa.2021.3.677. short: L. Bossmann, S.P. Petrat, P. Pickl, A. Soffer, Pure and Applied Analysis 3 (2021) 677–726. date_created: 2024-01-28T23:01:43Z date_published: 2021-10-01T00:00:00Z date_updated: 2024-02-05T09:26:31Z day: '01' department: - _id: RoSe doi: 10.2140/paa.2021.3.677 ec_funded: 1 external_id: arxiv: - '1912.11004' intvolume: ' 3' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.1912.11004 month: '10' oa: 1 oa_version: Preprint page: 677-726 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Pure and Applied Analysis publication_identifier: eissn: - 2578-5885 issn: - 2578-5893 publication_status: published publisher: Mathematical Sciences Publishers quality_controlled: '1' scopus_import: '1' status: public title: Beyond Bogoliubov dynamics type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 3 year: '2021' ... --- _id: '15013' abstract: - lang: eng text: We consider random n×n matrices X with independent and centered entries and a general variance profile. We show that the spectral radius of X converges with very high probability to the square root of the spectral radius of the variance matrix of X when n tends to infinity. We also establish the optimal rate of convergence, that is a new result even for general i.i.d. matrices beyond the explicitly solvable Gaussian cases. The main ingredient is the proof of the local inhomogeneous circular law [arXiv:1612.07776] at the spectral edge. acknowledgement: Partially supported by ERC Starting Grant RandMat No. 715539 and the SwissMap grant of Swiss National Science Foundation. Partially supported by ERC Advanced Grant RanMat No. 338804. Partially supported by the Hausdorff Center for Mathematics in Bonn. article_processing_charge: No article_type: original author: - first_name: Johannes full_name: Alt, Johannes id: 36D3D8B6-F248-11E8-B48F-1D18A9856A87 last_name: Alt - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Torben H full_name: Krüger, Torben H id: 3020C786-F248-11E8-B48F-1D18A9856A87 last_name: Krüger orcid: 0000-0002-4821-3297 citation: ama: Alt J, Erdös L, Krüger TH. Spectral radius of random matrices with independent entries. Probability and Mathematical Physics. 2021;2(2):221-280. doi:10.2140/pmp.2021.2.221 apa: Alt, J., Erdös, L., & Krüger, T. H. (2021). Spectral radius of random matrices with independent entries. Probability and Mathematical Physics. Mathematical Sciences Publishers. https://doi.org/10.2140/pmp.2021.2.221 chicago: Alt, Johannes, László Erdös, and Torben H Krüger. “Spectral Radius of Random Matrices with Independent Entries.” Probability and Mathematical Physics. Mathematical Sciences Publishers, 2021. https://doi.org/10.2140/pmp.2021.2.221. ieee: J. Alt, L. Erdös, and T. H. Krüger, “Spectral radius of random matrices with independent entries,” Probability and Mathematical Physics, vol. 2, no. 2. Mathematical Sciences Publishers, pp. 221–280, 2021. ista: Alt J, Erdös L, Krüger TH. 2021. Spectral radius of random matrices with independent entries. Probability and Mathematical Physics. 2(2), 221–280. mla: Alt, Johannes, et al. “Spectral Radius of Random Matrices with Independent Entries.” Probability and Mathematical Physics, vol. 2, no. 2, Mathematical Sciences Publishers, 2021, pp. 221–80, doi:10.2140/pmp.2021.2.221. short: J. Alt, L. Erdös, T.H. Krüger, Probability and Mathematical Physics 2 (2021) 221–280. date_created: 2024-02-18T23:01:03Z date_published: 2021-05-21T00:00:00Z date_updated: 2024-02-19T08:30:00Z day: '21' department: - _id: LaEr doi: 10.2140/pmp.2021.2.221 ec_funded: 1 external_id: arxiv: - '1907.13631' intvolume: ' 2' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.1907.13631 month: '05' oa: 1 oa_version: Preprint page: 221-280 project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication: Probability and Mathematical Physics publication_identifier: eissn: - 2690-1005 issn: - 2690-0998 publication_status: published publisher: Mathematical Sciences Publishers quality_controlled: '1' scopus_import: '1' status: public title: Spectral radius of random matrices with independent entries type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2021' ... --- _id: '9887' abstract: - lang: eng text: Clathrin-mediated endocytosis is the major route of entry of cargos into cells and thus underpins many physiological processes. During endocytosis, an area of flat membrane is remodeled by proteins to create a spherical vesicle against intracellular forces. The protein machinery which mediates this membrane bending in plants is unknown. However, it is known that plant endocytosis is actin independent, thus indicating that plants utilize a unique mechanism to mediate membrane bending against high-turgor pressure compared to other model systems. Here, we investigate the TPLATE complex, a plant-specific endocytosis protein complex. It has been thought to function as a classical adaptor functioning underneath the clathrin coat. However, by using biochemical and advanced live microscopy approaches, we found that TPLATE is peripherally associated with clathrin-coated vesicles and localizes at the rim of endocytosis events. As this localization is more fitting to the protein machinery involved in membrane bending during endocytosis, we examined cells in which the TPLATE complex was disrupted and found that the clathrin structures present as flat patches. This suggests a requirement of the TPLATE complex for membrane bending during plant clathrin–mediated endocytosis. Next, we used in vitro biophysical assays to confirm that the TPLATE complex possesses protein domains with intrinsic membrane remodeling activity. These results redefine the role of the TPLATE complex and implicate it as a key component of the evolutionarily distinct plant endocytosis mechanism, which mediates endocytic membrane bending against the high-turgor pressure in plant cells. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: Bio acknowledgement: 'We gratefully thank Julie Neveu and Dr. Amanda Barranco of the Grégory Vert laboratory for help preparing plants in France, Dr. Zuzana Gelova for help and advice with protoplast generation, Dr. Stéphane Vassilopoulos and Dr. Florian Schur for advice regarding EM tomography, Alejandro Marquiegui Alvaro for help with material generation, and Dr. Lukasz Kowalski for generously gifting us the mWasabi protein. This research was supported by the Scientific Service Units of Institute of Science and Technology Austria (IST Austria) through resources provided by the Electron Microscopy Facility, Lab Support Facility (particularly Dorota Jaworska), and the Bioimaging Facility. We acknowledge the Advanced Microscopy Facility of the Vienna BioCenter Core Facilities for use of the 3D SIM. For the mass spectrometry analysis of proteins, we acknowledge the University of Natural Resources and Life Sciences (BOKU) Core Facility Mass Spectrometry. This work was supported by the following funds: A.J. is supported by funding from the Austrian Science Fund I3630B25 to J.F. P.M. and E.B. are supported by Agence Nationale de la Recherche ANR-11-EQPX-0029 Morphoscope2 and ANR-10-INBS-04 France BioImaging. S.Y.B. is supported by the NSF No. 1121998 and 1614915. J.W. and D.V.D. are supported by the European Research Council Grant 682436 (to D.V.D.), a China Scholarship Council Grant 201508440249 (to J.W.), and by a Ghent University Special Research Co-funding Grant ST01511051 (to J.W.).' article_number: e2113046118 article_processing_charge: No article_type: original author: - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Dana A full_name: Dahhan, Dana A last_name: Dahhan - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden orcid: 0000-0002-9438-4783 - first_name: Tommaso full_name: Costanzo, Tommaso id: D93824F4-D9BA-11E9-BB12-F207E6697425 last_name: Costanzo orcid: 0000-0001-9732-3815 - first_name: Pierre full_name: Mahou, Pierre last_name: Mahou - first_name: Mónika full_name: Hrtyan, Mónika id: 45A71A74-F248-11E8-B48F-1D18A9856A87 last_name: Hrtyan - first_name: Jie full_name: Wang, Jie last_name: Wang - first_name: Juan L full_name: Aguilera Servin, Juan L id: 2A67C376-F248-11E8-B48F-1D18A9856A87 last_name: Aguilera Servin orcid: 0000-0002-2862-8372 - first_name: Daniël full_name: van Damme, Daniël last_name: van Damme - first_name: Emmanuel full_name: Beaurepaire, Emmanuel last_name: Beaurepaire - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Sebastian Y full_name: Bednarek, Sebastian Y last_name: Bednarek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Johnson AJ, Dahhan DA, Gnyliukh N, et al. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. 2021;118(51). doi:10.1073/pnas.2113046118 apa: Johnson, A. J., Dahhan, D. A., Gnyliukh, N., Kaufmann, W., Zheden, V., Costanzo, T., … Friml, J. (2021). The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. National Academy of Sciences. https://doi.org/10.1073/pnas.2113046118 chicago: Johnson, Alexander J, Dana A Dahhan, Nataliia Gnyliukh, Walter Kaufmann, Vanessa Zheden, Tommaso Costanzo, Pierre Mahou, et al. “The TPLATE Complex Mediates Membrane Bending during Plant Clathrin-Mediated Endocytosis.” Proceedings of the National Academy of Sciences. National Academy of Sciences, 2021. https://doi.org/10.1073/pnas.2113046118. ieee: A. J. Johnson et al., “The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis,” Proceedings of the National Academy of Sciences, vol. 118, no. 51. National Academy of Sciences, 2021. ista: Johnson AJ, Dahhan DA, Gnyliukh N, Kaufmann W, Zheden V, Costanzo T, Mahou P, Hrtyan M, Wang J, Aguilera Servin JL, van Damme D, Beaurepaire E, Loose M, Bednarek SY, Friml J. 2021. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. 118(51), e2113046118. mla: Johnson, Alexander J., et al. “The TPLATE Complex Mediates Membrane Bending during Plant Clathrin-Mediated Endocytosis.” Proceedings of the National Academy of Sciences, vol. 118, no. 51, e2113046118, National Academy of Sciences, 2021, doi:10.1073/pnas.2113046118. short: A.J. Johnson, D.A. Dahhan, N. Gnyliukh, W. Kaufmann, V. Zheden, T. Costanzo, P. Mahou, M. Hrtyan, J. Wang, J.L. Aguilera Servin, D. van Damme, E. Beaurepaire, M. Loose, S.Y. Bednarek, J. Friml, Proceedings of the National Academy of Sciences 118 (2021). date_created: 2021-08-11T14:11:43Z date_published: 2021-12-14T00:00:00Z date_updated: 2024-02-19T11:06:09Z day: '14' ddc: - '580' department: - _id: JiFr - _id: MaLo - _id: EvBe - _id: EM-Fac - _id: NanoFab doi: 10.1073/pnas.2113046118 external_id: isi: - '000736417600043' pmid: - '34907016' file: - access_level: open_access checksum: 8d01e72e22c4fb1584e72d8601947069 content_type: application/pdf creator: cchlebak date_created: 2021-12-15T08:59:40Z date_updated: 2021-12-15T08:59:40Z file_id: '10546' file_name: 2021_PNAS_Johnson.pdf file_size: 2757340 relation: main_file success: 1 file_date_updated: 2021-12-15T08:59:40Z has_accepted_license: '1' intvolume: ' 118' isi: 1 issue: '51' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' related_material: link: - relation: earlier_version url: https://doi.org/10.1101/2021.04.26.441441 record: - id: '14510' relation: dissertation_contains status: public - id: '14988' relation: research_data status: public status: public title: The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 118 year: '2021' ... --- _id: '14984' abstract: - lang: eng text: Hybrid zones are narrow geographic regions where different populations, races or interbreeding species meet and mate, producing mixed ‘hybrid’ offspring. They are relatively common and can be found in a diverse range of organisms and environments. The study of hybrid zones has played an important role in our understanding of the origin of species, with hybrid zones having been described as ‘natural laboratories’. This is because they allow us to study,in situ, the conditions and evolutionary forces that enable divergent taxa to remain distinct despite some ongoing gene exchange between them. article_processing_charge: No author: - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Daria full_name: Shipilina, Daria id: 428A94B0-F248-11E8-B48F-1D18A9856A87 last_name: Shipilina orcid: 0000-0002-1145-9226 - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 citation: ama: 'Stankowski S, Shipilina D, Westram AM. Hybrid Zones. In: Encyclopedia of Life Sciences. Vol 2. eLS. Wiley; 2021. doi:10.1002/9780470015902.a0029355' apa: Stankowski, S., Shipilina, D., & Westram, A. M. (2021). Hybrid Zones. In Encyclopedia of Life Sciences (Vol. 2). Wiley. https://doi.org/10.1002/9780470015902.a0029355 chicago: Stankowski, Sean, Daria Shipilina, and Anja M Westram. “Hybrid Zones.” In Encyclopedia of Life Sciences, Vol. 2. ELS. Wiley, 2021. https://doi.org/10.1002/9780470015902.a0029355. ieee: S. Stankowski, D. Shipilina, and A. M. Westram, “Hybrid Zones,” in Encyclopedia of Life Sciences, vol. 2, Wiley, 2021. ista: 'Stankowski S, Shipilina D, Westram AM. 2021.Hybrid Zones. In: Encyclopedia of Life Sciences. vol. 2.' mla: Stankowski, Sean, et al. “Hybrid Zones.” Encyclopedia of Life Sciences, vol. 2, Wiley, 2021, doi:10.1002/9780470015902.a0029355. short: S. Stankowski, D. Shipilina, A.M. Westram, in:, Encyclopedia of Life Sciences, Wiley, 2021. date_created: 2024-02-14T12:05:50Z date_published: 2021-05-28T00:00:00Z date_updated: 2024-02-19T09:54:18Z day: '28' department: - _id: NiBa doi: 10.1002/9780470015902.a0029355 intvolume: ' 2' language: - iso: eng month: '05' oa_version: None publication: Encyclopedia of Life Sciences publication_identifier: eisbn: - '9780470015902' isbn: - '9780470016176' publication_status: published publisher: Wiley quality_controlled: '1' series_title: eLS status: public title: Hybrid Zones type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2021' ... --- _id: '14987' abstract: - lang: eng text: "The goal of zero-shot learning is to construct a classifier that can identify object classes for which no training examples are available. When training data for some of the object classes is available but not for others, the name generalized zero-shot learning is commonly used.\r\nIn a wider sense, the phrase zero-shot is also used to describe other machine learning-based approaches that require no training data from the problem of interest, such as zero-shot action recognition or zero-shot machine translation." article_processing_charge: No author: - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 citation: ama: 'Lampert C. Zero-Shot Learning. In: Ikeuchi K, ed. Computer Vision. 2nd ed. Cham: Springer; 2021:1395-1397. doi:10.1007/978-3-030-63416-2_874' apa: 'Lampert, C. (2021). Zero-Shot Learning. In K. Ikeuchi (Ed.), Computer Vision (2nd ed., pp. 1395–1397). Cham: Springer. https://doi.org/10.1007/978-3-030-63416-2_874' chicago: 'Lampert, Christoph. “Zero-Shot Learning.” In Computer Vision, edited by Katsushi Ikeuchi, 2nd ed., 1395–97. Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-63416-2_874.' ieee: 'C. Lampert, “Zero-Shot Learning,” in Computer Vision, 2nd ed., K. Ikeuchi, Ed. Cham: Springer, 2021, pp. 1395–1397.' ista: 'Lampert C. 2021.Zero-Shot Learning. In: Computer Vision. , 1395–1397.' mla: Lampert, Christoph. “Zero-Shot Learning.” Computer Vision, edited by Katsushi Ikeuchi, 2nd ed., Springer, 2021, pp. 1395–97, doi:10.1007/978-3-030-63416-2_874. short: C. Lampert, in:, K. Ikeuchi (Ed.), Computer Vision, 2nd ed., Springer, Cham, 2021, pp. 1395–1397. date_created: 2024-02-14T14:05:32Z date_published: 2021-10-13T00:00:00Z date_updated: 2024-02-19T10:59:04Z day: '13' department: - _id: ChLa doi: 10.1007/978-3-030-63416-2_874 edition: '2' editor: - first_name: Katsushi full_name: Ikeuchi, Katsushi last_name: Ikeuchi language: - iso: eng month: '10' oa_version: None page: 1395-1397 place: Cham publication: Computer Vision publication_identifier: eisbn: - '9783030634162' isbn: - '9783030634155' publication_status: published publisher: Springer quality_controlled: '1' status: public title: Zero-Shot Learning type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '14988' abstract: - lang: eng text: Raw data generated from the publication - The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis by Johnson et al., 2021 In PNAS article_processing_charge: No author: - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 citation: ama: Johnson AJ. Raw data from Johnson et al, PNAS, 2021. 2021. doi:10.5281/ZENODO.5747100 apa: Johnson, A. J. (2021). Raw data from Johnson et al, PNAS, 2021. Zenodo. https://doi.org/10.5281/ZENODO.5747100 chicago: Johnson, Alexander J. “Raw Data from Johnson et Al, PNAS, 2021.” Zenodo, 2021. https://doi.org/10.5281/ZENODO.5747100. ieee: A. J. Johnson, “Raw data from Johnson et al, PNAS, 2021.” Zenodo, 2021. ista: Johnson AJ. 2021. Raw data from Johnson et al, PNAS, 2021, Zenodo, 10.5281/ZENODO.5747100. mla: Johnson, Alexander J. Raw Data from Johnson et Al, PNAS, 2021. Zenodo, 2021, doi:10.5281/ZENODO.5747100. short: A.J. Johnson, (2021). date_created: 2024-02-14T14:13:48Z date_published: 2021-12-01T00:00:00Z date_updated: 2024-02-19T11:06:09Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.5281/ZENODO.5747100 has_accepted_license: '1' main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.5747100 month: '12' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '9887' relation: used_in_publication status: public status: public title: Raw data from Johnson et al, PNAS, 2021 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '10029' abstract: - lang: eng text: Superconductor-semiconductor hybrids are platforms for realizing effective p-wave superconductivity. Spin-orbit coupling, combined with the proximity effect, causes the two-dimensional semiconductor to inherit p±ip intraband pairing, and application of magnetic field can then result in transitions to the normal state, partial Bogoliubov Fermi surfaces, or topological phases with Majorana modes. Experimentally probing the hybrid superconductor-semiconductor interface is challenging due to the shunting effect of the conventional superconductor. Consequently, the nature of induced pairing remains an open question. Here, we use the circuit quantum electrodynamics architecture to probe induced superconductivity in a two dimensional Al-InAs hybrid system. We observe a strong suppression of superfluid density and enhanced dissipation driven by magnetic field, which cannot be accounted for by the depairing theory of an s-wave superconductor. These observations are explained by a picture of independent intraband p±ip superconductors giving way to partial Bogoliubov Fermi surfaces, and allow for the first characterization of key properties of the hybrid superconducting system. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: This research was supported by the Scientific Service Units of IST Austria through resources provided by the MIBA Machine Shop and the nanofabrication facility. JS and AG were supported by funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No.754411. article_number: '2107.03695' article_processing_charge: No author: - first_name: Duc T full_name: Phan, Duc T id: 29C8C0B4-F248-11E8-B48F-1D18A9856A87 last_name: Phan - first_name: Jorden L full_name: Senior, Jorden L id: 5479D234-2D30-11EA-89CC-40953DDC885E last_name: Senior orcid: 0000-0002-0672-9295 - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: M. full_name: Hatefipour, M. last_name: Hatefipour - first_name: W. M. full_name: Strickland, W. M. last_name: Strickland - first_name: J. full_name: Shabani, J. last_name: Shabani - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 citation: ama: Phan DT, Senior JL, Ghazaryan A, et al. Breakdown of induced p±ip pairing in a superconductor-semiconductor hybrid. arXiv. apa: Phan, D. T., Senior, J. L., Ghazaryan, A., Hatefipour, M., Strickland, W. M., Shabani, J., … Higginbotham, A. P. (n.d.). Breakdown of induced p±ip pairing in a superconductor-semiconductor hybrid. arXiv. chicago: Phan, Duc T, Jorden L Senior, Areg Ghazaryan, M. Hatefipour, W. M. Strickland, J. Shabani, Maksym Serbyn, and Andrew P Higginbotham. “Breakdown of Induced P±ip Pairing in a Superconductor-Semiconductor Hybrid.” ArXiv, n.d. ieee: D. T. Phan et al., “Breakdown of induced p±ip pairing in a superconductor-semiconductor hybrid,” arXiv. . ista: Phan DT, Senior JL, Ghazaryan A, Hatefipour M, Strickland WM, Shabani J, Serbyn M, Higginbotham AP. Breakdown of induced p±ip pairing in a superconductor-semiconductor hybrid. arXiv, 2107.03695. mla: Phan, Duc T., et al. “Breakdown of Induced P±ip Pairing in a Superconductor-Semiconductor Hybrid.” ArXiv, 2107.03695. short: D.T. Phan, J.L. Senior, A. Ghazaryan, M. Hatefipour, W.M. Strickland, J. Shabani, M. Serbyn, A.P. Higginbotham, ArXiv (n.d.). date_created: 2021-09-21T08:41:02Z date_published: 2021-07-08T00:00:00Z date_updated: 2024-02-21T12:36:52Z day: '08' department: - _id: MaSe - _id: AnHi - _id: MiLe ec_funded: 1 external_id: arxiv: - '2107.03695' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2107.03695 month: '07' oa: 1 oa_version: Preprint project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: arXiv publication_status: submitted related_material: record: - id: '10851' relation: later_version status: public - id: '9636' relation: research_data status: public status: public title: Breakdown of induced p±ip pairing in a superconductor-semiconductor hybrid type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9291' abstract: - lang: eng text: "This .zip File contains the transport data for figures presented in the main text and supplementary material of \"Enhancement of Proximity Induced Superconductivity in Planar Germanium\" by K. Aggarwal, et. al. \r\nThe measurements were done using Labber Software and the data is stored in the hdf5 file format. The files can be opened using either the Labber Log Browser (https://labber.org/overview/) or Labber Python API (http://labber.org/online-doc/api/LogFile.html)." article_processing_charge: No author: - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X citation: ama: 'Katsaros G. Raw transport data for: Enhancement of proximity induced superconductivity in planar germanium. 2021. doi:10.15479/AT:ISTA:9291' apa: 'Katsaros, G. (2021). Raw transport data for: Enhancement of proximity induced superconductivity in planar germanium. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:9291' chicago: 'Katsaros, Georgios. “Raw Transport Data for: Enhancement of Proximity Induced Superconductivity in Planar Germanium.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/AT:ISTA:9291.' ieee: 'G. Katsaros, “Raw transport data for: Enhancement of proximity induced superconductivity in planar germanium.” Institute of Science and Technology Austria, 2021.' ista: 'Katsaros G. 2021. Raw transport data for: Enhancement of proximity induced superconductivity in planar germanium, Institute of Science and Technology Austria, 10.15479/AT:ISTA:9291.' mla: 'Katsaros, Georgios. Raw Transport Data for: Enhancement of Proximity Induced Superconductivity in Planar Germanium. Institute of Science and Technology Austria, 2021, doi:10.15479/AT:ISTA:9291.' short: G. Katsaros, (2021). date_created: 2021-03-27T13:47:49Z date_published: 2021-03-29T00:00:00Z date_updated: 2024-02-21T12:37:14Z day: '29' ddc: - '530' department: - _id: GeKa doi: 10.15479/AT:ISTA:9291 file: - access_level: open_access checksum: 635df3c08fc13c3dac008cd421aefbe4 content_type: application/x-zip-compressed creator: gkatsaro date_created: 2021-03-27T13:46:17Z date_updated: 2021-03-27T13:46:17Z file_id: '9292' file_name: Raw Data- Enhancement of Superconductivity in a Planar Ge hole gas.zip file_size: 10616071 relation: main_file success: 1 - access_level: open_access checksum: 12b3ca69ae7509a346711baae0b02a75 content_type: text/plain creator: dernst date_created: 2021-04-01T07:52:56Z date_updated: 2021-04-01T07:52:56Z file_id: '9302' file_name: README.txt file_size: 470 relation: main_file success: 1 file_date_updated: 2021-04-01T07:52:56Z has_accepted_license: '1' license: https://creativecommons.org/publicdomain/zero/1.0/ month: '03' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria status: public title: 'Raw transport data for: Enhancement of proximity induced superconductivity in planar germanium' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9636' article_processing_charge: No author: - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 citation: ama: Higginbotham AP. Data for “Breakdown of induced p ± ip pairing in a superconductor-semiconductor hybrid.” 2021. apa: Higginbotham, A. P. (2021). Data for “Breakdown of induced p ± ip pairing in a superconductor-semiconductor hybrid.” Institute of Science and Technology Austria. chicago: Higginbotham, Andrew P. “Data for ‘Breakdown of Induced p ± Ip Pairing in a Superconductor-Semiconductor Hybrid.’” Institute of Science and Technology Austria, 2021. ieee: A. P. Higginbotham, “Data for ‘Breakdown of induced p ± ip pairing in a superconductor-semiconductor hybrid.’” Institute of Science and Technology Austria, 2021. ista: Higginbotham AP. 2021. Data for ‘Breakdown of induced p ± ip pairing in a superconductor-semiconductor hybrid’, Institute of Science and Technology Austria. mla: Higginbotham, Andrew P. Data for “Breakdown of Induced p ± Ip Pairing in a Superconductor-Semiconductor Hybrid.” Institute of Science and Technology Austria, 2021. short: A.P. Higginbotham, (2021). date_created: 2021-07-07T20:43:10Z date_published: 2021-01-01T00:00:00Z date_updated: 2024-02-21T12:36:52Z department: - _id: AnHi file: - access_level: open_access checksum: 18e90687ec7bbd75f8bfea4d8293fb30 content_type: application/zip creator: ahigginb date_created: 2021-07-07T20:37:28Z date_updated: 2021-07-07T20:37:28Z file_id: '9637' file_name: figures_data.zip file_size: 3345244 relation: main_file success: 1 file_date_updated: 2021-07-07T20:37:28Z has_accepted_license: '1' oa: 1 oa_version: Submitted Version publisher: Institute of Science and Technology Austria related_material: record: - id: '10029' relation: used_in_publication status: public status: public title: Data for "Breakdown of induced p ± ip pairing in a superconductor-semiconductor hybrid" tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '8910' abstract: - lang: eng text: A semiconducting nanowire fully wrapped by a superconducting shell has been proposed as a platform for obtaining Majorana modes at small magnetic fields. In this study, we demonstrate that the appearance of subgap states in such structures is actually governed by the junction region in tunneling spectroscopy measurements and not the full-shell nanowire itself. Short tunneling regions never show subgap states, whereas longer junctions always do. This can be understood in terms of quantum dots forming in the junction and hosting Andreev levels in the Yu-Shiba-Rusinov regime. The intricate magnetic field dependence of the Andreev levels, through both the Zeeman and Little-Parks effects, may result in robust zero-bias peaks—features that could be easily misinterpreted as originating from Majorana zero modes but are unrelated to topological superconductivity. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: The authors thank A. Higginbotham, E. J. H. Lee and F. R. Martins for helpful discussions. This research was supported by the Scientific Service Units of IST Austria through resources provided by the MIBA Machine Shop and the nanofabrication facility; the NOMIS Foundation and Microsoft; the European Union’s Horizon 2020 research and innovation program under the Marie SklodowskaCurie grant agreement No 844511; the FETOPEN Grant Agreement No. 828948; the European Research Commission through the grant agreement HEMs-DAM No 716655; the Spanish Ministry of Science and Innovation through Grants PGC2018-097018-B-I00, PCI2018-093026, FIS2016-80434-P (AEI/FEDER, EU), RYC2011-09345 (Ram´on y Cajal Programme), and the Mar´ıa de Maeztu Programme for Units of Excellence in R&D (CEX2018-000805-M); the CSIC Research Platform on Quantum Technologies PTI-001. article_number: 82-88 article_processing_charge: No article_type: original author: - first_name: Marco full_name: Valentini, Marco id: C0BB2FAC-D767-11E9-B658-BC13E6697425 last_name: Valentini - first_name: Fernando full_name: Peñaranda, Fernando last_name: Peñaranda - first_name: Andrea C full_name: Hofmann, Andrea C id: 340F461A-F248-11E8-B48F-1D18A9856A87 last_name: Hofmann - first_name: Matthias full_name: Brauns, Matthias id: 33F94E3C-F248-11E8-B48F-1D18A9856A87 last_name: Brauns - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Peter full_name: Krogstrup, Peter last_name: Krogstrup - first_name: Pablo full_name: San-Jose, Pablo last_name: San-Jose - first_name: Elsa full_name: Prada, Elsa last_name: Prada - first_name: Ramón full_name: Aguado, Ramón last_name: Aguado - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X citation: ama: Valentini M, Peñaranda F, Hofmann AC, et al. Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science. 2021;373(6550). doi:10.1126/science.abf1513 apa: Valentini, M., Peñaranda, F., Hofmann, A. C., Brauns, M., Hauschild, R., Krogstrup, P., … Katsaros, G. (2021). Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.abf1513 chicago: Valentini, Marco, Fernando Peñaranda, Andrea C Hofmann, Matthias Brauns, Robert Hauschild, Peter Krogstrup, Pablo San-Jose, Elsa Prada, Ramón Aguado, and Georgios Katsaros. “Nontopological Zero-Bias Peaks in Full-Shell Nanowires Induced by Flux-Tunable Andreev States.” Science. American Association for the Advancement of Science, 2021. https://doi.org/10.1126/science.abf1513. ieee: M. Valentini et al., “Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states,” Science, vol. 373, no. 6550. American Association for the Advancement of Science, 2021. ista: Valentini M, Peñaranda F, Hofmann AC, Brauns M, Hauschild R, Krogstrup P, San-Jose P, Prada E, Aguado R, Katsaros G. 2021. Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science. 373(6550), 82–88. mla: Valentini, Marco, et al. “Nontopological Zero-Bias Peaks in Full-Shell Nanowires Induced by Flux-Tunable Andreev States.” Science, vol. 373, no. 6550, 82–88, American Association for the Advancement of Science, 2021, doi:10.1126/science.abf1513. short: M. Valentini, F. Peñaranda, A.C. Hofmann, M. Brauns, R. Hauschild, P. Krogstrup, P. San-Jose, E. Prada, R. Aguado, G. Katsaros, Science 373 (2021). date_created: 2020-12-02T10:51:52Z date_published: 2021-07-02T00:00:00Z date_updated: 2024-02-21T12:40:09Z day: '02' department: - _id: GeKa - _id: Bio doi: 10.1126/science.abf1513 ec_funded: 1 external_id: arxiv: - '2008.02348' isi: - '000677843100034' intvolume: ' 373' isi: 1 issue: '6550' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2008.02348 month: '07' oa: 1 oa_version: Submitted Version project: - _id: 262116AA-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices - _id: 26A151DA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '844511' name: Majorana bound states in Ge/SiGe heterostructures publication: Science publication_identifier: eissn: - '10959203' issn: - '00368075' publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/unfinding-a-split-electron/ record: - id: '13286' relation: dissertation_contains status: public - id: '9389' relation: research_data status: public scopus_import: '1' status: public title: Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 373 year: '2021' ... --- _id: '9323' abstract: - lang: eng text: This .zip File contains the data for figures presented in the main text and supplementary material of "A singlet triplet hole spin qubit in planar Ge" by D. Jirovec, et. al. The measurements were done using Labber Software and the data is stored in the hdf5 file format. The files can be opened using either the Labber Log Browser (https://labber.org/overview/) or Labber Python API (http://labber.org/online-doc/api/LogFile.html). A single file is acquired with QCodes and features the corresponding data type. XRD data are in .dat format and a code to open the data is provided. The code for simulations is as well provided in Python. article_processing_charge: No author: - first_name: Daniel full_name: Jirovec, Daniel id: 4C473F58-F248-11E8-B48F-1D18A9856A87 last_name: Jirovec orcid: 0000-0002-7197-4801 citation: ama: Jirovec D. Research data for “A singlet-triplet hole spin qubit planar Ge.” 2021. doi:10.15479/AT:ISTA:9323 apa: Jirovec, D. (2021). Research data for “A singlet-triplet hole spin qubit planar Ge.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:9323 chicago: Jirovec, Daniel. “Research Data for ‘A Singlet-Triplet Hole Spin Qubit Planar Ge.’” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/AT:ISTA:9323. ieee: D. Jirovec, “Research data for ‘A singlet-triplet hole spin qubit planar Ge.’” Institute of Science and Technology Austria, 2021. ista: Jirovec D. 2021. Research data for ‘A singlet-triplet hole spin qubit planar Ge’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:9323. mla: Jirovec, Daniel. Research Data for “A Singlet-Triplet Hole Spin Qubit Planar Ge.” Institute of Science and Technology Austria, 2021, doi:10.15479/AT:ISTA:9323. short: D. Jirovec, (2021). contributor: - contributor_type: project_member first_name: Daniel id: 4C473F58-F248-11E8-B48F-1D18A9856A87 last_name: Jirovec date_created: 2021-04-14T09:50:22Z date_published: 2021-04-14T00:00:00Z date_updated: 2024-02-21T12:39:15Z day: '14' ddc: - '530' department: - _id: GradSch - _id: GeKa doi: 10.15479/AT:ISTA:9323 file: - access_level: open_access checksum: c569d2a2ce1694445cdbca19cf8ae023 content_type: application/x-zip-compressed creator: djirovec date_created: 2021-04-14T09:48:47Z date_updated: 2021-04-14T09:48:47Z file_id: '9324' file_name: DataRepositorySTqubit.zip file_size: 221832287 relation: main_file success: 1 - access_level: open_access checksum: 845bdf87430718ad6aff47eda7b5fc92 content_type: application/octet-stream creator: djirovec date_created: 2021-04-14T09:49:30Z date_updated: 2021-04-14T09:49:30Z file_id: '9325' file_name: ReadMe file_size: 4323 relation: main_file success: 1 file_date_updated: 2021-04-14T09:49:30Z has_accepted_license: '1' month: '04' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '8909' relation: used_in_publication status: public status: public title: Research data for "A singlet-triplet hole spin qubit planar Ge" tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9389' abstract: - lang: eng text: "This .zip File contains the transport data for \"Non-topological zero bias peaks in full-shell nanowires induced by flux tunable Andreev states\" by M. Valentini, et. al. \r\nThe measurements were done using Labber Software and the data is stored in the hdf5 file format.\r\nInstructions of how to read the data are in \"Notebook_Valentini.pdf\"." acknowledged_ssus: - _id: NanoFab article_processing_charge: No author: - first_name: Marco full_name: Valentini, Marco id: C0BB2FAC-D767-11E9-B658-BC13E6697425 last_name: Valentini citation: ama: Valentini M. Research data for “Non-topological zero bias peaks in full-shell nanowires induced by flux tunable Andreev states.” 2021. doi:10.15479/AT:ISTA:9389 apa: Valentini, M. (2021). Research data for “Non-topological zero bias peaks in full-shell nanowires induced by flux tunable Andreev states.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:9389 chicago: Valentini, Marco. “Research Data for ‘Non-Topological Zero Bias Peaks in Full-Shell Nanowires Induced by Flux Tunable Andreev States.’” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/AT:ISTA:9389. ieee: M. Valentini, “Research data for ‘Non-topological zero bias peaks in full-shell nanowires induced by flux tunable Andreev states.’” Institute of Science and Technology Austria, 2021. ista: Valentini M. 2021. Research data for ‘Non-topological zero bias peaks in full-shell nanowires induced by flux tunable Andreev states’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:9389. mla: Valentini, Marco. Research Data for “Non-Topological Zero Bias Peaks in Full-Shell Nanowires Induced by Flux Tunable Andreev States.” Institute of Science and Technology Austria, 2021, doi:10.15479/AT:ISTA:9389. short: M. Valentini, (2021). contributor: - contributor_type: contact_person first_name: Marco id: C0BB2FAC-D767-11E9-B658-BC13E6697425 last_name: Valentini date_created: 2021-05-14T12:07:53Z date_published: 2021-01-01T00:00:00Z date_updated: 2024-02-21T12:40:09Z ddc: - '530' department: - _id: GradSch - _id: GeKa doi: 10.15479/AT:ISTA:9389 file: - access_level: open_access checksum: 80a905c4eef24dab6fb247e81a3d67f5 content_type: application/pdf creator: mvalenti date_created: 2021-05-14T11:42:23Z date_updated: 2021-05-14T11:42:23Z file_id: '9390' file_name: Notebook_Valentini.pdf file_size: 10572981 relation: main_file - access_level: open_access checksum: 1e61a7e63949448a8db0091cdac23570 content_type: application/x-zip-compressed creator: mvalenti date_created: 2021-05-14T11:56:48Z date_updated: 2021-05-14T11:56:48Z file_id: '9391' file_name: Experimental_data.zip file_size: 99076111 relation: main_file file_date_updated: 2021-05-14T11:56:48Z has_accepted_license: '1' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '8910' relation: used_in_publication status: public status: public title: Research data for "Non-topological zero bias peaks in full-shell nanowires induced by flux tunable Andreev states" tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '10559' abstract: - lang: eng text: Hole gases in planar germanium can have high mobilities in combination with strong spin-orbit interaction and electrically tunable g factors, and are therefore emerging as a promising platform for creating hybrid superconductor-semiconductor devices. A key challenge towards hybrid Ge-based quantum technologies is the design of high-quality interfaces and superconducting contacts that are robust against magnetic fields. In this work, by combining the assets of aluminum, which provides good contact to the Ge, and niobium, which has a significant superconducting gap, we demonstrate highly transparent low-disordered JoFETs with relatively large ICRN products that are capable of withstanding high magnetic fields. We furthermore demonstrate the ability of phase-biasing individual JoFETs, opening up an avenue to explore topological superconductivity in planar Ge. The persistence of superconductivity in the reported hybrid devices beyond 1.8 T paves the way towards integrating spin qubits and proximity-induced superconductivity on the same chip. acknowledged_ssus: - _id: NanoFab - _id: M-Shop acknowledgement: This research and related results were made possible with the support of the NOMIS Foundation. This research was supported by the Scientific Service Units of IST Austria through resources provided by the MIBA Machine Shop and the nanofabrication facility, the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant agreement No. 844511 Grant Agreement No. 862046. ICN2 acknowledge funding from Generalitat de Catalunya 2017 SGR 327. ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya. Part of the present work has been performed in the framework of Universitat Autnoma de Barcelona Materials Science PhD program. The HAADF-STEM microscopy was conducted in the Laboratorio de Microscopias Avanzadas at Instituto de Nanociencia de Aragon-Universidad de Zaragoza. Authors acknowledge the LMA-INA for offering access to their instruments and expertise. We acknowledge support from CSIC Research Platform on Quantum Technologies PTI-001. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 823717 ESTEEM3. M.B. acknowledges support from SUR Generalitat de Catalunya and the EU Social Fund; project ref. 2020 FI 00103. G.S. and M.V. acknowledge support through a projectruimte grant associated with the Netherlands Organization of Scientific Research (NWO). J.D. acknowledges support through FRIPRO-project 274853, which is funded by the Research Council of Norway. article_number: L022005 article_processing_charge: No article_type: original author: - first_name: Kushagra full_name: Aggarwal, Kushagra id: b22ab905-3539-11eb-84c3-fc159dcd79cb last_name: Aggarwal orcid: 0000-0001-9985-9293 - first_name: Andrea C full_name: Hofmann, Andrea C id: 340F461A-F248-11E8-B48F-1D18A9856A87 last_name: Hofmann - first_name: Daniel full_name: Jirovec, Daniel id: 4C473F58-F248-11E8-B48F-1D18A9856A87 last_name: Jirovec orcid: 0000-0002-7197-4801 - first_name: Ivan full_name: Prieto Gonzalez, Ivan id: 2A307FE2-F248-11E8-B48F-1D18A9856A87 last_name: Prieto Gonzalez orcid: 0000-0002-7370-5357 - first_name: Amir full_name: Sammak, Amir last_name: Sammak - first_name: Marc full_name: Botifoll, Marc last_name: Botifoll - first_name: Sara full_name: Martí-Sánchez, Sara last_name: Martí-Sánchez - first_name: Menno full_name: Veldhorst, Menno last_name: Veldhorst - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Giordano full_name: Scappucci, Giordano last_name: Scappucci - first_name: Jeroen full_name: Danon, Jeroen last_name: Danon - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X citation: ama: Aggarwal K, Hofmann AC, Jirovec D, et al. Enhancement of proximity-induced superconductivity in a planar Ge hole gas. Physical Review Research. 2021;3(2). doi:10.1103/physrevresearch.3.l022005 apa: Aggarwal, K., Hofmann, A. C., Jirovec, D., Prieto Gonzalez, I., Sammak, A., Botifoll, M., … Katsaros, G. (2021). Enhancement of proximity-induced superconductivity in a planar Ge hole gas. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.3.l022005 chicago: Aggarwal, Kushagra, Andrea C Hofmann, Daniel Jirovec, Ivan Prieto Gonzalez, Amir Sammak, Marc Botifoll, Sara Martí-Sánchez, et al. “Enhancement of Proximity-Induced Superconductivity in a Planar Ge Hole Gas.” Physical Review Research. American Physical Society, 2021. https://doi.org/10.1103/physrevresearch.3.l022005. ieee: K. Aggarwal et al., “Enhancement of proximity-induced superconductivity in a planar Ge hole gas,” Physical Review Research, vol. 3, no. 2. American Physical Society, 2021. ista: Aggarwal K, Hofmann AC, Jirovec D, Prieto Gonzalez I, Sammak A, Botifoll M, Martí-Sánchez S, Veldhorst M, Arbiol J, Scappucci G, Danon J, Katsaros G. 2021. Enhancement of proximity-induced superconductivity in a planar Ge hole gas. Physical Review Research. 3(2), L022005. mla: Aggarwal, Kushagra, et al. “Enhancement of Proximity-Induced Superconductivity in a Planar Ge Hole Gas.” Physical Review Research, vol. 3, no. 2, L022005, American Physical Society, 2021, doi:10.1103/physrevresearch.3.l022005. short: K. Aggarwal, A.C. Hofmann, D. Jirovec, I. Prieto Gonzalez, A. Sammak, M. Botifoll, S. Martí-Sánchez, M. Veldhorst, J. Arbiol, G. Scappucci, J. Danon, G. Katsaros, Physical Review Research 3 (2021). date_created: 2021-12-16T18:50:57Z date_published: 2021-04-15T00:00:00Z date_updated: 2024-02-21T12:41:26Z day: '15' ddc: - '620' department: - _id: GeKa doi: 10.1103/physrevresearch.3.l022005 ec_funded: 1 external_id: arxiv: - '2012.00322' file: - access_level: open_access checksum: 60a1bc9c9b616b1b155044bb8cfc6484 content_type: application/pdf creator: cchlebak date_created: 2021-12-17T08:12:37Z date_updated: 2021-12-17T08:12:37Z file_id: '10561' file_name: 2021_PhysRevResearch_Aggarwal.pdf file_size: 1917512 relation: main_file success: 1 file_date_updated: 2021-12-17T08:12:37Z has_accepted_license: '1' intvolume: ' 3' issue: '2' keyword: - general engineering language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 26A151DA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '844511' name: Majorana bound states in Ge/SiGe heterostructures - _id: 237E5020-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862046' name: TOPOLOGICALLY PROTECTED AND SCALABLE QUANTUM BITS publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '8831' relation: earlier_version status: public - id: '8834' relation: research_data status: public scopus_import: '1' status: public title: Enhancement of proximity-induced superconductivity in a planar Ge hole gas tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 3 year: '2021' ... --- _id: '10166' abstract: - lang: eng text: While sexual reproduction is widespread among many taxa, asexual lineages have repeatedly evolved from sexual ancestors. Despite extensive research on the evolution of sex, it is still unclear whether this switch represents a major transition requiring major molecular reorganization, and how convergent the changes involved are. In this study, we investigated the phylogenetic relationship and patterns of gene expression of sexual and asexual lineages of Eurasian Artemia brine shrimp, to assess how gene expression patterns are affected by the transition to asexuality. We find only a few genes that are consistently associated with the evolution of asexuality, suggesting that this shift may not require an extensive overhauling of the meiotic machinery. While genes with sex-biased expression have high rates of expression divergence within Eurasian Artemia, neither female- nor male-biased genes appear to show unusual evolutionary patterns after sexuality is lost, contrary to theoretical expectations. acknowledged_ssus: - _id: ScienComp acknowledgement: We thank the Vicoso laboratory, Thomas Lenormand and Tanja Schwander for helpful discussions, the group of Gonzalo Gajardo, especially Cristian Gallardo-Escárate and Margarita Parraguez Donoso, for sequencing data and advice, and the IST Scientific Computing Group for their support. This work was supported by the European Research Council under the European Union's Horizon 2020 research and innovation program (grant agreement no. 715257). article_number: '20211720' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Ann K full_name: Huylmans, Ann K id: 4C0A3874-F248-11E8-B48F-1D18A9856A87 last_name: Huylmans orcid: 0000-0001-8871-4961 - first_name: Ariana full_name: Macon, Ariana id: 2A0848E2-F248-11E8-B48F-1D18A9856A87 last_name: Macon - first_name: Francisco full_name: Hontoria, Francisco last_name: Hontoria - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 citation: ama: 'Huylmans AK, Macon A, Hontoria F, Vicoso B. Transitions to asexuality and evolution of gene expression in Artemia brine shrimp. Proceedings of the Royal Society B: Biological Sciences. 2021;288(1959). doi:10.1098/rspb.2021.1720' apa: 'Huylmans, A. K., Macon, A., Hontoria, F., & Vicoso, B. (2021). Transitions to asexuality and evolution of gene expression in Artemia brine shrimp. Proceedings of the Royal Society B: Biological Sciences. The Royal Society. https://doi.org/10.1098/rspb.2021.1720' chicago: 'Huylmans, Ann K, Ariana Macon, Francisco Hontoria, and Beatriz Vicoso. “Transitions to Asexuality and Evolution of Gene Expression in Artemia Brine Shrimp.” Proceedings of the Royal Society B: Biological Sciences. The Royal Society, 2021. https://doi.org/10.1098/rspb.2021.1720.' ieee: 'A. K. Huylmans, A. Macon, F. Hontoria, and B. Vicoso, “Transitions to asexuality and evolution of gene expression in Artemia brine shrimp,” Proceedings of the Royal Society B: Biological Sciences, vol. 288, no. 1959. The Royal Society, 2021.' ista: 'Huylmans AK, Macon A, Hontoria F, Vicoso B. 2021. Transitions to asexuality and evolution of gene expression in Artemia brine shrimp. Proceedings of the Royal Society B: Biological Sciences. 288(1959), 20211720.' mla: 'Huylmans, Ann K., et al. “Transitions to Asexuality and Evolution of Gene Expression in Artemia Brine Shrimp.” Proceedings of the Royal Society B: Biological Sciences, vol. 288, no. 1959, 20211720, The Royal Society, 2021, doi:10.1098/rspb.2021.1720.' short: 'A.K. Huylmans, A. Macon, F. Hontoria, B. Vicoso, Proceedings of the Royal Society B: Biological Sciences 288 (2021).' date_created: 2021-10-21T07:46:06Z date_published: 2021-09-22T00:00:00Z date_updated: 2024-02-21T12:40:29Z day: '22' ddc: - '595' department: - _id: BeVi doi: 10.1098/rspb.2021.1720 ec_funded: 1 external_id: isi: - '000697643700001' pmid: - '34547909' file: - access_level: open_access checksum: 76e7f253b7040bca2ad76f82bd7c45c0 content_type: application/pdf creator: cchlebak date_created: 2021-10-22T11:48:02Z date_updated: 2021-10-22T11:48:02Z file_id: '10172' file_name: 2021_ProRoSocBBioSci_Huylmans.pdf file_size: 995806 relation: main_file success: 1 file_date_updated: 2021-10-22T11:48:02Z has_accepted_license: '1' intvolume: ' 288' isi: 1 issue: '1959' keyword: - asexual reproduction - parthenogenesis - sex-biased genes - sexual conflict - automixis - crustaceans language: - iso: eng month: '09' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 250BDE62-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715257' name: Prevalence and Influence of Sexual Antagonism on Genome Evolution publication: 'Proceedings of the Royal Society B: Biological Sciences' publication_identifier: eissn: - 1471-2954 issn: - 0962-8452 publication_status: published publisher: The Royal Society quality_controlled: '1' related_material: link: - relation: supplementary_material url: https://doi.org/10.6084/m9.figshare.c.5615488.v1 record: - id: '9949' relation: research_data status: public scopus_import: '1' status: public title: Transitions to asexuality and evolution of gene expression in Artemia brine shrimp tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 288 year: '2021' ... --- _id: '9192' abstract: - lang: eng text: Here are the research data underlying the publication " Effects of fine-scale population structure on inbreeding in a long-term study of snapdragons (Antirrhinum majus)." Further information are summed up in the README document. article_processing_charge: No author: - first_name: Parvathy full_name: Surendranadh, Parvathy id: 455235B8-F248-11E8-B48F-1D18A9856A87 last_name: Surendranadh - first_name: Louise S full_name: Arathoon, Louise S id: 2CFCFF98-F248-11E8-B48F-1D18A9856A87 last_name: Arathoon orcid: 0000-0003-1771-714X - first_name: Carina full_name: Baskett, Carina id: 3B4A7CE2-F248-11E8-B48F-1D18A9856A87 last_name: Baskett orcid: 0000-0002-7354-8574 - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - first_name: Melinda full_name: Pickup, Melinda id: 2C78037E-F248-11E8-B48F-1D18A9856A87 last_name: Pickup orcid: 0000-0001-6118-0541 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Surendranadh P, Arathoon LS, Baskett C, Field D, Pickup M, Barton NH. Effects of fine-scale population structure on the distribution of heterozygosity in a long-term study of Antirrhinum majus. 2021. doi:10.15479/AT:ISTA:9192 apa: Surendranadh, P., Arathoon, L. S., Baskett, C., Field, D., Pickup, M., & Barton, N. H. (2021). Effects of fine-scale population structure on the distribution of heterozygosity in a long-term study of Antirrhinum majus. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:9192 chicago: Surendranadh, Parvathy, Louise S Arathoon, Carina Baskett, David Field, Melinda Pickup, and Nicholas H Barton. “Effects of Fine-Scale Population Structure on the Distribution of Heterozygosity in a Long-Term Study of Antirrhinum Majus.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/AT:ISTA:9192. ieee: P. Surendranadh, L. S. Arathoon, C. Baskett, D. Field, M. Pickup, and N. H. Barton, “Effects of fine-scale population structure on the distribution of heterozygosity in a long-term study of Antirrhinum majus.” Institute of Science and Technology Austria, 2021. ista: Surendranadh P, Arathoon LS, Baskett C, Field D, Pickup M, Barton NH. 2021. Effects of fine-scale population structure on the distribution of heterozygosity in a long-term study of Antirrhinum majus, Institute of Science and Technology Austria, 10.15479/AT:ISTA:9192. mla: Surendranadh, Parvathy, et al. Effects of Fine-Scale Population Structure on the Distribution of Heterozygosity in a Long-Term Study of Antirrhinum Majus. Institute of Science and Technology Austria, 2021, doi:10.15479/AT:ISTA:9192. short: P. Surendranadh, L.S. Arathoon, C. Baskett, D. Field, M. Pickup, N.H. Barton, (2021). contributor: - contributor_type: project_member first_name: Parvathy id: 455235B8-F248-11E8-B48F-1D18A9856A87 last_name: Surendranadh - contributor_type: project_member first_name: Louise S id: 2CFCFF98-F248-11E8-B48F-1D18A9856A87 last_name: Arathoon - contributor_type: project_member first_name: Carina id: 3B4A7CE2-F248-11E8-B48F-1D18A9856A87 last_name: Baskett - contributor_type: project_member first_name: David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - contributor_type: project_member first_name: Melinda id: 2C78037E-F248-11E8-B48F-1D18A9856A87 last_name: Pickup orcid: 0000-0001-6118-0541 - contributor_type: project_leader first_name: Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 date_created: 2021-02-24T17:49:21Z date_published: 2021-02-26T00:00:00Z date_updated: 2024-02-21T12:41:09Z day: '26' ddc: - '576' department: - _id: GradSch - _id: NiBa doi: 10.15479/AT:ISTA:9192 file: - access_level: open_access checksum: f85537815809a8a4b7da9d01163f88c0 content_type: application/x-zip-compressed creator: larathoo date_created: 2021-02-24T17:45:13Z date_updated: 2021-02-24T17:45:13Z file_id: '9193' file_name: Data_Code.zip file_size: 5934452 relation: main_file success: 1 file_date_updated: 2021-02-24T17:45:13Z has_accepted_license: '1' month: '02' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '11411' relation: used_in_publication status: public - id: '11321' relation: later_version status: public - id: '8254' relation: earlier_version status: public status: public title: Effects of fine-scale population structure on the distribution of heterozygosity in a long-term study of Antirrhinum majus tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9949' article_processing_charge: No author: - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 citation: ama: Vicoso B. Data from Hyulmans et al 2021, “Transitions to asexuality and evolution of gene expression in Artemia brine shrimp.” 2021. doi:10.15479/AT:ISTA:9949 apa: Vicoso, B. (2021). Data from Hyulmans et al 2021, “Transitions to asexuality and evolution of gene expression in Artemia brine shrimp.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:9949 chicago: Vicoso, Beatriz. “Data from Hyulmans et Al 2021, ‘Transitions to Asexuality and Evolution of Gene Expression in Artemia Brine Shrimp.’” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/AT:ISTA:9949. ieee: B. Vicoso, “Data from Hyulmans et al 2021, ‘Transitions to asexuality and evolution of gene expression in Artemia brine shrimp.’” Institute of Science and Technology Austria, 2021. ista: Vicoso B. 2021. Data from Hyulmans et al 2021, ‘Transitions to asexuality and evolution of gene expression in Artemia brine shrimp’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:9949. mla: Vicoso, Beatriz. Data from Hyulmans et Al 2021, “Transitions to Asexuality and Evolution of Gene Expression in Artemia Brine Shrimp.” Institute of Science and Technology Austria, 2021, doi:10.15479/AT:ISTA:9949. short: B. Vicoso, (2021). date_created: 2021-08-21T13:44:22Z date_published: 2021-08-24T00:00:00Z date_updated: 2024-02-21T12:40:30Z day: '24' department: - _id: BeVi doi: 10.15479/AT:ISTA:9949 file: - access_level: open_access checksum: 90461837eed66beac6fa302993cf0ca9 content_type: application/zip creator: bvicoso date_created: 2021-08-21T13:43:59Z date_updated: 2021-08-21T13:43:59Z file_id: '9950' file_name: Data.zip file_size: 139188306 relation: main_file success: 1 file_date_updated: 2021-08-21T13:43:59Z has_accepted_license: '1' month: '08' oa: 1 oa_version: None publisher: Institute of Science and Technology Austria related_material: record: - id: '10166' relation: used_in_publication status: public status: public title: Data from Hyulmans et al 2021, "Transitions to asexuality and evolution of gene expression in Artemia brine shrimp" tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '8997' abstract: - lang: eng text: Phenomenological relations such as Ohm’s or Fourier’s law have a venerable history in physics but are still scarce in biology. This situation restrains predictive theory. Here, we build on bacterial “growth laws,” which capture physiological feedback between translation and cell growth, to construct a minimal biophysical model for the combined action of ribosome-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy solely from responses to individual drugs. We provide analytical results for limiting cases, which agree well with numerical results. We systematically refine the model by including direct physical interactions of different antibiotics on the ribosome. In a limiting case, our model provides a mechanistic underpinning for recent predictions of higher-order interactions that were derived using entropy maximization. We further refine the model to include the effects of antibiotics that mimic starvation and the presence of resistance genes. We describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and verify it experimentally. Our extended model suggests a change in the type of drug interaction that depends on the strength of resistance, which challenges established rescaling paradigms. We experimentally show that the presence of unregulated resistance genes can lead to altered drug interaction, which agrees with the prediction of the model. While minimal, the model is readily adaptable and opens the door to predicting interactions of second and higher-order in a broad range of biological systems. acknowledgement: 'This work was supported in part by Tum stipend of Knafelj foundation (to B.K.), Austrian Science Fund (FWF) standalone grants P 27201-B22 (to T.B.) and P 28844(to G.T.), HFSP program Grant RGP0042/2013 (to T.B.), German Research Foundation (DFG) individual grant BO 3502/2-1 (to T.B.), and German Research Foundation (DFG) Collaborative Research Centre (SFB) 1310 (to T.B.). ' article_number: e1008529 article_processing_charge: Yes article_type: original author: - first_name: Bor full_name: Kavcic, Bor id: 350F91D2-F248-11E8-B48F-1D18A9856A87 last_name: Kavcic orcid: 0000-0001-6041-254X - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 - first_name: Tobias full_name: Bollenbach, Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X citation: ama: Kavcic B, Tkačik G, Bollenbach MT. Minimal biophysical model of combined antibiotic action. PLOS Computational Biology. 2021;17. doi:10.1371/journal.pcbi.1008529 apa: Kavcic, B., Tkačik, G., & Bollenbach, M. T. (2021). Minimal biophysical model of combined antibiotic action. PLOS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1008529 chicago: Kavcic, Bor, Gašper Tkačik, and Mark Tobias Bollenbach. “Minimal Biophysical Model of Combined Antibiotic Action.” PLOS Computational Biology. Public Library of Science, 2021. https://doi.org/10.1371/journal.pcbi.1008529. ieee: B. Kavcic, G. Tkačik, and M. T. Bollenbach, “Minimal biophysical model of combined antibiotic action,” PLOS Computational Biology, vol. 17. Public Library of Science, 2021. ista: Kavcic B, Tkačik G, Bollenbach MT. 2021. Minimal biophysical model of combined antibiotic action. PLOS Computational Biology. 17, e1008529. mla: Kavcic, Bor, et al. “Minimal Biophysical Model of Combined Antibiotic Action.” PLOS Computational Biology, vol. 17, e1008529, Public Library of Science, 2021, doi:10.1371/journal.pcbi.1008529. short: B. Kavcic, G. Tkačik, M.T. Bollenbach, PLOS Computational Biology 17 (2021). date_created: 2021-01-08T07:16:18Z date_published: 2021-01-07T00:00:00Z date_updated: 2024-02-21T12:41:41Z day: '07' ddc: - '570' department: - _id: GaTk doi: 10.1371/journal.pcbi.1008529 external_id: isi: - '000608045000010' file: - access_level: open_access checksum: e29f2b42651bef8e034781de8781ffac content_type: application/pdf creator: dernst date_created: 2021-02-04T12:30:48Z date_updated: 2021-02-04T12:30:48Z file_id: '9092' file_name: 2021_PlosComBio_Kavcic.pdf file_size: 3690053 relation: main_file success: 1 file_date_updated: 2021-02-04T12:30:48Z has_accepted_license: '1' intvolume: ' 17' isi: 1 keyword: - Modelling and Simulation - Genetics - Molecular Biology - Antibiotics - Drug interactions language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25E9AF9E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27201-B22 name: Revealing the mechanisms underlying drug interactions - _id: 254E9036-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P28844-B27 name: Biophysics of information processing in gene regulation publication: PLOS Computational Biology publication_identifier: issn: - 1553-7358 publication_status: published publisher: Public Library of Science quality_controlled: '1' related_material: record: - id: '7673' relation: earlier_version status: public - id: '8930' relation: research_data status: public status: public title: Minimal biophysical model of combined antibiotic action tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2021' ... --- _id: '9283' abstract: - lang: eng text: Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks (GRNs) remains a major challenge. Here, we use a well-defined synthetic GRN to study in Escherichia coli how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one GRN with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Transcriptional read-through is the main molecular mechanism that places one transcriptional unit (TU) within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual TUs, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of GRNs. acknowledgement: "We thank J Bollback, L Hurst, M Lagator, C Nizak, O Rivoire, M Savageau, G Tkacik, and B Vicozo\r\nfor helpful discussions; A Dolinar and A Greshnova for technical assistance; T Bollenbach for supplying the strain JW0336; C Rusnac, and members of the Guet lab for comments. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n˚\r\n628377 (ANS) and an Austrian Science Fund (FWF) grant n˚ I 3901-B32 (CCG)." article_number: e65993 article_processing_charge: Yes article_type: original author: - first_name: Anna A full_name: Nagy-Staron, Anna A id: 3ABC5BA6-F248-11E8-B48F-1D18A9856A87 last_name: Nagy-Staron orcid: 0000-0002-1391-8377 - first_name: Kathrin full_name: Tomasek, Kathrin id: 3AEC8556-F248-11E8-B48F-1D18A9856A87 last_name: Tomasek orcid: 0000-0003-3768-877X - first_name: Caroline full_name: Caruso Carter, Caroline last_name: Caruso Carter - first_name: Elisabeth full_name: Sonnleitner, Elisabeth last_name: Sonnleitner - first_name: Bor full_name: Kavcic, Bor id: 350F91D2-F248-11E8-B48F-1D18A9856A87 last_name: Kavcic orcid: 0000-0001-6041-254X - first_name: Tiago full_name: Paixão, Tiago last_name: Paixão - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 citation: ama: Nagy-Staron AA, Tomasek K, Caruso Carter C, et al. Local genetic context shapes the function of a gene regulatory network. eLife. 2021;10. doi:10.7554/elife.65993 apa: Nagy-Staron, A. A., Tomasek, K., Caruso Carter, C., Sonnleitner, E., Kavcic, B., Paixão, T., & Guet, C. C. (2021). Local genetic context shapes the function of a gene regulatory network. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.65993 chicago: Nagy-Staron, Anna A, Kathrin Tomasek, Caroline Caruso Carter, Elisabeth Sonnleitner, Bor Kavcic, Tiago Paixão, and Calin C Guet. “Local Genetic Context Shapes the Function of a Gene Regulatory Network.” ELife. eLife Sciences Publications, 2021. https://doi.org/10.7554/elife.65993. ieee: A. A. Nagy-Staron et al., “Local genetic context shapes the function of a gene regulatory network,” eLife, vol. 10. eLife Sciences Publications, 2021. ista: Nagy-Staron AA, Tomasek K, Caruso Carter C, Sonnleitner E, Kavcic B, Paixão T, Guet CC. 2021. Local genetic context shapes the function of a gene regulatory network. eLife. 10, e65993. mla: Nagy-Staron, Anna A., et al. “Local Genetic Context Shapes the Function of a Gene Regulatory Network.” ELife, vol. 10, e65993, eLife Sciences Publications, 2021, doi:10.7554/elife.65993. short: A.A. Nagy-Staron, K. Tomasek, C. Caruso Carter, E. Sonnleitner, B. Kavcic, T. Paixão, C.C. Guet, ELife 10 (2021). date_created: 2021-03-23T10:11:46Z date_published: 2021-03-08T00:00:00Z date_updated: 2024-02-21T12:41:57Z day: '08' ddc: - '570' department: - _id: GaTk - _id: CaGu doi: 10.7554/elife.65993 ec_funded: 1 external_id: isi: - '000631050900001' file: - access_level: open_access checksum: 3c2f44058c2dd45a5a1027f09d263f8e content_type: application/pdf creator: bkavcic date_created: 2021-03-23T10:12:58Z date_updated: 2021-03-23T10:12:58Z file_id: '9284' file_name: elife-65993-v2.pdf file_size: 1390469 relation: main_file success: 1 file_date_updated: 2021-03-23T10:12:58Z has_accepted_license: '1' intvolume: ' 10' isi: 1 keyword: - Genetics and Molecular Biology language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 2517526A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '628377' name: 'The Systems Biology of Transcriptional Read-Through in Bacteria: from Synthetic Networks to Genomic Studies' - _id: 268BFA92-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03901 name: 'CyberCircuits: Cybergenetic circuits to test composability of gene networks' publication: eLife publication_identifier: issn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: record: - id: '8951' relation: research_data status: public status: public title: Local genetic context shapes the function of a gene regulatory network tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2021' ... --- _id: '10184' abstract: - lang: eng text: "We introduce a novel technique to automatically decompose an input object’s volume into a set of parts that can be represented by two opposite height fields. Such decomposition enables the manufacturing of individual parts using two-piece reusable rigid molds. Our decomposition strategy relies on a new energy formulation that utilizes a pre-computed signal on the mesh volume representing the accessibility for a predefined set of extraction directions. Thanks to this novel formulation, our method allows for efficient optimization of a fabrication-aware partitioning of volumes in a completely\r\nautomatic way. We demonstrate the efficacy of our approach by generating valid volume partitionings for a wide range of complex objects and physically reproducing several of them." acknowledgement: 'The authors thank Marco Callieri for all his precious help with the resin casts. The models used in the paper are courtesy of the Stanford 3D Scanning Repository, the AIM@SHAPE Shape Repository, and Thingi10K Repository. The research was partially funded by the European Research Council (ERC) MATERIALIZABLE: Intelligent fabrication-oriented computational design and modeling (grant no. 715767).' article_number: '272' article_processing_charge: No article_type: original author: - first_name: Thomas full_name: Alderighi, Thomas last_name: Alderighi - first_name: Luigi full_name: Malomo, Luigi last_name: Malomo - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Paolo full_name: Cignoni, Paolo last_name: Cignoni - first_name: Nico full_name: Pietroni, Nico last_name: Pietroni citation: ama: Alderighi T, Malomo L, Bickel B, Cignoni P, Pietroni N. Volume decomposition for two-piece rigid casting. ACM Transactions on Graphics. 2021;40(6). doi:10.1145/3478513.3480555 apa: Alderighi, T., Malomo, L., Bickel, B., Cignoni, P., & Pietroni, N. (2021). Volume decomposition for two-piece rigid casting. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3478513.3480555 chicago: Alderighi, Thomas, Luigi Malomo, Bernd Bickel, Paolo Cignoni, and Nico Pietroni. “Volume Decomposition for Two-Piece Rigid Casting.” ACM Transactions on Graphics. Association for Computing Machinery, 2021. https://doi.org/10.1145/3478513.3480555. ieee: T. Alderighi, L. Malomo, B. Bickel, P. Cignoni, and N. Pietroni, “Volume decomposition for two-piece rigid casting,” ACM Transactions on Graphics, vol. 40, no. 6. Association for Computing Machinery, 2021. ista: Alderighi T, Malomo L, Bickel B, Cignoni P, Pietroni N. 2021. Volume decomposition for two-piece rigid casting. ACM Transactions on Graphics. 40(6), 272. mla: Alderighi, Thomas, et al. “Volume Decomposition for Two-Piece Rigid Casting.” ACM Transactions on Graphics, vol. 40, no. 6, 272, Association for Computing Machinery, 2021, doi:10.1145/3478513.3480555. short: T. Alderighi, L. Malomo, B. Bickel, P. Cignoni, N. Pietroni, ACM Transactions on Graphics 40 (2021). date_created: 2021-10-27T07:08:19Z date_published: 2021-12-01T00:00:00Z date_updated: 2024-02-28T12:52:48Z day: '01' ddc: - '000' department: - _id: BeBi doi: 10.1145/3478513.3480555 ec_funded: 1 external_id: isi: - '000729846700077' file: - access_level: open_access checksum: 384ece7a9ad1026787ba9560b04336d5 content_type: application/pdf creator: bbickel date_created: 2021-10-27T07:08:07Z date_updated: 2021-10-27T07:08:07Z file_id: '10185' file_name: rigidmolds-authorversion.pdf file_size: 107708317 relation: main_file file_date_updated: 2021-10-27T07:08:07Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: http://vcg.isti.cnr.it/Publications/2021/AMBCP21 month: '12' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_identifier: eissn: - '1557-7368 ' issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Volume decomposition for two-piece rigid casting type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 40 year: '2021' ... --- _id: '9541' abstract: - lang: eng text: The Massively Parallel Computation (MPC) model is an emerging model that distills core aspects of distributed and parallel computation, developed as a tool to solve combinatorial (typically graph) problems in systems of many machines with limited space. Recent work has focused on the regime in which machines have sublinear (in n, the number of nodes in the input graph) space, with randomized algorithms presented for the fundamental problems of Maximal Matching and Maximal Independent Set. However, there have been no prior corresponding deterministic algorithms. A major challenge underlying the sublinear space setting is that the local space of each machine might be too small to store all edges incident to a single node. This poses a considerable obstacle compared to classical models in which each node is assumed to know and have easy access to its incident edges. To overcome this barrier, we introduce a new graph sparsification technique that deterministically computes a low-degree subgraph, with the additional property that solving the problem on this subgraph provides significant progress towards solving the problem for the original input graph. Using this framework to derandomize the well-known algorithm of Luby [SICOMP’86], we obtain O(log Δ + log log n)-round deterministic MPC algorithms for solving the problems of Maximal Matching and Maximal Independent Set with O(nɛ) space on each machine for any constant ɛ > 0. These algorithms also run in O(log Δ) rounds in the closely related model of CONGESTED CLIQUE, improving upon the state-of-the-art bound of O(log 2Δ) rounds by Censor-Hillel et al. [DISC’17]. acknowledgement: "Institute of Science and Technology Austria (IST Austria). Email: peter.davies@ist.ac.at. Work partially\r\ndone at the Department of Computer Science and Centre for Discrete Mathematics and its Applications (DIMAP),University of Warwick. Research partially supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754411, the Centre for Discrete Mathematics and its Applications, a Weizmann-UK Making Connections Grant, and EPSRC award EP/N011163/1." article_number: '16' article_processing_charge: No article_type: original author: - first_name: Artur full_name: Czumaj, Artur last_name: Czumaj - first_name: Peter full_name: Davies, Peter id: 11396234-BB50-11E9-B24C-90FCE5697425 last_name: Davies orcid: 0000-0002-5646-9524 - first_name: Merav full_name: Parter, Merav last_name: Parter citation: ama: Czumaj A, Davies P, Parter M. Graph sparsification for derandomizing massively parallel computation with low space. ACM Transactions on Algorithms. 2021;17(2). doi:10.1145/3451992 apa: Czumaj, A., Davies, P., & Parter, M. (2021). Graph sparsification for derandomizing massively parallel computation with low space. ACM Transactions on Algorithms. Association for Computing Machinery. https://doi.org/10.1145/3451992 chicago: Czumaj, Artur, Peter Davies, and Merav Parter. “Graph Sparsification for Derandomizing Massively Parallel Computation with Low Space.” ACM Transactions on Algorithms. Association for Computing Machinery, 2021. https://doi.org/10.1145/3451992. ieee: A. Czumaj, P. Davies, and M. Parter, “Graph sparsification for derandomizing massively parallel computation with low space,” ACM Transactions on Algorithms, vol. 17, no. 2. Association for Computing Machinery, 2021. ista: Czumaj A, Davies P, Parter M. 2021. Graph sparsification for derandomizing massively parallel computation with low space. ACM Transactions on Algorithms. 17(2), 16. mla: Czumaj, Artur, et al. “Graph Sparsification for Derandomizing Massively Parallel Computation with Low Space.” ACM Transactions on Algorithms, vol. 17, no. 2, 16, Association for Computing Machinery, 2021, doi:10.1145/3451992. short: A. Czumaj, P. Davies, M. Parter, ACM Transactions on Algorithms 17 (2021). date_created: 2021-06-10T19:31:05Z date_published: 2021-06-01T00:00:00Z date_updated: 2024-02-28T12:53:09Z day: '01' ddc: - '000' department: - _id: DaAl doi: 10.1145/3451992 ec_funded: 1 external_id: arxiv: - '1912.05390' isi: - '000661311300006' file: - access_level: open_access checksum: a21c627683890c309a68f6389302c408 content_type: application/pdf creator: pdavies date_created: 2021-06-10T19:33:56Z date_updated: 2021-06-10T19:33:56Z file_id: '9542' file_name: MISMM-arxiv.pdf file_size: 587404 relation: main_file success: 1 file_date_updated: 2021-06-10T19:33:56Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.05390 month: '06' oa: 1 oa_version: Submitted Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: ACM Transactions on Algorithms publication_identifier: eissn: - 1549-6333 issn: - 1549-6325 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: record: - id: '7802' relation: earlier_version status: public status: public title: Graph sparsification for derandomizing massively parallel computation with low space type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2021' ... --- _id: '10134' abstract: - lang: eng text: We investigate the effect of coupling between translational and internal degrees of freedom of composite quantum particles on their localization in a random potential. We show that entanglement between the two degrees of freedom weakens localization due to the upper bound imposed on the inverse participation ratio by purity of a quantum state. We perform numerical calculations for a two-particle system bound by a harmonic force in a 1D disordered lattice and a rigid rotor in a 2D disordered lattice. We illustrate that the coupling has a dramatic effect on localization properties, even with a small number of internal states participating in quantum dynamics. acknowledgement: "We acknowledge helpful discussions with W. G. Unruh and A. Rodriguez. F. S. is supported by European Union’s\r\nHorizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant No. 754411. M. L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). W. H. Z. is\r\nsupported by Department of Energy under the Los\r\nAlamos National Laboratory LDRD Program as well as by the U.S. Department of Energy, Office of Science, Basic\r\nEnergy Sciences, Materials Sciences and Engineering Division, Condensed Matter Theory Program. R. V. K. is supported by NSERC of Canada.\r\n" article_number: '160602' article_processing_charge: No article_type: original author: - first_name: Fumika full_name: Suzuki, Fumika id: 650C99FC-1079-11EA-A3C0-73AE3DDC885E last_name: Suzuki orcid: 0000-0003-4982-5970 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Wojciech H. full_name: Zurek, Wojciech H. last_name: Zurek - first_name: Roman V. full_name: Krems, Roman V. last_name: Krems citation: ama: Suzuki F, Lemeshko M, Zurek WH, Krems RV. Anderson localization of composite particles. Physical Review Letters. 2021;127(16). doi:10.1103/physrevlett.127.160602 apa: Suzuki, F., Lemeshko, M., Zurek, W. H., & Krems, R. V. (2021). Anderson localization of composite particles. Physical Review Letters. American Physical Society . https://doi.org/10.1103/physrevlett.127.160602 chicago: Suzuki, Fumika, Mikhail Lemeshko, Wojciech H. Zurek, and Roman V. Krems. “Anderson Localization of Composite Particles.” Physical Review Letters. American Physical Society , 2021. https://doi.org/10.1103/physrevlett.127.160602. ieee: F. Suzuki, M. Lemeshko, W. H. Zurek, and R. V. Krems, “Anderson localization of composite particles,” Physical Review Letters, vol. 127, no. 16. American Physical Society , 2021. ista: Suzuki F, Lemeshko M, Zurek WH, Krems RV. 2021. Anderson localization of composite particles. Physical Review Letters. 127(16), 160602. mla: Suzuki, Fumika, et al. “Anderson Localization of Composite Particles.” Physical Review Letters, vol. 127, no. 16, 160602, American Physical Society , 2021, doi:10.1103/physrevlett.127.160602. short: F. Suzuki, M. Lemeshko, W.H. Zurek, R.V. Krems, Physical Review Letters 127 (2021). date_created: 2021-10-13T09:21:33Z date_published: 2021-10-12T00:00:00Z date_updated: 2024-02-29T12:34:10Z day: '12' department: - _id: MiLe doi: 10.1103/physrevlett.127.160602 ec_funded: 1 external_id: arxiv: - '2011.06279' isi: - '000707495700001' intvolume: ' 127' isi: 1 issue: '16' keyword: - General Physics and Astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2011.06279 month: '10' oa: 1 oa_version: Preprint project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: 'American Physical Society ' quality_controlled: '1' scopus_import: '1' status: public title: Anderson localization of composite particles type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 127 year: '2021' ... --- _id: '9678' abstract: - lang: eng text: We introduce a new graph problem, the token dropping game, and we show how to solve it efficiently in a distributed setting. We use the token dropping game as a tool to design an efficient distributed algorithm for stable orientations and more generally for locally optimal semi-matchings. The prior work by Czygrinow et al. (DISC 2012) finds a stable orientation in O(Δ^5) rounds in graphs of maximum degree Δ, while we improve it to O(Δ^4) and also prove a lower bound of Ω(Δ). For the more general problem of locally optimal semi-matchings, the prior upper bound is O(S^5) and our new algorithm runs in O(C · S^4) rounds, which is an improvement for C = o(S); here C and S are the maximum degrees of customers and servers, respectively. acknowledgement: We thank Orr Fischer, Juho Hirvonen, and Tuomo Lempiäinen for valuable discussions. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 840605. article_processing_charge: No author: - first_name: Sebastian full_name: Brandt, Sebastian last_name: Brandt - first_name: Barbara full_name: Keller, Barbara last_name: Keller - first_name: Joel full_name: Rybicki, Joel id: 334EFD2E-F248-11E8-B48F-1D18A9856A87 last_name: Rybicki orcid: 0000-0002-6432-6646 - first_name: Jukka full_name: Suomela, Jukka last_name: Suomela - first_name: Jara full_name: Uitto, Jara last_name: Uitto citation: ama: 'Brandt S, Keller B, Rybicki J, Suomela J, Uitto J. Efficient load-balancing through distributed token dropping. In: Annual ACM Symposium on Parallelism in Algorithms and Architectures. ; 2021:129-139. doi:10.1145/3409964.3461785' apa: Brandt, S., Keller, B., Rybicki, J., Suomela, J., & Uitto, J. (2021). Efficient load-balancing through distributed token dropping. In Annual ACM Symposium on Parallelism in Algorithms and Architectures (pp. 129–139). Virtual Event, United States. https://doi.org/10.1145/3409964.3461785 chicago: Brandt, Sebastian, Barbara Keller, Joel Rybicki, Jukka Suomela, and Jara Uitto. “Efficient Load-Balancing through Distributed Token Dropping.” In Annual ACM Symposium on Parallelism in Algorithms and Architectures, 129–39, 2021. https://doi.org/10.1145/3409964.3461785. ieee: S. Brandt, B. Keller, J. Rybicki, J. Suomela, and J. Uitto, “Efficient load-balancing through distributed token dropping,” in Annual ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event, United States, 2021, pp. 129–139. ista: 'Brandt S, Keller B, Rybicki J, Suomela J, Uitto J. 2021. Efficient load-balancing through distributed token dropping. Annual ACM Symposium on Parallelism in Algorithms and Architectures. SPAA: Symposium on Parallelism in Algorithms and Architectures , 129–139.' mla: Brandt, Sebastian, et al. “Efficient Load-Balancing through Distributed Token Dropping.” Annual ACM Symposium on Parallelism in Algorithms and Architectures, 2021, pp. 129–39, doi:10.1145/3409964.3461785. short: S. Brandt, B. Keller, J. Rybicki, J. Suomela, J. Uitto, in:, Annual ACM Symposium on Parallelism in Algorithms and Architectures, 2021, pp. 129–139. conference: end_date: 2021-07-08 location: ' Virtual Event, United States' name: 'SPAA: Symposium on Parallelism in Algorithms and Architectures ' start_date: 2021-07-06 date_created: 2021-07-18T22:01:22Z date_published: 2021-07-06T00:00:00Z date_updated: 2024-03-05T07:13:12Z day: '06' department: - _id: DaAl doi: 10.1145/3409964.3461785 ec_funded: 1 external_id: arxiv: - '2005.07761' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2005.07761 month: '07' oa: 1 oa_version: Preprint page: 129-139 project: - _id: 26A5D39A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '840605' name: Coordination in constrained and natural distributed systems publication: Annual ACM Symposium on Parallelism in Algorithms and Architectures publication_identifier: isbn: - '9781450380706' publication_status: published quality_controlled: '1' related_material: record: - id: '15074' relation: earlier_version status: public scopus_import: '1' status: public title: Efficient load-balancing through distributed token dropping type: conference user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 year: '2021' ... --- _id: '8286' abstract: - lang: eng text: "We consider the following dynamic load-balancing process: given an underlying graph G with n nodes, in each step t≥ 0, one unit of load is created, and placed at a randomly chosen graph node. In the same step, the chosen node picks a random neighbor, and the two nodes balance their loads by averaging them. We are interested in the expected gap between the minimum and maximum loads at nodes as the process progresses, and its dependence on n and on the graph structure. Variants of the above graphical balanced allocation process have been studied previously by Peres, Talwar, and Wieder [Peres et al., 2015], and by Sauerwald and Sun [Sauerwald and Sun, 2015]. These authors left as open the question of characterizing the gap in the case of cycle graphs in the dynamic case, where weights are created during the algorithm’s execution. For this case, the only known upper bound is of \U0001D4AA(n log n), following from a majorization argument due to [Peres et al., 2015], which analyzes a related graphical allocation process. In this paper, we provide an upper bound of \U0001D4AA (√n log n) on the expected gap of the above process for cycles of length n. We introduce a new potential analysis technique, which enables us to bound the difference in load between k-hop neighbors on the cycle, for any k ≤ n/2. We complement this with a \"gap covering\" argument, which bounds the maximum value of the gap by bounding its value across all possible subsets of a certain structure, and recursively bounding the gaps within each subset. We provide analytical and experimental evidence that our upper bound on the gap is tight up to a logarithmic factor. " acknowledgement: The authors sincerely thank Thomas Sauerwald and George Giakkoupis for insightful discussions, and Mohsen Ghaffari, Yuval Peres, and Udi Wieder for feedback on earlier versions of this draft. We also thank the ICALP anonymous reviewers for their very useful comments. Open access funding provided by Institute of Science and Technology (IST Austria). Funding was provided by European Research Council (Grant No. PR1042ERC01). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Giorgi full_name: Nadiradze, Giorgi id: 3279A00C-F248-11E8-B48F-1D18A9856A87 last_name: Nadiradze orcid: 0000-0001-5634-0731 - first_name: Amirmojtaba full_name: Sabour, Amirmojtaba id: bcc145fd-e77f-11ea-ae8b-80d661dbff67 last_name: Sabour citation: ama: Alistarh D-A, Nadiradze G, Sabour A. Dynamic averaging load balancing on cycles. Algorithmica. 2021. doi:10.1007/s00453-021-00905-9 apa: 'Alistarh, D.-A., Nadiradze, G., & Sabour, A. (2021). Dynamic averaging load balancing on cycles. Algorithmica. Virtual, Online; Germany: Springer Nature. https://doi.org/10.1007/s00453-021-00905-9' chicago: Alistarh, Dan-Adrian, Giorgi Nadiradze, and Amirmojtaba Sabour. “Dynamic Averaging Load Balancing on Cycles.” Algorithmica. Springer Nature, 2021. https://doi.org/10.1007/s00453-021-00905-9. ieee: D.-A. Alistarh, G. Nadiradze, and A. Sabour, “Dynamic averaging load balancing on cycles,” Algorithmica. Springer Nature, 2021. ista: Alistarh D-A, Nadiradze G, Sabour A. 2021. Dynamic averaging load balancing on cycles. Algorithmica. mla: Alistarh, Dan-Adrian, et al. “Dynamic Averaging Load Balancing on Cycles.” Algorithmica, Springer Nature, 2021, doi:10.1007/s00453-021-00905-9. short: D.-A. Alistarh, G. Nadiradze, A. Sabour, Algorithmica (2021). conference: end_date: 2020-07-11 location: Virtual, Online; Germany name: 'ICALP: International Colloquium on Automata, Languages, and Programming ' start_date: 2020-07-08 date_created: 2020-08-24T06:24:04Z date_published: 2021-12-24T00:00:00Z date_updated: 2024-03-05T07:35:53Z day: '24' ddc: - '000' department: - _id: DaAl doi: 10.1007/s00453-021-00905-9 ec_funded: 1 external_id: arxiv: - '2003.09297' isi: - '000734004600001' file: - access_level: open_access checksum: 21169b25b0c8e17b21e12af22bff9870 content_type: application/pdf creator: cchlebak date_created: 2021-12-27T10:36:40Z date_updated: 2021-12-27T10:36:40Z file_id: '10577' file_name: 2021_Algorithmica_Alistarh.pdf file_size: 525950 relation: main_file success: 1 file_date_updated: 2021-12-27T10:36:40Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Algorithmica publication_identifier: eissn: - 1432-0541 issn: - 0178-4617 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: earlier_version url: https://doi.org/10.4230/LIPIcs.ICALP.2020.7 record: - id: '15077' relation: earlier_version status: public scopus_import: '1' status: public title: Dynamic averaging load balancing on cycles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '9733' abstract: - lang: eng text: This thesis is the result of the research carried out by the author during his PhD at IST Austria between 2017 and 2021. It mainly focuses on the Fröhlich polaron model, specifically to its regime of strong coupling. This model, which is rigorously introduced and discussed in the introduction, has been of great interest in condensed matter physics and field theory for more than eighty years. It is used to describe an electron interacting with the atoms of a solid material (the strength of this interaction is modeled by the presence of a coupling constant α in the Hamiltonian of the system). The particular regime examined here, which is mathematically described by considering the limit α →∞, displays many interesting features related to the emergence of classical behavior, which allows for a simplified effective description of the system under analysis. The properties, the range of validity and a quantitative analysis of the precision of such classical approximations are the main object of the present work. We specify our investigation to the study of the ground state energy of the system, its dynamics and its effective mass. For each of these problems, we provide in the introduction an overview of the previously known results and a detailed account of the original contributions by the author. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Dario full_name: Feliciangeli, Dario id: 41A639AA-F248-11E8-B48F-1D18A9856A87 last_name: Feliciangeli orcid: 0000-0003-0754-8530 citation: ama: Feliciangeli D. The polaron at strong coupling. 2021. doi:10.15479/at:ista:9733 apa: Feliciangeli, D. (2021). The polaron at strong coupling. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:9733 chicago: Feliciangeli, Dario. “The Polaron at Strong Coupling.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/at:ista:9733. ieee: D. Feliciangeli, “The polaron at strong coupling,” Institute of Science and Technology Austria, 2021. ista: Feliciangeli D. 2021. The polaron at strong coupling. Institute of Science and Technology Austria. mla: Feliciangeli, Dario. The Polaron at Strong Coupling. Institute of Science and Technology Austria, 2021, doi:10.15479/at:ista:9733. short: D. Feliciangeli, The Polaron at Strong Coupling, Institute of Science and Technology Austria, 2021. date_created: 2021-07-27T15:48:30Z date_published: 2021-08-20T00:00:00Z date_updated: 2024-03-06T12:30:44Z day: '20' ddc: - '515' - '519' - '539' degree_awarded: PhD department: - _id: GradSch - _id: RoSe - _id: JaMa doi: 10.15479/at:ista:9733 ec_funded: 1 file: - access_level: open_access checksum: e88bb8ca43948abe060eb2d2fa719881 content_type: application/pdf creator: dfelicia date_created: 2021-08-19T14:03:48Z date_updated: 2021-09-06T09:28:56Z file_id: '9944' file_name: Thesis_FeliciangeliA.pdf file_size: 1958710 relation: main_file - access_level: closed checksum: 72810843abee83705853505b3f8348aa content_type: application/octet-stream creator: dfelicia date_created: 2021-08-19T14:06:35Z date_updated: 2022-03-10T12:13:57Z file_id: '9945' file_name: thesis.7z file_size: 3771669 relation: source_file file_date_updated: 2022-03-10T12:13:57Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nd/4.0/ month: '08' oa: 1 oa_version: Published Version page: '180' project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: fc31cba2-9c52-11eb-aca3-ff467d239cd2 grant_number: F6504 name: Taming Complexity in Partial Differential Systems publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '9787' relation: part_of_dissertation status: public - id: '9792' relation: part_of_dissertation status: public - id: '9225' relation: part_of_dissertation status: public - id: '9781' relation: part_of_dissertation status: public - id: '9791' relation: part_of_dissertation status: public status: public supervisor: - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 - first_name: Jan full_name: Maas, Jan id: 4C5696CE-F248-11E8-B48F-1D18A9856A87 last_name: Maas orcid: 0000-0002-0845-1338 title: The polaron at strong coupling tmp: image: /image/cc_by_nd.png legal_code_url: https://creativecommons.org/licenses/by-nd/4.0/legalcode name: Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) short: CC BY-ND (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2021' ... --- _id: '9571' abstract: - lang: eng text: As the size and complexity of models and datasets grow, so does the need for communication-efficient variants of stochastic gradient descent that can be deployed to perform parallel model training. One popular communication-compression method for data-parallel SGD is QSGD (Alistarh et al., 2017), which quantizes and encodes gradients to reduce communication costs. The baseline variant of QSGD provides strong theoretical guarantees, however, for practical purposes, the authors proposed a heuristic variant which we call QSGDinf, which demonstrated impressive empirical gains for distributed training of large neural networks. In this paper, we build on this work to propose a new gradient quantization scheme, and show that it has both stronger theoretical guarantees than QSGD, and matches and exceeds the empirical performance of the QSGDinf heuristic and of other compression methods. article_processing_charge: No article_type: original author: - first_name: Ali full_name: Ramezani-Kebrya, Ali last_name: Ramezani-Kebrya - first_name: Fartash full_name: Faghri, Fartash last_name: Faghri - first_name: Ilya full_name: Markov, Ilya last_name: Markov - first_name: Vitalii full_name: Aksenov, Vitalii id: 2980135A-F248-11E8-B48F-1D18A9856A87 last_name: Aksenov - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Daniel M. full_name: Roy, Daniel M. last_name: Roy citation: ama: 'Ramezani-Kebrya A, Faghri F, Markov I, Aksenov V, Alistarh D-A, Roy DM. NUQSGD: Provably communication-efficient data-parallel SGD via nonuniform quantization. Journal of Machine Learning Research. 2021;22(114):1−43.' apa: 'Ramezani-Kebrya, A., Faghri, F., Markov, I., Aksenov, V., Alistarh, D.-A., & Roy, D. M. (2021). NUQSGD: Provably communication-efficient data-parallel SGD via nonuniform quantization. Journal of Machine Learning Research. Journal of Machine Learning Research.' chicago: 'Ramezani-Kebrya, Ali, Fartash Faghri, Ilya Markov, Vitalii Aksenov, Dan-Adrian Alistarh, and Daniel M. Roy. “NUQSGD: Provably Communication-Efficient Data-Parallel SGD via Nonuniform Quantization.” Journal of Machine Learning Research. Journal of Machine Learning Research, 2021.' ieee: 'A. Ramezani-Kebrya, F. Faghri, I. Markov, V. Aksenov, D.-A. Alistarh, and D. M. Roy, “NUQSGD: Provably communication-efficient data-parallel SGD via nonuniform quantization,” Journal of Machine Learning Research, vol. 22, no. 114. Journal of Machine Learning Research, p. 1−43, 2021.' ista: 'Ramezani-Kebrya A, Faghri F, Markov I, Aksenov V, Alistarh D-A, Roy DM. 2021. NUQSGD: Provably communication-efficient data-parallel SGD via nonuniform quantization. Journal of Machine Learning Research. 22(114), 1−43.' mla: 'Ramezani-Kebrya, Ali, et al. “NUQSGD: Provably Communication-Efficient Data-Parallel SGD via Nonuniform Quantization.” Journal of Machine Learning Research, vol. 22, no. 114, Journal of Machine Learning Research, 2021, p. 1−43.' short: A. Ramezani-Kebrya, F. Faghri, I. Markov, V. Aksenov, D.-A. Alistarh, D.M. Roy, Journal of Machine Learning Research 22 (2021) 1−43. date_created: 2021-06-20T22:01:33Z date_published: 2021-04-01T00:00:00Z date_updated: 2024-03-06T12:22:07Z day: '01' ddc: - '000' department: - _id: DaAl external_id: arxiv: - '1908.06077' file: - access_level: open_access checksum: 6428aa8bcb67768b6949c99b55d5281d content_type: application/pdf creator: asandaue date_created: 2021-06-23T07:09:41Z date_updated: 2021-06-23T07:09:41Z file_id: '9595' file_name: 2021_JournalOfMachineLearningResearch_Ramezani-Kebrya.pdf file_size: 11237154 relation: main_file success: 1 file_date_updated: 2021-06-23T07:09:41Z has_accepted_license: '1' intvolume: ' 22' issue: '114' language: - iso: eng main_file_link: - open_access: '1' url: https://www.jmlr.org/papers/v22/20-255.html month: '04' oa: 1 oa_version: Published Version page: 1−43 publication: Journal of Machine Learning Research publication_identifier: eissn: - '15337928' issn: - '15324435' publication_status: published publisher: Journal of Machine Learning Research quality_controlled: '1' scopus_import: '1' status: public title: 'NUQSGD: Provably communication-efficient data-parallel SGD via nonuniform quantization' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 22 year: '2021' ... --- _id: '8544' abstract: - lang: eng text: The synaptotrophic hypothesis posits that synapse formation stabilizes dendritic branches, yet this hypothesis has not been causally tested in vivo in the mammalian brain. Presynaptic ligand cerebellin-1 (Cbln1) and postsynaptic receptor GluD2 mediate synaptogenesis between granule cells and Purkinje cells in the molecular layer of the cerebellar cortex. Here we show that sparse but not global knockout of GluD2 causes under-elaboration of Purkinje cell dendrites in the deep molecular layer and overelaboration in the superficial molecular layer. Developmental, overexpression, structure-function, and genetic epistasis analyses indicate that dendrite morphogenesis defects result from competitive synaptogenesis in a Cbln1/GluD2-dependent manner. A generative model of dendritic growth based on competitive synaptogenesis largely recapitulates GluD2 sparse and global knockout phenotypes. Our results support the synaptotrophic hypothesis at initial stages of dendrite development, suggest a second mode in which cumulative synapse formation inhibits further dendrite growth, and highlight the importance of competition in dendrite morphogenesis. acknowledgement: We thank M. Mishina for GluD2fl frozen embryos, T.C. Südhof and J.I. Morgan for Cbln1fl mice, L. Anderson for help in generating the MADM alleles, W. Joo for a previously unpublished construct, M. Yuzaki, K. Shen, J. Ding, and members of the Luo lab, including J.M. Kebschull, H. Li, J. Li, T. Li, C.M. McLaughlin, D. Pederick, J. Ren, D.C. Wang and C. Xu for discussions and critiques of the manuscript, and M. Yuzaki for supporting Y.H.T. during the final phase of this project. Y.H.T. was supported by a JSPS fellowship; S.A.S. was supported by a Stanford Graduate Fellowship and an NSF Predoctoral Fellowship; L.J. is supported by a Stanford Graduate Fellowship and an NSF Predoctoral Fellowship; M.J.W. is supported by a Burroughs Wellcome Fund CASI Award. This work was supported by an NIH grant (R01-NS050538) to L.L.; the European Research Council (ERC) under the European Union's Horizon 2020 research and innovations programme (No. 725780 LinPro) to S.H.; and Simons and James S. McDonnell Foundations and an NSF CAREER award to S.G.; L.L. is an HHMI investigator. article_processing_charge: No article_type: original author: - first_name: Yukari H. full_name: Takeo, Yukari H. last_name: Takeo - first_name: S. Andrew full_name: Shuster, S. Andrew last_name: Shuster - first_name: Linnie full_name: Jiang, Linnie last_name: Jiang - first_name: Miley full_name: Hu, Miley last_name: Hu - first_name: David J. full_name: Luginbuhl, David J. last_name: Luginbuhl - first_name: Thomas full_name: Rülicke, Thomas last_name: Rülicke - first_name: Ximena full_name: Contreras, Ximena id: 475990FE-F248-11E8-B48F-1D18A9856A87 last_name: Contreras - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Mark J. full_name: Wagner, Mark J. last_name: Wagner - first_name: Surya full_name: Ganguli, Surya last_name: Ganguli - first_name: Liqun full_name: Luo, Liqun last_name: Luo citation: ama: Takeo YH, Shuster SA, Jiang L, et al. GluD2- and Cbln1-mediated competitive synaptogenesis shapes the dendritic arbors of cerebellar Purkinje cells. Neuron. 2021;109(4):P629-644.E8. doi:10.1016/j.neuron.2020.11.028 apa: Takeo, Y. H., Shuster, S. A., Jiang, L., Hu, M., Luginbuhl, D. J., Rülicke, T., … Luo, L. (2021). GluD2- and Cbln1-mediated competitive synaptogenesis shapes the dendritic arbors of cerebellar Purkinje cells. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2020.11.028 chicago: Takeo, Yukari H., S. Andrew Shuster, Linnie Jiang, Miley Hu, David J. Luginbuhl, Thomas Rülicke, Ximena Contreras, et al. “GluD2- and Cbln1-Mediated Competitive Synaptogenesis Shapes the Dendritic Arbors of Cerebellar Purkinje Cells.” Neuron. Elsevier, 2021. https://doi.org/10.1016/j.neuron.2020.11.028. ieee: Y. H. Takeo et al., “GluD2- and Cbln1-mediated competitive synaptogenesis shapes the dendritic arbors of cerebellar Purkinje cells,” Neuron, vol. 109, no. 4. Elsevier, p. P629–644.E8, 2021. ista: Takeo YH, Shuster SA, Jiang L, Hu M, Luginbuhl DJ, Rülicke T, Contreras X, Hippenmeyer S, Wagner MJ, Ganguli S, Luo L. 2021. GluD2- and Cbln1-mediated competitive synaptogenesis shapes the dendritic arbors of cerebellar Purkinje cells. Neuron. 109(4), P629–644.E8. mla: Takeo, Yukari H., et al. “GluD2- and Cbln1-Mediated Competitive Synaptogenesis Shapes the Dendritic Arbors of Cerebellar Purkinje Cells.” Neuron, vol. 109, no. 4, Elsevier, 2021, p. P629–644.E8, doi:10.1016/j.neuron.2020.11.028. short: Y.H. Takeo, S.A. Shuster, L. Jiang, M. Hu, D.J. Luginbuhl, T. Rülicke, X. Contreras, S. Hippenmeyer, M.J. Wagner, S. Ganguli, L. Luo, Neuron 109 (2021) P629–644.E8. date_created: 2020-09-21T11:59:47Z date_published: 2021-02-17T00:00:00Z date_updated: 2024-03-06T12:12:48Z day: '17' department: - _id: SiHi doi: 10.1016/j.neuron.2020.11.028 ec_funded: 1 intvolume: ' 109' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2020.06.14.151258 month: '02' oa: 1 oa_version: Preprint page: P629-644.E8 project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Neuron publication_identifier: eissn: - 1097-4199 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: GluD2- and Cbln1-mediated competitive synaptogenesis shapes the dendritic arbors of cerebellar Purkinje cells type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 109 year: '2021' ... --- _id: '9791' abstract: - lang: eng text: We provide a definition of the effective mass for the classical polaron described by the Landau-Pekar equations. It is based on a novel variational principle, minimizing the energy functional over states with given (initial) velocity. The resulting formula for the polaron's effective mass agrees with the prediction by Landau and Pekar. acknowledgement: We thank Herbert Spohn for helpful comments. Funding from the European Union’s Horizon 2020 research and innovation programme under the ERC grant agreement No. 694227 (D.F. and R.S.) and under the Marie Skłodowska-Curie Grant Agreement No. 754411 (S.R.) is gratefully acknowledged.. article_number: '2107.03720 ' article_processing_charge: No author: - first_name: Dario full_name: Feliciangeli, Dario id: 41A639AA-F248-11E8-B48F-1D18A9856A87 last_name: Feliciangeli orcid: 0000-0003-0754-8530 - first_name: Simone Anna Elvira full_name: Rademacher, Simone Anna Elvira id: 856966FE-A408-11E9-977E-802DE6697425 last_name: Rademacher orcid: 0000-0001-5059-4466 - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Feliciangeli D, Rademacher SAE, Seiringer R. The effective mass problem for the Landau-Pekar equations. arXiv. apa: Feliciangeli, D., Rademacher, S. A. E., & Seiringer, R. (n.d.). The effective mass problem for the Landau-Pekar equations. arXiv. chicago: Feliciangeli, Dario, Simone Anna Elvira Rademacher, and Robert Seiringer. “The Effective Mass Problem for the Landau-Pekar Equations.” ArXiv, n.d. ieee: D. Feliciangeli, S. A. E. Rademacher, and R. Seiringer, “The effective mass problem for the Landau-Pekar equations,” arXiv. . ista: Feliciangeli D, Rademacher SAE, Seiringer R. The effective mass problem for the Landau-Pekar equations. arXiv, 2107.03720. mla: Feliciangeli, Dario, et al. “The Effective Mass Problem for the Landau-Pekar Equations.” ArXiv, 2107.03720. short: D. Feliciangeli, S.A.E. Rademacher, R. Seiringer, ArXiv (n.d.). date_created: 2021-08-06T08:49:45Z date_published: 2021-07-08T00:00:00Z date_updated: 2024-03-06T12:30:45Z day: '08' ddc: - '510' department: - _id: RoSe ec_funded: 1 external_id: arxiv: - '2107.03720' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2107.03720 month: '07' oa: 1 oa_version: Preprint project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: arXiv publication_status: submitted related_material: record: - id: '10755' relation: later_version status: public - id: '9733' relation: dissertation_contains status: public status: public title: The effective mass problem for the Landau-Pekar equations type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '7553' abstract: - lang: eng text: Normative theories and statistical inference provide complementary approaches for the study of biological systems. A normative theory postulates that organisms have adapted to efficiently solve essential tasks, and proceeds to mathematically work out testable consequences of such optimality; parameters that maximize the hypothesized organismal function can be derived ab initio, without reference to experimental data. In contrast, statistical inference focuses on efficient utilization of data to learn model parameters, without reference to any a priori notion of biological function, utility, or fitness. Traditionally, these two approaches were developed independently and applied separately. Here we unify them in a coherent Bayesian framework that embeds a normative theory into a family of maximum-entropy “optimization priors.” This family defines a smooth interpolation between a data-rich inference regime (characteristic of “bottom-up” statistical models), and a data-limited ab inito prediction regime (characteristic of “top-down” normative theory). We demonstrate the applicability of our framework using data from the visual cortex, and argue that the flexibility it affords is essential to address a number of fundamental challenges relating to inference and prediction in complex, high-dimensional biological problems. acknowledgement: The authors thank Dario Ringach for providing the V1 receptive fields and Olivier Marre for providing the retinal receptive fields. W.M. was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 754411. M.H. was funded in part by Human Frontiers Science grant no. HFSP RGP0032/2018. article_processing_charge: No author: - first_name: Wiktor F full_name: Mlynarski, Wiktor F id: 358A453A-F248-11E8-B48F-1D18A9856A87 last_name: Mlynarski - first_name: Michal full_name: Hledik, Michal id: 4171253A-F248-11E8-B48F-1D18A9856A87 last_name: Hledik - first_name: Thomas R full_name: Sokolowski, Thomas R id: 3E999752-F248-11E8-B48F-1D18A9856A87 last_name: Sokolowski orcid: 0000-0002-1287-3779 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 citation: ama: Mlynarski WF, Hledik M, Sokolowski TR, Tkačik G. Statistical analysis and optimality of neural systems. Neuron. 2021;109(7):1227-1241.e5. doi:10.1016/j.neuron.2021.01.020 apa: Mlynarski, W. F., Hledik, M., Sokolowski, T. R., & Tkačik, G. (2021). Statistical analysis and optimality of neural systems. Neuron. Cell Press. https://doi.org/10.1016/j.neuron.2021.01.020 chicago: Mlynarski, Wiktor F, Michal Hledik, Thomas R Sokolowski, and Gašper Tkačik. “Statistical Analysis and Optimality of Neural Systems.” Neuron. Cell Press, 2021. https://doi.org/10.1016/j.neuron.2021.01.020. ieee: W. F. Mlynarski, M. Hledik, T. R. Sokolowski, and G. Tkačik, “Statistical analysis and optimality of neural systems,” Neuron, vol. 109, no. 7. Cell Press, p. 1227–1241.e5, 2021. ista: Mlynarski WF, Hledik M, Sokolowski TR, Tkačik G. 2021. Statistical analysis and optimality of neural systems. Neuron. 109(7), 1227–1241.e5. mla: Mlynarski, Wiktor F., et al. “Statistical Analysis and Optimality of Neural Systems.” Neuron, vol. 109, no. 7, Cell Press, 2021, p. 1227–1241.e5, doi:10.1016/j.neuron.2021.01.020. short: W.F. Mlynarski, M. Hledik, T.R. Sokolowski, G. Tkačik, Neuron 109 (2021) 1227–1241.e5. date_created: 2020-02-28T11:00:12Z date_published: 2021-04-07T00:00:00Z date_updated: 2024-03-06T14:22:51Z day: '07' department: - _id: GaTk doi: 10.1016/j.neuron.2021.01.020 ec_funded: 1 external_id: isi: - '000637809600006' intvolume: ' 109' isi: 1 issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/848374 month: '04' oa: 1 oa_version: Preprint page: 1227-1241.e5 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Neuron publication_status: published publisher: Cell Press quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/can-evolution-be-predicted/ record: - id: '15020' relation: dissertation_contains status: public scopus_import: '1' status: public title: Statistical analysis and optimality of neural systems type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 109 year: '2021' ... --- _id: '10598' abstract: - lang: eng text: ' We consider the problem of estimating a signal from measurements obtained via a generalized linear model. We focus on estimators based on approximate message passing (AMP), a family of iterative algorithms with many appealing features: the performance of AMP in the high-dimensional limit can be succinctly characterized under suitable model assumptions; AMP can also be tailored to the empirical distribution of the signal entries, and for a wide class of estimation problems, AMP is conjectured to be optimal among all polynomial-time algorithms. However, a major issue of AMP is that in many models (such as phase retrieval), it requires an initialization correlated with the ground-truth signal and independent from the measurement matrix. Assuming that such an initialization is available is typically not realistic. In this paper, we solve this problem by proposing an AMP algorithm initialized with a spectral estimator. With such an initialization, the standard AMP analysis fails since the spectral estimator depends in a complicated way on the design matrix. Our main contribution is a rigorous characterization of the performance of AMP with spectral initialization in the high-dimensional limit. The key technical idea is to define and analyze a two-phase artificial AMP algorithm that first produces the spectral estimator, and then closely approximates the iterates of the true AMP. We also provide numerical results that demonstrate the validity of the proposed approach. ' acknowledgement: The authors would like to thank Andrea Montanari for helpful discussions. M. Mondelli was partially supported by the 2019 Lopez-Loreta Prize. R. Venkataramanan was partially supported by the Alan Turing Institute under the EPSRC grant EP/N510129/1. alternative_title: - Proceedings of Machine Learning Research article_processing_charge: Yes (via OA deal) author: - first_name: Marco full_name: Mondelli, Marco id: 27EB676C-8706-11E9-9510-7717E6697425 last_name: Mondelli orcid: 0000-0002-3242-7020 - first_name: Ramji full_name: Venkataramanan, Ramji last_name: Venkataramanan citation: ama: 'Mondelli M, Venkataramanan R. Approximate message passing with spectral initialization for generalized linear models. In: Banerjee A, Fukumizu K, eds. Proceedings of The 24th International Conference on Artificial Intelligence and Statistics. Vol 130. ML Research Press; 2021:397-405.' apa: 'Mondelli, M., & Venkataramanan, R. (2021). Approximate message passing with spectral initialization for generalized linear models. In A. Banerjee & K. Fukumizu (Eds.), Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (Vol. 130, pp. 397–405). Virtual, San Diego, CA, United States: ML Research Press.' chicago: Mondelli, Marco, and Ramji Venkataramanan. “Approximate Message Passing with Spectral Initialization for Generalized Linear Models.” In Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, edited by Arindam Banerjee and Kenji Fukumizu, 130:397–405. ML Research Press, 2021. ieee: M. Mondelli and R. Venkataramanan, “Approximate message passing with spectral initialization for generalized linear models,” in Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, Virtual, San Diego, CA, United States, 2021, vol. 130, pp. 397–405. ista: 'Mondelli M, Venkataramanan R. 2021. Approximate message passing with spectral initialization for generalized linear models. Proceedings of The 24th International Conference on Artificial Intelligence and Statistics. AISTATS: Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 130, 397–405.' mla: Mondelli, Marco, and Ramji Venkataramanan. “Approximate Message Passing with Spectral Initialization for Generalized Linear Models.” Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, edited by Arindam Banerjee and Kenji Fukumizu, vol. 130, ML Research Press, 2021, pp. 397–405. short: M. Mondelli, R. Venkataramanan, in:, A. Banerjee, K. Fukumizu (Eds.), Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, ML Research Press, 2021, pp. 397–405. conference: end_date: 2021-04-15 location: Virtual, San Diego, CA, United States name: 'AISTATS: Artificial Intelligence and Statistics' start_date: 2021-04-13 date_created: 2022-01-03T11:34:22Z date_published: 2021-04-01T00:00:00Z date_updated: 2024-03-07T10:36:53Z day: '01' department: - _id: MaMo editor: - first_name: Arindam full_name: Banerjee, Arindam last_name: Banerjee - first_name: Kenji full_name: Fukumizu, Kenji last_name: Fukumizu external_id: arxiv: - '2010.03460' intvolume: ' 130' language: - iso: eng main_file_link: - open_access: '1' url: https://proceedings.mlr.press/v130/mondelli21a.html month: '04' oa: 1 oa_version: Preprint page: 397-405 project: - _id: 059876FA-7A3F-11EA-A408-12923DDC885E name: Prix Lopez-Loretta 2019 - Marco Mondelli publication: Proceedings of The 24th International Conference on Artificial Intelligence and Statistics publication_identifier: issn: - 2640-3498 publication_status: published publisher: ML Research Press quality_controlled: '1' related_material: record: - id: '12480' relation: later_version status: public scopus_import: '1' status: public title: Approximate message passing with spectral initialization for generalized linear models type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 130 year: '2021' ... --- _id: '8196' abstract: - lang: eng text: This paper aims to obtain a strong convergence result for a Douglas–Rachford splitting method with inertial extrapolation step for finding a zero of the sum of two set-valued maximal monotone operators without any further assumption of uniform monotonicity on any of the involved maximal monotone operators. Furthermore, our proposed method is easy to implement and the inertial factor in our proposed method is a natural choice. Our method of proof is of independent interest. Finally, some numerical implementations are given to confirm the theoretical analysis. acknowledgement: Open access funding provided by Institute of Science and Technology (IST Austria). The project of Yekini Shehu has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Program (FP7—2007–2013) (Grant Agreement No. 616160). The authors are grateful to the anonymous referees and the handling Editor for their comments and suggestions which have improved the earlier version of the manuscript greatly. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Yekini full_name: Shehu, Yekini id: 3FC7CB58-F248-11E8-B48F-1D18A9856A87 last_name: Shehu orcid: 0000-0001-9224-7139 - first_name: Qiao-Li full_name: Dong, Qiao-Li last_name: Dong - first_name: Lu-Lu full_name: Liu, Lu-Lu last_name: Liu - first_name: Jen-Chih full_name: Yao, Jen-Chih last_name: Yao citation: ama: Shehu Y, Dong Q-L, Liu L-L, Yao J-C. New strong convergence method for the sum of two maximal monotone operators. Optimization and Engineering. 2021;22:2627-2653. doi:10.1007/s11081-020-09544-5 apa: Shehu, Y., Dong, Q.-L., Liu, L.-L., & Yao, J.-C. (2021). New strong convergence method for the sum of two maximal monotone operators. Optimization and Engineering. Springer Nature. https://doi.org/10.1007/s11081-020-09544-5 chicago: Shehu, Yekini, Qiao-Li Dong, Lu-Lu Liu, and Jen-Chih Yao. “New Strong Convergence Method for the Sum of Two Maximal Monotone Operators.” Optimization and Engineering. Springer Nature, 2021. https://doi.org/10.1007/s11081-020-09544-5. ieee: Y. Shehu, Q.-L. Dong, L.-L. Liu, and J.-C. Yao, “New strong convergence method for the sum of two maximal monotone operators,” Optimization and Engineering, vol. 22. Springer Nature, pp. 2627–2653, 2021. ista: Shehu Y, Dong Q-L, Liu L-L, Yao J-C. 2021. New strong convergence method for the sum of two maximal monotone operators. Optimization and Engineering. 22, 2627–2653. mla: Shehu, Yekini, et al. “New Strong Convergence Method for the Sum of Two Maximal Monotone Operators.” Optimization and Engineering, vol. 22, Springer Nature, 2021, pp. 2627–53, doi:10.1007/s11081-020-09544-5. short: Y. Shehu, Q.-L. Dong, L.-L. Liu, J.-C. Yao, Optimization and Engineering 22 (2021) 2627–2653. date_created: 2020-08-03T14:29:57Z date_published: 2021-02-25T00:00:00Z date_updated: 2024-03-07T14:39:29Z day: '25' ddc: - '510' department: - _id: VlKo doi: 10.1007/s11081-020-09544-5 ec_funded: 1 external_id: isi: - '000559345400001' file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2020-08-03T15:24:39Z date_updated: 2020-08-03T15:24:39Z file_id: '8197' file_name: 2020_OptimizationEngineering_Shehu.pdf file_size: 2137860 relation: main_file success: 1 file_date_updated: 2020-08-03T15:24:39Z has_accepted_license: '1' intvolume: ' 22' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 2627-2653 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund - _id: 25FBA906-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '616160' name: 'Discrete Optimization in Computer Vision: Theory and Practice' publication: Optimization and Engineering publication_identifier: eissn: - 1573-2924 issn: - 1389-4420 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: New strong convergence method for the sum of two maximal monotone operators tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 22 year: '2021' ... --- _id: '8911' abstract: - lang: eng text: "In the worldwide endeavor for disruptive quantum technologies, germanium is emerging as a versatile material to realize devices capable of encoding, processing, or transmitting quantum information. These devices leverage special properties of the germanium valence-band states, commonly known as holes, such as their inherently strong spin-orbit coupling and the ability to host superconducting pairing correlations. In this Review, we initially introduce the physics of holes in low-dimensional germanium structures with key insights from a theoretical perspective. We then examine the material science progress underpinning germanium-based planar heterostructures and nanowires. We review the most significant experimental results demonstrating key building blocks for quantum technology, such as an electrically driven universal quantum gate set with spin qubits in quantum dots and superconductor-semiconductor devices for hybrid quantum systems. We conclude by identifying the most promising prospects\r\ntoward scalable quantum information processing. " acknowledgement: "G.S., M.W.,F.A.Z acknowledge financial support from The Netherlands Organization for Scientific Research (NWO). F.Z., D.L., G.K. acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under Grand Agreement Nr. 862046. G.K. acknowledges funding from FP7 ERC Starting Grant 335497, FWF Y 715-N30, FWF P-30207. S.D. acknowledges support from the European Union’s Horizon 2020 program under Grant\r\nAgreement No. 81050 and from the Agence Nationale de la Recherche through the TOPONANO and CMOSQSPIN projects. J.Z. acknowledges support from the National Key R&D Program of China (Grant No. 2016YFA0301701) and Strategic Priority Research Program of CAS (Grant No. XDB30000000). D.L. and C.K. acknowledge the Swiss National Science Foundation and NCCR QSIT." article_processing_charge: No article_type: original author: - first_name: Giordano full_name: Scappucci, Giordano last_name: Scappucci - first_name: Christoph full_name: Kloeffel, Christoph last_name: Kloeffel - first_name: Floris A. full_name: Zwanenburg, Floris A. last_name: Zwanenburg - first_name: Daniel full_name: Loss, Daniel last_name: Loss - first_name: Maksym full_name: Myronov, Maksym last_name: Myronov - first_name: Jian-Jun full_name: Zhang, Jian-Jun last_name: Zhang - first_name: Silvano De full_name: Franceschi, Silvano De last_name: Franceschi - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X - first_name: Menno full_name: Veldhorst, Menno last_name: Veldhorst citation: ama: Scappucci G, Kloeffel C, Zwanenburg FA, et al. The germanium quantum information route. Nature Reviews Materials. 2021;6:926–943. doi:10.1038/s41578-020-00262-z apa: Scappucci, G., Kloeffel, C., Zwanenburg, F. A., Loss, D., Myronov, M., Zhang, J.-J., … Veldhorst, M. (2021). The germanium quantum information route. Nature Reviews Materials. Springer Nature. https://doi.org/10.1038/s41578-020-00262-z chicago: Scappucci, Giordano, Christoph Kloeffel, Floris A. Zwanenburg, Daniel Loss, Maksym Myronov, Jian-Jun Zhang, Silvano De Franceschi, Georgios Katsaros, and Menno Veldhorst. “The Germanium Quantum Information Route.” Nature Reviews Materials. Springer Nature, 2021. https://doi.org/10.1038/s41578-020-00262-z. ieee: G. Scappucci et al., “The germanium quantum information route,” Nature Reviews Materials, vol. 6. Springer Nature, pp. 926–943, 2021. ista: Scappucci G, Kloeffel C, Zwanenburg FA, Loss D, Myronov M, Zhang J-J, Franceschi SD, Katsaros G, Veldhorst M. 2021. The germanium quantum information route. Nature Reviews Materials. 6, 926–943. mla: Scappucci, Giordano, et al. “The Germanium Quantum Information Route.” Nature Reviews Materials, vol. 6, Springer Nature, 2021, pp. 926–943, doi:10.1038/s41578-020-00262-z. short: G. Scappucci, C. Kloeffel, F.A. Zwanenburg, D. Loss, M. Myronov, J.-J. Zhang, S.D. Franceschi, G. Katsaros, M. Veldhorst, Nature Reviews Materials 6 (2021) 926–943. date_created: 2020-12-02T10:52:51Z date_published: 2021-10-01T00:00:00Z date_updated: 2024-03-07T14:48:57Z day: '01' department: - _id: GeKa doi: 10.1038/s41578-020-00262-z ec_funded: 1 external_id: arxiv: - '2004.08133' isi: - '000600826100003' intvolume: ' 6' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2004.08133 month: '10' oa: 1 oa_version: Preprint page: '926–943 ' project: - _id: 25517E86-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '335497' name: Towards Spin qubits and Majorana fermions in Germanium selfassembled hut-wires - _id: 2552F888-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Y00715 name: Loch Spin-Qubits und Majorana-Fermionen in Germanium - _id: 2641CE5E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P30207 name: Hole spin orbit qubits in Ge quantum wells publication: Nature Reviews Materials publication_identifier: eissn: - 2058-8437 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: The germanium quantum information route type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2021' ... --- _id: '8338' abstract: - lang: eng text: Canonical parametrisations of classical confocal coordinate systems are introduced and exploited to construct non-planar analogues of incircular (IC) nets on individual quadrics and systems of confocal quadrics. Intimate connections with classical deformations of quadrics that are isometric along asymptotic lines and circular cross-sections of quadrics are revealed. The existence of octahedral webs of surfaces of Blaschke type generated by asymptotic and characteristic lines that are diagonally related to lines of curvature is proved theoretically and established constructively. Appropriate samplings (grids) of these webs lead to three-dimensional extensions of non-planar IC nets. Three-dimensional octahedral grids composed of planes and spatially extending (checkerboard) IC-nets are shown to arise in connection with systems of confocal quadrics in Minkowski space. In this context, the Laguerre geometric notion of conical octahedral grids of planes is introduced. The latter generalise the octahedral grids derived from systems of confocal quadrics in Minkowski space. An explicit construction of conical octahedral grids is presented. The results are accompanied by various illustrations which are based on the explicit formulae provided by the theory. acknowledgement: This research was supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”. W.K.S. was also supported by the Australian Research Council (DP1401000851). A.V.A. was also supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 78818 Alpha). article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexander I. full_name: Bobenko, Alexander I. last_name: Bobenko - first_name: Wolfgang K. full_name: Schief, Wolfgang K. last_name: Schief - first_name: Jan full_name: Techter, Jan last_name: Techter citation: ama: Akopyan A, Bobenko AI, Schief WK, Techter J. On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs. Discrete and Computational Geometry. 2021;66:938-976. doi:10.1007/s00454-020-00240-w apa: Akopyan, A., Bobenko, A. I., Schief, W. K., & Techter, J. (2021). On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00240-w chicago: Akopyan, Arseniy, Alexander I. Bobenko, Wolfgang K. Schief, and Jan Techter. “On Mutually Diagonal Nets on (Confocal) Quadrics and 3-Dimensional Webs.” Discrete and Computational Geometry. Springer Nature, 2021. https://doi.org/10.1007/s00454-020-00240-w. ieee: A. Akopyan, A. I. Bobenko, W. K. Schief, and J. Techter, “On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs,” Discrete and Computational Geometry, vol. 66. Springer Nature, pp. 938–976, 2021. ista: Akopyan A, Bobenko AI, Schief WK, Techter J. 2021. On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs. Discrete and Computational Geometry. 66, 938–976. mla: Akopyan, Arseniy, et al. “On Mutually Diagonal Nets on (Confocal) Quadrics and 3-Dimensional Webs.” Discrete and Computational Geometry, vol. 66, Springer Nature, 2021, pp. 938–76, doi:10.1007/s00454-020-00240-w. short: A. Akopyan, A.I. Bobenko, W.K. Schief, J. Techter, Discrete and Computational Geometry 66 (2021) 938–976. date_created: 2020-09-06T22:01:13Z date_published: 2021-10-01T00:00:00Z date_updated: 2024-03-07T14:51:11Z day: '01' department: - _id: HeEd doi: 10.1007/s00454-020-00240-w ec_funded: 1 external_id: arxiv: - '1908.00856' isi: - '000564488500002' intvolume: ' 66' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1908.00856 month: '10' oa: 1 oa_version: Preprint page: 938-976 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended publication: Discrete and Computational Geometry publication_identifier: eissn: - 1432-0444 issn: - 0179-5376 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 66 year: '2021' ... --- _id: '7939' abstract: - lang: eng text: "We design fast deterministic algorithms for distance computation in the Congested Clique model. Our key contributions include:\r\n A (2+ϵ)-approximation for all-pairs shortest paths in O(log2n/ϵ) rounds on unweighted undirected graphs. With a small additional additive factor, this also applies for weighted graphs. This is the first sub-polynomial constant-factor approximation for APSP in this model.\r\n A (1+ϵ)-approximation for multi-source shortest paths from O(n−−√) sources in O(log2n/ϵ) rounds on weighted undirected graphs. This is the first sub-polynomial algorithm obtaining this approximation for a set of sources of polynomial size.\r\n\r\nOur main techniques are new distance tools that are obtained via improved algorithms for sparse matrix multiplication, which we leverage to construct efficient hopsets and shortest paths. Furthermore, our techniques extend to additional distance problems for which we improve upon the state-of-the-art, including diameter approximation, and an exact single-source shortest paths algorithm for weighted undirected graphs in O~(n1/6) rounds. " acknowledgement: Open access funding provided by Institute of Science and Technology (IST Austria). We thank Mohsen Ghaffari, Michael Elkin and Merav Parter for fruitful discussions. This project has received funding from the European Union’s Horizon 2020 Research And Innovation Program under Grant Agreement No. 755839. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Keren full_name: Censor-Hillel, Keren last_name: Censor-Hillel - first_name: Michal full_name: Dory, Michal last_name: Dory - first_name: Janne full_name: Korhonen, Janne id: C5402D42-15BC-11E9-A202-CA2BE6697425 last_name: Korhonen - first_name: Dean full_name: Leitersdorf, Dean last_name: Leitersdorf citation: ama: Censor-Hillel K, Dory M, Korhonen J, Leitersdorf D. Fast approximate shortest paths in the congested clique. Distributed Computing. 2021;34:463-487. doi:10.1007/s00446-020-00380-5 apa: Censor-Hillel, K., Dory, M., Korhonen, J., & Leitersdorf, D. (2021). Fast approximate shortest paths in the congested clique. Distributed Computing. Springer Nature. https://doi.org/10.1007/s00446-020-00380-5 chicago: Censor-Hillel, Keren, Michal Dory, Janne Korhonen, and Dean Leitersdorf. “Fast Approximate Shortest Paths in the Congested Clique.” Distributed Computing. Springer Nature, 2021. https://doi.org/10.1007/s00446-020-00380-5. ieee: K. Censor-Hillel, M. Dory, J. Korhonen, and D. Leitersdorf, “Fast approximate shortest paths in the congested clique,” Distributed Computing, vol. 34. Springer Nature, pp. 463–487, 2021. ista: Censor-Hillel K, Dory M, Korhonen J, Leitersdorf D. 2021. Fast approximate shortest paths in the congested clique. Distributed Computing. 34, 463–487. mla: Censor-Hillel, Keren, et al. “Fast Approximate Shortest Paths in the Congested Clique.” Distributed Computing, vol. 34, Springer Nature, 2021, pp. 463–87, doi:10.1007/s00446-020-00380-5. short: K. Censor-Hillel, M. Dory, J. Korhonen, D. Leitersdorf, Distributed Computing 34 (2021) 463–487. date_created: 2020-06-07T22:00:54Z date_published: 2021-12-01T00:00:00Z date_updated: 2024-03-07T14:43:39Z day: '01' department: - _id: DaAl doi: 10.1007/s00446-020-00380-5 external_id: arxiv: - '1903.05956' isi: - '000556444600001' intvolume: ' 34' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s00446-020-00380-5 month: '12' oa: 1 oa_version: Published Version page: 463-487 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Distributed Computing publication_identifier: eissn: - 1432-0452 issn: - 0178-2770 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '6933' relation: earlier_version status: public scopus_import: '1' status: public title: Fast approximate shortest paths in the congested clique type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2021' ... --- _id: '8248' abstract: - lang: eng text: 'We consider the following setting: suppose that we are given a manifold M in Rd with positive reach. Moreover assume that we have an embedded simplical complex A without boundary, whose vertex set lies on the manifold, is sufficiently dense and such that all simplices in A have sufficient quality. We prove that if, locally, interiors of the projection of the simplices onto the tangent space do not intersect, then A is a triangulation of the manifold, that is, they are homeomorphic.' acknowledgement: "Open access funding provided by the Institute of Science and Technology (IST Austria). Arijit Ghosh is supported by the Ramanujan Fellowship (No. SB/S2/RJN-064/2015), India.\r\nThis work has been funded by the European Research Council under the European Union’s ERC Grant Agreement number 339025 GUDHI (Algorithmic Foundations of Geometric Understanding in Higher Dimensions). The third author is supported by Ramanujan Fellowship (No. SB/S2/RJN-064/2015), India. The fifth author also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Jean-Daniel full_name: Boissonnat, Jean-Daniel last_name: Boissonnat - first_name: Ramsay full_name: Dyer, Ramsay last_name: Dyer - first_name: Arijit full_name: Ghosh, Arijit last_name: Ghosh - first_name: Andre full_name: Lieutier, Andre last_name: Lieutier - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Boissonnat J-D, Dyer R, Ghosh A, Lieutier A, Wintraecken M. Local conditions for triangulating submanifolds of Euclidean space. Discrete and Computational Geometry. 2021;66:666-686. doi:10.1007/s00454-020-00233-9 apa: Boissonnat, J.-D., Dyer, R., Ghosh, A., Lieutier, A., & Wintraecken, M. (2021). Local conditions for triangulating submanifolds of Euclidean space. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00233-9 chicago: Boissonnat, Jean-Daniel, Ramsay Dyer, Arijit Ghosh, Andre Lieutier, and Mathijs Wintraecken. “Local Conditions for Triangulating Submanifolds of Euclidean Space.” Discrete and Computational Geometry. Springer Nature, 2021. https://doi.org/10.1007/s00454-020-00233-9. ieee: J.-D. Boissonnat, R. Dyer, A. Ghosh, A. Lieutier, and M. Wintraecken, “Local conditions for triangulating submanifolds of Euclidean space,” Discrete and Computational Geometry, vol. 66. Springer Nature, pp. 666–686, 2021. ista: Boissonnat J-D, Dyer R, Ghosh A, Lieutier A, Wintraecken M. 2021. Local conditions for triangulating submanifolds of Euclidean space. Discrete and Computational Geometry. 66, 666–686. mla: Boissonnat, Jean-Daniel, et al. “Local Conditions for Triangulating Submanifolds of Euclidean Space.” Discrete and Computational Geometry, vol. 66, Springer Nature, 2021, pp. 666–86, doi:10.1007/s00454-020-00233-9. short: J.-D. Boissonnat, R. Dyer, A. Ghosh, A. Lieutier, M. Wintraecken, Discrete and Computational Geometry 66 (2021) 666–686. date_created: 2020-08-11T07:11:51Z date_published: 2021-09-01T00:00:00Z date_updated: 2024-03-07T14:54:59Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1007/s00454-020-00233-9 ec_funded: 1 external_id: isi: - '000558119300001' has_accepted_license: '1' intvolume: ' 66' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s00454-020-00233-9 month: '09' oa: 1 oa_version: Published Version page: 666-686 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Discrete and Computational Geometry publication_identifier: eissn: - 1432-0444 issn: - 0179-5376 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Local conditions for triangulating submanifolds of Euclidean space tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 66 year: '2021' ... --- _id: '9002' abstract: - lang: eng text: ' We prove that, for the binary erasure channel (BEC), the polar-coding paradigm gives rise to codes that not only approach the Shannon limit but do so under the best possible scaling of their block length as a function of the gap to capacity. This result exhibits the first known family of binary codes that attain both optimal scaling and quasi-linear complexity of encoding and decoding. Our proof is based on the construction and analysis of binary polar codes with large kernels. When communicating reliably at rates within ε>0 of capacity, the code length n often scales as O(1/εμ), where the constant μ is called the scaling exponent. It is known that the optimal scaling exponent is μ=2, and it is achieved by random linear codes. The scaling exponent of conventional polar codes (based on the 2×2 kernel) on the BEC is μ=3.63. This falls far short of the optimal scaling guaranteed by random codes. Our main contribution is a rigorous proof of the following result: for the BEC, there exist ℓ×ℓ binary kernels, such that polar codes constructed from these kernels achieve scaling exponent μ(ℓ) that tends to the optimal value of 2 as ℓ grows. We furthermore characterize precisely how large ℓ needs to be as a function of the gap between μ(ℓ) and 2. The resulting binary codes maintain the recursive structure of conventional polar codes, and thereby achieve construction complexity O(n) and encoding/decoding complexity O(nlogn).' article_processing_charge: No article_type: original author: - first_name: Arman full_name: Fazeli, Arman last_name: Fazeli - first_name: Hamed full_name: Hassani, Hamed last_name: Hassani - first_name: Marco full_name: Mondelli, Marco id: 27EB676C-8706-11E9-9510-7717E6697425 last_name: Mondelli orcid: 0000-0002-3242-7020 - first_name: Alexander full_name: Vardy, Alexander last_name: Vardy citation: ama: 'Fazeli A, Hassani H, Mondelli M, Vardy A. Binary linear codes with optimal scaling: Polar codes with large kernels. IEEE Transactions on Information Theory. 2021;67(9):5693-5710. doi:10.1109/TIT.2020.3038806' apa: 'Fazeli, A., Hassani, H., Mondelli, M., & Vardy, A. (2021). Binary linear codes with optimal scaling: Polar codes with large kernels. IEEE Transactions on Information Theory. IEEE. https://doi.org/10.1109/TIT.2020.3038806' chicago: 'Fazeli, Arman, Hamed Hassani, Marco Mondelli, and Alexander Vardy. “Binary Linear Codes with Optimal Scaling: Polar Codes with Large Kernels.” IEEE Transactions on Information Theory. IEEE, 2021. https://doi.org/10.1109/TIT.2020.3038806.' ieee: 'A. Fazeli, H. Hassani, M. Mondelli, and A. Vardy, “Binary linear codes with optimal scaling: Polar codes with large kernels,” IEEE Transactions on Information Theory, vol. 67, no. 9. IEEE, pp. 5693–5710, 2021.' ista: 'Fazeli A, Hassani H, Mondelli M, Vardy A. 2021. Binary linear codes with optimal scaling: Polar codes with large kernels. IEEE Transactions on Information Theory. 67(9), 5693–5710.' mla: 'Fazeli, Arman, et al. “Binary Linear Codes with Optimal Scaling: Polar Codes with Large Kernels.” IEEE Transactions on Information Theory, vol. 67, no. 9, IEEE, 2021, pp. 5693–710, doi:10.1109/TIT.2020.3038806.' short: A. Fazeli, H. Hassani, M. Mondelli, A. Vardy, IEEE Transactions on Information Theory 67 (2021) 5693–5710. date_created: 2021-01-10T23:01:18Z date_published: 2021-09-01T00:00:00Z date_updated: 2024-03-07T12:18:50Z day: '01' department: - _id: MaMo doi: 10.1109/TIT.2020.3038806 external_id: arxiv: - '1711.01339' intvolume: ' 67' issue: '9' language: - iso: eng month: '09' oa_version: Preprint page: 5693-5710 publication: IEEE Transactions on Information Theory publication_identifier: eissn: - 1557-9654 issn: - 0018-9448 publication_status: published publisher: IEEE quality_controlled: '1' related_material: record: - id: '6665' relation: earlier_version status: public scopus_import: '1' status: public title: 'Binary linear codes with optimal scaling: Polar codes with large kernels' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 67 year: '2021' ... --- _id: '7883' abstract: - lang: eng text: All vertebrates have a spinal cord with dimensions and shape specific to their species. Yet how species‐specific organ size and shape are achieved is a fundamental unresolved question in biology. The formation and sculpting of organs begins during embryonic development. As it develops, the spinal cord extends in anterior–posterior direction in synchrony with the overall growth of the body. The dorsoventral (DV) and apicobasal lengths of the spinal cord neuroepithelium also change, while at the same time a characteristic pattern of neural progenitor subtypes along the DV axis is established and elaborated. At the basis of these changes in tissue size and shape are biophysical determinants, such as the change in cell number, cell size and shape, and anisotropic tissue growth. These processes are controlled by global tissue‐scale regulators, such as morphogen signaling gradients as well as mechanical forces. Current challenges in the field are to uncover how these tissue‐scale regulatory mechanisms are translated to the cellular and molecular level, and how regulation of distinct cellular processes gives rise to an overall defined size. Addressing these questions will help not only to achieve a better understanding of how size is controlled, but also of how tissue size is coordinated with the specification of pattern. acknowledgement: 'Austrian Academy of Sciences, Grant/Award Number: DOC fellowship for Katarzyna Kuzmicz-Kowalska; Austrian Science Fund, Grant/Award Number: F78 (Stem Cell Modulation); H2020 European Research Council, Grant/Award Number: 680037' article_number: e383 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Katarzyna full_name: Kuzmicz-Kowalska, Katarzyna id: 4CED352A-F248-11E8-B48F-1D18A9856A87 last_name: Kuzmicz-Kowalska - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 citation: ama: 'Kuzmicz-Kowalska K, Kicheva A. Regulation of size and scale in vertebrate spinal cord development. Wiley Interdisciplinary Reviews: Developmental Biology. 2021. doi:10.1002/wdev.383' apa: 'Kuzmicz-Kowalska, K., & Kicheva, A. (2021). Regulation of size and scale in vertebrate spinal cord development. Wiley Interdisciplinary Reviews: Developmental Biology. Wiley. https://doi.org/10.1002/wdev.383' chicago: 'Kuzmicz-Kowalska, Katarzyna, and Anna Kicheva. “Regulation of Size and Scale in Vertebrate Spinal Cord Development.” Wiley Interdisciplinary Reviews: Developmental Biology. Wiley, 2021. https://doi.org/10.1002/wdev.383.' ieee: 'K. Kuzmicz-Kowalska and A. Kicheva, “Regulation of size and scale in vertebrate spinal cord development,” Wiley Interdisciplinary Reviews: Developmental Biology. Wiley, 2021.' ista: 'Kuzmicz-Kowalska K, Kicheva A. 2021. Regulation of size and scale in vertebrate spinal cord development. Wiley Interdisciplinary Reviews: Developmental Biology., e383.' mla: 'Kuzmicz-Kowalska, Katarzyna, and Anna Kicheva. “Regulation of Size and Scale in Vertebrate Spinal Cord Development.” Wiley Interdisciplinary Reviews: Developmental Biology, e383, Wiley, 2021, doi:10.1002/wdev.383.' short: 'K. Kuzmicz-Kowalska, A. Kicheva, Wiley Interdisciplinary Reviews: Developmental Biology (2021).' date_created: 2020-05-24T22:01:00Z date_published: 2021-04-15T00:00:00Z date_updated: 2024-03-07T15:03:00Z day: '15' ddc: - '570' department: - _id: AnKi doi: 10.1002/wdev.383 ec_funded: 1 external_id: isi: - '000531419400001' pmid: - '32391980' file: - access_level: open_access checksum: f0a7745d48afa09ea7025e876a0145a8 content_type: application/pdf creator: dernst date_created: 2020-11-24T13:11:39Z date_updated: 2020-11-24T13:11:39Z file_id: '8800' file_name: 2020_WIREs_DevBio_KuzmiczKowalska.pdf file_size: 2527276 relation: main_file success: 1 file_date_updated: 2020-11-24T13:11:39Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord - _id: 267AF0E4-B435-11E9-9278-68D0E5697425 name: The role of morphogens in the regulation of neural tube growth - _id: 059DF620-7A3F-11EA-A408-12923DDC885E grant_number: F07802 name: Morphogen control of growth and pattern in the spinal cord publication: 'Wiley Interdisciplinary Reviews: Developmental Biology' publication_identifier: eissn: - '17597692' issn: - '17597684' publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '14323' relation: dissertation_contains status: public scopus_import: '1' status: public title: Regulation of size and scale in vertebrate spinal cord development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '7905' abstract: - lang: eng text: We investigate a sheaf-theoretic interpretation of stratification learning from geometric and topological perspectives. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1355–1370, ACM, New York, 2012), and the cohomology stratification algorithm given in Nanda (Found. Comput. Math. 20(2), 195–222, 2020). Additionally, we give examples of stratifications based on the geometric techniques of Breiding et al. (Rev. Mat. Complut. 31(3), 545–593, 2018), illustrating how the sheaf-theoretic approach can be used to study stratifications from both topological and geometric perspectives. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms. acknowledgement: Open access funding provided by Institute of Science and Technology (IST Austria). This work was partially supported by NSF IIS-1513616 and NSF ABI-1661375. The authors would like to thank the anonymous referees for their insightful comments. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Adam full_name: Brown, Adam id: 70B7FDF6-608D-11E9-9333-8535E6697425 last_name: Brown - first_name: Bei full_name: Wang, Bei last_name: Wang citation: ama: Brown A, Wang B. Sheaf-theoretic stratification learning from geometric and topological perspectives. Discrete and Computational Geometry. 2021;65:1166-1198. doi:10.1007/s00454-020-00206-y apa: Brown, A., & Wang, B. (2021). Sheaf-theoretic stratification learning from geometric and topological perspectives. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00206-y chicago: Brown, Adam, and Bei Wang. “Sheaf-Theoretic Stratification Learning from Geometric and Topological Perspectives.” Discrete and Computational Geometry. Springer Nature, 2021. https://doi.org/10.1007/s00454-020-00206-y. ieee: A. Brown and B. Wang, “Sheaf-theoretic stratification learning from geometric and topological perspectives,” Discrete and Computational Geometry, vol. 65. Springer Nature, pp. 1166–1198, 2021. ista: Brown A, Wang B. 2021. Sheaf-theoretic stratification learning from geometric and topological perspectives. Discrete and Computational Geometry. 65, 1166–1198. mla: Brown, Adam, and Bei Wang. “Sheaf-Theoretic Stratification Learning from Geometric and Topological Perspectives.” Discrete and Computational Geometry, vol. 65, Springer Nature, 2021, pp. 1166–98, doi:10.1007/s00454-020-00206-y. short: A. Brown, B. Wang, Discrete and Computational Geometry 65 (2021) 1166–1198. date_created: 2020-05-30T10:26:04Z date_published: 2021-06-01T00:00:00Z date_updated: 2024-03-07T15:01:58Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1007/s00454-020-00206-y external_id: arxiv: - '1712.07734' isi: - '000536324700001' file: - access_level: open_access checksum: 487a84ea5841b75f04f66d7ebd71b67e content_type: application/pdf creator: dernst date_created: 2020-11-25T09:06:41Z date_updated: 2020-11-25T09:06:41Z file_id: '8803' file_name: 2020_DiscreteCompGeometry_Brown.pdf file_size: 1013730 relation: main_file success: 1 file_date_updated: 2020-11-25T09:06:41Z has_accepted_license: '1' intvolume: ' 65' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1166-1198 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Discrete and Computational Geometry publication_identifier: eissn: - 1432-0444 issn: - 0179-5376 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Sheaf-theoretic stratification learning from geometric and topological perspectives tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 65 year: '2021' ... --- _id: '8601' abstract: - lang: eng text: We consider large non-Hermitian real or complex random matrices X with independent, identically distributed centred entries. We prove that their local eigenvalue statistics near the spectral edge, the unit circle, coincide with those of the Ginibre ensemble, i.e. when the matrix elements of X are Gaussian. This result is the non-Hermitian counterpart of the universality of the Tracy–Widom distribution at the spectral edges of the Wigner ensemble. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Giorgio full_name: Cipolloni, Giorgio id: 42198EFA-F248-11E8-B48F-1D18A9856A87 last_name: Cipolloni orcid: 0000-0002-4901-7992 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Dominik J full_name: Schröder, Dominik J id: 408ED176-F248-11E8-B48F-1D18A9856A87 last_name: Schröder orcid: 0000-0002-2904-1856 citation: ama: Cipolloni G, Erdös L, Schröder DJ. Edge universality for non-Hermitian random matrices. Probability Theory and Related Fields. 2021. doi:10.1007/s00440-020-01003-7 apa: Cipolloni, G., Erdös, L., & Schröder, D. J. (2021). Edge universality for non-Hermitian random matrices. Probability Theory and Related Fields. Springer Nature. https://doi.org/10.1007/s00440-020-01003-7 chicago: Cipolloni, Giorgio, László Erdös, and Dominik J Schröder. “Edge Universality for Non-Hermitian Random Matrices.” Probability Theory and Related Fields. Springer Nature, 2021. https://doi.org/10.1007/s00440-020-01003-7. ieee: G. Cipolloni, L. Erdös, and D. J. Schröder, “Edge universality for non-Hermitian random matrices,” Probability Theory and Related Fields. Springer Nature, 2021. ista: Cipolloni G, Erdös L, Schröder DJ. 2021. Edge universality for non-Hermitian random matrices. Probability Theory and Related Fields. mla: Cipolloni, Giorgio, et al. “Edge Universality for Non-Hermitian Random Matrices.” Probability Theory and Related Fields, Springer Nature, 2021, doi:10.1007/s00440-020-01003-7. short: G. Cipolloni, L. Erdös, D.J. Schröder, Probability Theory and Related Fields (2021). date_created: 2020-10-04T22:01:37Z date_published: 2021-02-01T00:00:00Z date_updated: 2024-03-07T15:07:53Z day: '01' ddc: - '510' department: - _id: LaEr doi: 10.1007/s00440-020-01003-7 ec_funded: 1 external_id: arxiv: - '1908.00969' isi: - '000572724600002' file: - access_level: open_access checksum: 611ae28d6055e1e298d53a57beb05ef4 content_type: application/pdf creator: dernst date_created: 2020-10-05T14:53:40Z date_updated: 2020-10-05T14:53:40Z file_id: '8612' file_name: 2020_ProbTheory_Cipolloni.pdf file_size: 497032 relation: main_file success: 1 file_date_updated: 2020-10-05T14:53:40Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Probability Theory and Related Fields publication_identifier: eissn: - '14322064' issn: - '01788051' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Edge universality for non-Hermitian random matrices tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '7925' abstract: - lang: eng text: In this paper, we introduce a relaxed CQ method with alternated inertial step for solving split feasibility problems. We give convergence of the sequence generated by our method under some suitable assumptions. Some numerical implementations from sparse signal and image deblurring are reported to show the efficiency of our method. acknowledgement: Open access funding provided by Institute of Science and Technology (IST Austria). The authors are grateful to the referees for their insightful comments which have improved the earlier version of the manuscript greatly. The first author has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Program (FP7-2007-2013) (Grant agreement No. 616160). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Yekini full_name: Shehu, Yekini id: 3FC7CB58-F248-11E8-B48F-1D18A9856A87 last_name: Shehu orcid: 0000-0001-9224-7139 - first_name: Aviv full_name: Gibali, Aviv last_name: Gibali citation: ama: Shehu Y, Gibali A. New inertial relaxed method for solving split feasibilities. Optimization Letters. 2021;15:2109-2126. doi:10.1007/s11590-020-01603-1 apa: Shehu, Y., & Gibali, A. (2021). New inertial relaxed method for solving split feasibilities. Optimization Letters. Springer Nature. https://doi.org/10.1007/s11590-020-01603-1 chicago: Shehu, Yekini, and Aviv Gibali. “New Inertial Relaxed Method for Solving Split Feasibilities.” Optimization Letters. Springer Nature, 2021. https://doi.org/10.1007/s11590-020-01603-1. ieee: Y. Shehu and A. Gibali, “New inertial relaxed method for solving split feasibilities,” Optimization Letters, vol. 15. Springer Nature, pp. 2109–2126, 2021. ista: Shehu Y, Gibali A. 2021. New inertial relaxed method for solving split feasibilities. Optimization Letters. 15, 2109–2126. mla: Shehu, Yekini, and Aviv Gibali. “New Inertial Relaxed Method for Solving Split Feasibilities.” Optimization Letters, vol. 15, Springer Nature, 2021, pp. 2109–26, doi:10.1007/s11590-020-01603-1. short: Y. Shehu, A. Gibali, Optimization Letters 15 (2021) 2109–2126. date_created: 2020-06-04T11:28:33Z date_published: 2021-09-01T00:00:00Z date_updated: 2024-03-07T15:00:43Z day: '01' ddc: - '510' department: - _id: VlKo doi: 10.1007/s11590-020-01603-1 ec_funded: 1 external_id: isi: - '000537342300001' file: - access_level: open_access checksum: 63c5f31cd04626152a19f97a2476281b content_type: application/pdf creator: kschuh date_created: 2024-03-07T14:58:51Z date_updated: 2024-03-07T14:58:51Z file_id: '15089' file_name: 2021_OptimizationLetters_Shehu.pdf file_size: 2148882 relation: main_file success: 1 file_date_updated: 2024-03-07T14:58:51Z has_accepted_license: '1' intvolume: ' 15' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 2109-2126 project: - _id: 25FBA906-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '616160' name: 'Discrete Optimization in Computer Vision: Theory and Practice' - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Optimization Letters publication_identifier: eissn: - 1862-4480 issn: - 1862-4472 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: New inertial relaxed method for solving split feasibilities tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2021' ... --- _id: '9438' abstract: - lang: eng text: Rigorous investigation of synaptic transmission requires analysis of unitary synaptic events by simultaneous recording from presynaptic terminals and postsynaptic target neurons. However, this has been achieved at only a limited number of model synapses, including the squid giant synapse and the mammalian calyx of Held. Cortical presynaptic terminals have been largely inaccessible to direct presynaptic recording, due to their small size. Here, we describe a protocol for improved subcellular patch-clamp recording in rat and mouse brain slices, with the synapse in a largely intact environment. Slice preparation takes ~2 h, recording ~3 h and post hoc morphological analysis 2 d. Single presynaptic hippocampal mossy fiber terminals are stimulated minimally invasively in the bouton-attached configuration, in which the cytoplasmic content remains unperturbed, or in the whole-bouton configuration, in which the cytoplasmic composition can be precisely controlled. Paired pre–postsynaptic recordings can be integrated with biocytin labeling and morphological analysis, allowing correlative investigation of synapse structure and function. Paired recordings can be obtained from mossy fiber terminals in slices from both rats and mice, implying applicability to genetically modified synapses. Paired recordings can also be performed together with axon tract stimulation or optogenetic activation, allowing comparison of unitary and compound synaptic events in the same target cell. Finally, paired recordings can be combined with spontaneous event analysis, permitting collection of miniature events generated at a single identified synapse. In conclusion, the subcellular patch-clamp techniques detailed here should facilitate analysis of biophysics, plasticity and circuit function of cortical synapses in the mammalian central nervous system. acknowledged_ssus: - _id: M-Shop acknowledgement: This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 692692 to P.J.) and the Fond zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein award to P.J., V 739-B27 to C.B.M.). We are grateful to F. Marr and C. Altmutter for excellent technical assistance and cell reconstruction, E. Kralli-Beller for manuscript editing, and the Scientific Service Units of IST Austria, especially T. Asenov and Miba machine shop, for maximally efficient support. article_processing_charge: No article_type: original author: - first_name: David H full_name: Vandael, David H id: 3AE48E0A-F248-11E8-B48F-1D18A9856A87 last_name: Vandael orcid: 0000-0001-7577-1676 - first_name: Yuji full_name: Okamoto, Yuji id: 3337E116-F248-11E8-B48F-1D18A9856A87 last_name: Okamoto orcid: 0000-0003-0408-6094 - first_name: Carolina full_name: Borges Merjane, Carolina id: 4305C450-F248-11E8-B48F-1D18A9856A87 last_name: Borges Merjane orcid: 0000-0003-0005-401X - first_name: Victor M full_name: Vargas Barroso, Victor M id: 2F55A9DE-F248-11E8-B48F-1D18A9856A87 last_name: Vargas Barroso - first_name: Benjamin full_name: Suter, Benjamin id: 4952F31E-F248-11E8-B48F-1D18A9856A87 last_name: Suter orcid: 0000-0002-9885-6936 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Vandael DH, Okamoto Y, Borges Merjane C, Vargas Barroso VM, Suter B, Jonas PM. Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses. Nature Protocols. 2021;16(6):2947–2967. doi:10.1038/s41596-021-00526-0 apa: Vandael, D. H., Okamoto, Y., Borges Merjane, C., Vargas Barroso, V. M., Suter, B., & Jonas, P. M. (2021). Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses. Nature Protocols. Springer Nature. https://doi.org/10.1038/s41596-021-00526-0 chicago: Vandael, David H, Yuji Okamoto, Carolina Borges Merjane, Victor M Vargas Barroso, Benjamin Suter, and Peter M Jonas. “Subcellular Patch-Clamp Techniques for Single-Bouton Stimulation and Simultaneous Pre- and Postsynaptic Recording at Cortical Synapses.” Nature Protocols. Springer Nature, 2021. https://doi.org/10.1038/s41596-021-00526-0. ieee: D. H. Vandael, Y. Okamoto, C. Borges Merjane, V. M. Vargas Barroso, B. Suter, and P. M. Jonas, “Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses,” Nature Protocols, vol. 16, no. 6. Springer Nature, pp. 2947–2967, 2021. ista: Vandael DH, Okamoto Y, Borges Merjane C, Vargas Barroso VM, Suter B, Jonas PM. 2021. Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses. Nature Protocols. 16(6), 2947–2967. mla: Vandael, David H., et al. “Subcellular Patch-Clamp Techniques for Single-Bouton Stimulation and Simultaneous Pre- and Postsynaptic Recording at Cortical Synapses.” Nature Protocols, vol. 16, no. 6, Springer Nature, 2021, pp. 2947–2967, doi:10.1038/s41596-021-00526-0. short: D.H. Vandael, Y. Okamoto, C. Borges Merjane, V.M. Vargas Barroso, B. Suter, P.M. Jonas, Nature Protocols 16 (2021) 2947–2967. date_created: 2021-05-30T22:01:24Z date_published: 2021-06-01T00:00:00Z date_updated: 2023-08-10T22:30:51Z day: '01' ddc: - '570' department: - _id: PeJo doi: 10.1038/s41596-021-00526-0 ec_funded: 1 external_id: isi: - '000650528700003' pmid: - '33990799' file: - access_level: open_access checksum: 7eb580abd8893cdb0b410cf41bc8c263 content_type: application/pdf creator: cziletti date_created: 2021-07-08T12:27:55Z date_updated: 2021-12-02T23:30:05Z embargo: 2021-12-01 file_id: '9639' file_name: VandaeletalAuthorVersion2021.pdf file_size: 38574802 relation: main_file file_date_updated: 2021-12-02T23:30:05Z has_accepted_license: '1' intvolume: ' 16' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version page: 2947–2967 pmid: 1 project: - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: 2696E7FE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: V00739 name: Structural plasticity at mossy fiber-CA3 synapses publication: Nature Protocols publication_identifier: eissn: - '17502799' issn: - '17542189' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 16 year: '2021' ... --- _id: '9992' abstract: - lang: eng text: "Blood – this is what animals use to heal wounds fast and efficient. Plants do not have blood circulation and their cells cannot move. However, plants have evolved remarkable capacities to regenerate tissues and organs preventing further damage. In my PhD research, I studied the wound healing in the Arabidopsis root. I used a UV laser to ablate single cells in the root tip and observed the consequent wound healing. Interestingly, the inner adjacent cells induced a\r\ndivision plane switch and subsequently adopted the cell type of the killed cell to replace it. We termed this form of wound healing “restorative divisions”. This initial observation triggered the questions of my PhD studies: How and why do cells orient their division planes, how do they feel the wound and why does this happen only in inner adjacent cells.\r\nFor answering these questions, I used a quite simple experimental setup: 5 day - old seedlings were stained with propidium iodide to visualize cell walls and dead cells; ablation was carried out using a special laser cutter and a confocal microscope. Adaptation of the novel vertical microscope system made it possible to observe wounds in real time. This revealed that restorative divisions occur at increased frequency compared to normal divisions. Additionally,\r\nthe major plant hormone auxin accumulates in wound adjacent cells and drives the expression of the wound-stress responsive transcription factor ERF115. Using this as a marker gene for wound responses, we found that an important part of wound signalling is the sensing of the collapse of the ablated cell. The collapse causes a radical pressure drop, which results in strong tissue deformations. These deformations manifest in an invasion of the now free spot specifically by the inner adjacent cells within seconds, probably because of higher pressure of the inner tissues. Long-term imaging revealed that those deformed cells continuously expand towards the wound hole and that this is crucial for the restorative division. These wound-expanding cells exhibit an abnormal, biphasic polarity of microtubule arrays\r\nbefore the division. Experiments inhibiting cell expansion suggest that it is the biphasic stretching that induces those MT arrays. Adapting the micromanipulator aspiration system from animal scientists at our institute confirmed the hypothesis that stretching influences microtubule stability. In conclusion, this shows that microtubules react to tissue deformation\r\nand this facilitates the observed division plane switch. This puts mechanical cues and tensions at the most prominent position for explaining the growth and wound healing properties of plants. Hence, it shines light onto the importance of understanding mechanical signal transduction. " acknowledged_ssus: - _id: Bio - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer orcid: 0000-0001-8295-2926 citation: ama: Hörmayer L. Wound healing in the Arabidopsis root meristem. 2021. doi:10.15479/at:ista:9992 apa: Hörmayer, L. (2021). Wound healing in the Arabidopsis root meristem. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:9992 chicago: Hörmayer, Lukas. “Wound Healing in the Arabidopsis Root Meristem.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/at:ista:9992. ieee: L. Hörmayer, “Wound healing in the Arabidopsis root meristem,” Institute of Science and Technology Austria, 2021. ista: Hörmayer L. 2021. Wound healing in the Arabidopsis root meristem. Institute of Science and Technology Austria. mla: Hörmayer, Lukas. Wound Healing in the Arabidopsis Root Meristem. Institute of Science and Technology Austria, 2021, doi:10.15479/at:ista:9992. short: L. Hörmayer, Wound Healing in the Arabidopsis Root Meristem, Institute of Science and Technology Austria, 2021. date_created: 2021-09-09T07:37:20Z date_published: 2021-09-13T00:00:00Z date_updated: 2023-09-07T13:38:33Z day: '13' ddc: - '575' degree_awarded: PhD department: - _id: GradSch - _id: JiFr doi: 10.15479/at:ista:9992 ec_funded: 1 file: - access_level: closed checksum: c763064adaa720e16066c1a4f9682bbb content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: lhoermaye date_created: 2021-09-09T07:29:48Z date_updated: 2021-09-15T22:30:26Z embargo_to: open_access file_id: '9993' file_name: Thesis_vupload.docx file_size: 25179004 relation: source_file - access_level: open_access checksum: 53911b06e93d7cdbbf4c7f4c162fa70f content_type: application/pdf creator: lhoermaye date_created: 2021-09-09T14:25:08Z date_updated: 2021-09-15T22:30:26Z embargo: 2021-09-09 file_id: '9996' file_name: Thesis_vfinal_pdfa.pdf file_size: 6246900 relation: main_file file_date_updated: 2021-09-15T22:30:26Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '168' project: - _id: 262EF96E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29988 name: RNA-directed DNA methylation in plant development - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6351' relation: part_of_dissertation status: public - id: '6943' relation: part_of_dissertation status: public - id: '8002' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Wound healing in the Arabidopsis root meristem tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2021' ... --- _id: '10816' abstract: - lang: eng text: Pattern separation is a fundamental brain computation that converts small differences in input patterns into large differences in output patterns. Several synaptic mechanisms of pattern separation have been proposed, including code expansion, inhibition and plasticity; however, which of these mechanisms play a role in the entorhinal cortex (EC)–dentate gyrus (DG)–CA3 circuit, a classical pattern separation circuit, remains unclear. Here we show that a biologically realistic, full-scale EC–DG–CA3 circuit model, including granule cells (GCs) and parvalbumin-positive inhibitory interneurons (PV+-INs) in the DG, is an efficient pattern separator. Both external gamma-modulated inhibition and internal lateral inhibition mediated by PV+-INs substantially contributed to pattern separation. Both local connectivity and fast signaling at GC–PV+-IN synapses were important for maximum effectiveness. Similarly, mossy fiber synapses with conditional detonator properties contributed to pattern separation. By contrast, perforant path synapses with Hebbian synaptic plasticity and direct EC–CA3 connection shifted the network towards pattern completion. Our results demonstrate that the specific properties of cells and synapses optimize higher-order computations in biological networks and might be useful to improve the deep learning capabilities of technical networks. acknowledged_ssus: - _id: SSU acknowledgement: We thank A. Aertsen, N. Kopell, W. Maass, A. Roth, F. Stella and T. Vogels for critically reading earlier versions of the manuscript. We are grateful to F. Marr and C. Altmutter for excellent technical assistance, E. Kralli-Beller for manuscript editing, and the Scientific Service Units of IST Austria for efficient support. Finally, we thank T. Carnevale, L. Erdös, M. Hines, D. Nykamp and D. Schröder for useful discussions, and R. Friedrich and S. Wiechert for sharing unpublished data. This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 692692, P.J.) and the Fond zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein award to P.J. and P 31815 to S.J.G.). article_processing_charge: No article_type: original author: - first_name: José full_name: Guzmán, José id: 30CC5506-F248-11E8-B48F-1D18A9856A87 last_name: Guzmán orcid: 0000-0003-2209-5242 - first_name: Alois full_name: Schlögl, Alois id: 45BF87EE-F248-11E8-B48F-1D18A9856A87 last_name: Schlögl orcid: 0000-0002-5621-8100 - first_name: 'Claudia ' full_name: 'Espinoza Martinez, Claudia ' id: 31FFEE2E-F248-11E8-B48F-1D18A9856A87 last_name: Espinoza Martinez orcid: 0000-0003-4710-2082 - first_name: Xiaomin full_name: Zhang, Xiaomin id: 423EC9C2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang - first_name: Benjamin full_name: Suter, Benjamin id: 4952F31E-F248-11E8-B48F-1D18A9856A87 last_name: Suter orcid: 0000-0002-9885-6936 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Guzmán J, Schlögl A, Espinoza Martinez C, Zhang X, Suter B, Jonas PM. How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network. Nature Computational Science. 2021;1(12):830-842. doi:10.1038/s43588-021-00157-1 apa: Guzmán, J., Schlögl, A., Espinoza Martinez, C., Zhang, X., Suter, B., & Jonas, P. M. (2021). How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network. Nature Computational Science. Springer Nature. https://doi.org/10.1038/s43588-021-00157-1 chicago: Guzmán, José, Alois Schlögl, Claudia Espinoza Martinez, Xiaomin Zhang, Benjamin Suter, and Peter M Jonas. “How Connectivity Rules and Synaptic Properties Shape the Efficacy of Pattern Separation in the Entorhinal Cortex–Dentate Gyrus–CA3 Network.” Nature Computational Science. Springer Nature, 2021. https://doi.org/10.1038/s43588-021-00157-1. ieee: J. Guzmán, A. Schlögl, C. Espinoza Martinez, X. Zhang, B. Suter, and P. M. Jonas, “How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network,” Nature Computational Science, vol. 1, no. 12. Springer Nature, pp. 830–842, 2021. ista: Guzmán J, Schlögl A, Espinoza Martinez C, Zhang X, Suter B, Jonas PM. 2021. How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network. Nature Computational Science. 1(12), 830–842. mla: Guzmán, José, et al. “How Connectivity Rules and Synaptic Properties Shape the Efficacy of Pattern Separation in the Entorhinal Cortex–Dentate Gyrus–CA3 Network.” Nature Computational Science, vol. 1, no. 12, Springer Nature, 2021, pp. 830–42, doi:10.1038/s43588-021-00157-1. short: J. Guzmán, A. Schlögl, C. Espinoza Martinez, X. Zhang, B. Suter, P.M. Jonas, Nature Computational Science 1 (2021) 830–842. date_created: 2022-03-04T08:32:36Z date_published: 2021-12-16T00:00:00Z date_updated: 2023-08-10T22:30:10Z day: '16' ddc: - '610' department: - _id: PeJo doi: 10.1038/s43588-021-00157-1 ec_funded: 1 file: - access_level: open_access checksum: 9fec5b667909ef52be96d502e4f8c2ae content_type: application/pdf creator: patrickd date_created: 2022-06-02T12:51:07Z date_updated: 2022-06-18T22:30:03Z embargo: 2022-06-17 file_id: '11430' file_name: Guzmanetal2021.pdf file_size: 1699466 relation: main_file - access_level: open_access checksum: 52a005b13a114e3c3a28fa6bbe8b1a8d content_type: application/pdf creator: patrickd date_created: 2022-06-02T12:53:47Z date_updated: 2022-06-18T22:30:03Z embargo: 2022-06-17 file_id: '11431' file_name: Guzmanetal2021Suppl.pdf file_size: 3005651 relation: supplementary_material title: Supplementary Material file_date_updated: 2022-06-18T22:30:03Z has_accepted_license: '1' intvolume: ' 1' issue: '12' keyword: - general medicine language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/647800 month: '12' oa: 1 oa_version: Submitted Version page: 830-842 project: - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize publication: Nature Computational Science publication_identifier: issn: - 2662-8457 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: press_release url: https://ista.ac.at/en/news/spot-the-difference/ record: - id: '10110' relation: software status: public scopus_import: '1' status: public title: How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1 year: '2021' ... --- _id: '10110' abstract: - lang: eng text: Pattern separation is a fundamental brain computation that converts small differences in input patterns into large differences in output patterns. Several synaptic mechanisms of pattern separation have been proposed, including code expansion, inhibition and plasticity; however, which of these mechanisms play a role in the entorhinal cortex (EC)–dentate gyrus (DG)–CA3 circuit, a classical pattern separation circuit, remains unclear. Here we show that a biologically realistic, full-scale EC–DG–CA3 circuit model, including granule cells (GCs) and parvalbumin-positive inhibitory interneurons (PV+-INs) in the DG, is an efficient pattern separator. Both external gamma-modulated inhibition and internal lateral inhibition mediated by PV+-INs substantially contributed to pattern separation. Both local connectivity and fast signaling at GC–PV+-IN synapses were important for maximum effectiveness. Similarly, mossy fiber synapses with conditional detonator properties contributed to pattern separation. By contrast, perforant path synapses with Hebbian synaptic plasticity and direct EC–CA3 connection shifted the network towards pattern completion. Our results demonstrate that the specific properties of cells and synapses optimize higher-order computations in biological networks and might be useful to improve the deep learning capabilities of technical networks. author: - first_name: José full_name: Guzmán, José id: 30CC5506-F248-11E8-B48F-1D18A9856A87 last_name: Guzmán orcid: 0000-0003-2209-5242 - first_name: Alois full_name: Schlögl, Alois id: 45BF87EE-F248-11E8-B48F-1D18A9856A87 last_name: Schlögl orcid: 0000-0002-5621-8100 - first_name: 'Claudia ' full_name: 'Espinoza Martinez, Claudia ' id: 31FFEE2E-F248-11E8-B48F-1D18A9856A87 last_name: Espinoza Martinez orcid: 0000-0003-4710-2082 - first_name: Xiaomin full_name: Zhang, Xiaomin id: 423EC9C2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang - first_name: Benjamin full_name: Suter, Benjamin id: 4952F31E-F248-11E8-B48F-1D18A9856A87 last_name: Suter orcid: 0000-0002-9885-6936 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Guzmán J, Schlögl A, Espinoza Martinez C, Zhang X, Suter B, Jonas PM. How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network. 2021. doi:10.15479/AT:ISTA:10110 apa: Guzmán, J., Schlögl, A., Espinoza Martinez, C., Zhang, X., Suter, B., & Jonas, P. M. (2021). How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network. IST Austria. https://doi.org/10.15479/AT:ISTA:10110 chicago: Guzmán, José, Alois Schlögl, Claudia Espinoza Martinez, Xiaomin Zhang, Benjamin Suter, and Peter M Jonas. “How Connectivity Rules and Synaptic Properties Shape the Efficacy of Pattern Separation in the Entorhinal Cortex–Dentate Gyrus–CA3 Network.” IST Austria, 2021. https://doi.org/10.15479/AT:ISTA:10110. ieee: J. Guzmán, A. Schlögl, C. Espinoza Martinez, X. Zhang, B. Suter, and P. M. Jonas, “How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network.” IST Austria, 2021. ista: Guzmán J, Schlögl A, Espinoza Martinez C, Zhang X, Suter B, Jonas PM. 2021. How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network, IST Austria, 10.15479/AT:ISTA:10110. mla: Guzmán, José, et al. How Connectivity Rules and Synaptic Properties Shape the Efficacy of Pattern Separation in the Entorhinal Cortex–Dentate Gyrus–CA3 Network. IST Austria, 2021, doi:10.15479/AT:ISTA:10110. short: J. Guzmán, A. Schlögl, C. Espinoza Martinez, X. Zhang, B. Suter, P.M. Jonas, (2021). date_created: 2021-10-08T06:44:22Z date_published: 2021-12-16T00:00:00Z date_updated: 2024-03-28T23:30:11Z day: '16' ddc: - '005' department: - _id: PeJo - _id: ScienComp doi: 10.15479/AT:ISTA:10110 file: - access_level: open_access checksum: f92f8931cad0aa7e411c1715337bf408 content_type: application/x-zip-compressed creator: cchlebak date_created: 2021-10-08T08:46:04Z date_updated: 2021-10-08T08:46:04Z file_id: '10114' file_name: patternseparation-main (1).zip file_size: 332990101 relation: main_file success: 1 file_date_updated: 2021-10-08T08:46:04Z has_accepted_license: '1' license: https://opensource.org/licenses/GPL-3.0 month: '12' oa: 1 publisher: IST Austria related_material: link: - description: News on IST Webpage relation: press_release url: https://ist.ac.at/en/news/spot-the-difference/ record: - id: '10816' relation: used_for_analysis_in status: public status: public title: How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network tmp: legal_code_url: https://www.gnu.org/licenses/gpl-3.0.en.html name: GNU General Public License 3.0 short: GPL 3.0 type: software user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '10077' abstract: - lang: eng text: Although much is known about how single neurons in the hippocampus represent an animal’s position, how cell-cell interactions contribute to spatial coding remains poorly understood. Using a novel statistical estimator and theoretical modeling, both developed in the framework of maximum entropy models, we reveal highly structured cell-to-cell interactions whose statistics depend on familiar vs. novel environment. In both conditions the circuit interactions optimize the encoding of spatial information, but for regimes that differ in the signal-to-noise ratio of their spatial inputs. Moreover, the topology of the interactions facilitates linear decodability, making the information easy to read out by downstream circuits. These findings suggest that the efficient coding hypothesis is not applicable only to individual neuron properties in the sensory periphery, but also to neural interactions in the central brain. acknowledgement: We thank Peter Baracskay, Karola Kaefer and Hugo Malagon-Vina for the acquisition of the data. We thank Federico Stella for comments on an earlier version of the manuscript. MN was supported by European Union Horizon 2020 grant 665385, JC was supported by European Research Council consolidator grant 281511, GT was supported by the Austrian Science Fund (FWF) grant P34015, CS was supported by an IST fellow grant, National Institute of Mental Health Award 1R01MH125571-01, by the National Science Foundation under NSF Award No. 1922658 and a Google faculty award. article_processing_charge: No author: - first_name: Michele full_name: Nardin, Michele id: 30BD0376-F248-11E8-B48F-1D18A9856A87 last_name: Nardin orcid: 0000-0001-8849-6570 - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 - first_name: Cristina full_name: Savin, Cristina id: 3933349E-F248-11E8-B48F-1D18A9856A87 last_name: Savin citation: ama: Nardin M, Csicsvari JL, Tkačik G, Savin C. The structure of hippocampal CA1 interactions optimizes spatial coding across experience. bioRxiv. doi:10.1101/2021.09.28.460602 apa: Nardin, M., Csicsvari, J. L., Tkačik, G., & Savin, C. (n.d.). The structure of hippocampal CA1 interactions optimizes spatial coding across experience. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.09.28.460602 chicago: Nardin, Michele, Jozsef L Csicsvari, Gašper Tkačik, and Cristina Savin. “The Structure of Hippocampal CA1 Interactions Optimizes Spatial Coding across Experience.” BioRxiv. Cold Spring Harbor Laboratory, n.d. https://doi.org/10.1101/2021.09.28.460602. ieee: M. Nardin, J. L. Csicsvari, G. Tkačik, and C. Savin, “The structure of hippocampal CA1 interactions optimizes spatial coding across experience,” bioRxiv. Cold Spring Harbor Laboratory. ista: Nardin M, Csicsvari JL, Tkačik G, Savin C. The structure of hippocampal CA1 interactions optimizes spatial coding across experience. bioRxiv, 10.1101/2021.09.28.460602. mla: Nardin, Michele, et al. “The Structure of Hippocampal CA1 Interactions Optimizes Spatial Coding across Experience.” BioRxiv, Cold Spring Harbor Laboratory, doi:10.1101/2021.09.28.460602. short: M. Nardin, J.L. Csicsvari, G. Tkačik, C. Savin, BioRxiv (n.d.). date_created: 2021-10-04T06:23:34Z date_published: 2021-09-29T00:00:00Z date_updated: 2024-03-28T23:30:16Z day: '29' department: - _id: GradSch - _id: JoCs - _id: GaTk doi: 10.1101/2021.09.28.460602 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/2021.09.28.460602 month: '09' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 257A4776-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281511' name: Memory-related information processing in neuronal circuits of the hippocampus and entorhinal cortex - _id: 626c45b5-2b32-11ec-9570-e509828c1ba6 grant_number: P34015 name: Efficient coding with biophysical realism publication: bioRxiv publication_status: submitted publisher: Cold Spring Harbor Laboratory related_material: record: - id: '11932' relation: dissertation_contains status: public status: public title: The structure of hippocampal CA1 interactions optimizes spatial coding across experience tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ...