--- _id: '15172' abstract: - lang: eng text: 'We propose a novel approach to concentration for non-independent random variables. The main idea is to “pretend” that the random variables are independent and pay a multiplicative price measuring how far they are from actually being independent. This price is encapsulated in the Hellinger integral between the joint and the product of the marginals, which is then upper bounded leveraging tensorisation properties. Our bounds represent a natural generalisation of concentration inequalities in the presence of dependence: we recover exactly the classical bounds (McDiarmid’s inequality) when the random variables are independent. Furthermore, in a “large deviations” regime, we obtain the same decay in the probability as for the independent case, even when the random variables display non-trivial dependencies. To show this, we consider a number of applications of interest. First, we provide a bound for Markov chains with finite state space. Then, we consider the Simple Symmetric Random Walk, which is a non-contracting Markov chain, and a non-Markovian setting in which the stochastic process depends on its entire past. To conclude, we propose an application to Markov Chain Monte Carlo methods, where our approach leads to an improved lower bound on the minimum burn-in period required to reach a certain accuracy. In all of these settings, we provide a regime of parameters in which our bound fares better than what the state of the art can provide.' article_processing_charge: No article_type: original author: - first_name: Amedeo Roberto full_name: Esposito, Amedeo Roberto id: 9583e921-e1ad-11ec-9862-cef099626dc9 last_name: Esposito - first_name: Marco full_name: Mondelli, Marco id: 27EB676C-8706-11E9-9510-7717E6697425 last_name: Mondelli orcid: 0000-0002-3242-7020 citation: ama: Esposito AR, Mondelli M. Concentration without independence via information measures. IEEE Transactions on Information Theory. doi:10.1109/TIT.2024.3367767 apa: Esposito, A. R., & Mondelli, M. (n.d.). Concentration without independence via information measures. IEEE Transactions on Information Theory. IEEE. https://doi.org/10.1109/TIT.2024.3367767 chicago: Esposito, Amedeo Roberto, and Marco Mondelli. “Concentration without Independence via Information Measures.” IEEE Transactions on Information Theory. IEEE, n.d. https://doi.org/10.1109/TIT.2024.3367767. ieee: A. R. Esposito and M. Mondelli, “Concentration without independence via information measures,” IEEE Transactions on Information Theory. IEEE. ista: Esposito AR, Mondelli M. Concentration without independence via information measures. IEEE Transactions on Information Theory. mla: Esposito, Amedeo Roberto, and Marco Mondelli. “Concentration without Independence via Information Measures.” IEEE Transactions on Information Theory, IEEE, doi:10.1109/TIT.2024.3367767. short: A.R. Esposito, M. Mondelli, IEEE Transactions on Information Theory (n.d.). date_created: 2024-03-24T23:01:00Z date_published: 2024-02-20T00:00:00Z date_updated: 2024-03-25T07:15:51Z day: '20' department: - _id: MaMo doi: 10.1109/TIT.2024.3367767 external_id: arxiv: - '2303.07245' language: - iso: eng month: '02' oa_version: None project: - _id: 059876FA-7A3F-11EA-A408-12923DDC885E name: Prix Lopez-Loretta 2019 - Marco Mondelli publication: IEEE Transactions on Information Theory publication_identifier: eissn: - 1557-9654 issn: - 0018-9448 publication_status: inpress publisher: IEEE quality_controlled: '1' related_material: record: - id: '14922' relation: earlier_version status: public scopus_import: '1' status: public title: Concentration without independence via information measures type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15170' abstract: - lang: eng text: 'The James Webb Space Telescope is revealing a new population of dust-reddened broad-line active galactic nuclei (AGN) at redshifts z ≳ 5. Here we present deep NIRSpec/Prism spectroscopy from the Cycle 1 Treasury program Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) of 15 AGN candidates selected to be compact, with red continua in the rest-frame optical but with blue slopes in the UV. From NIRCam photometry alone, they could have been dominated by dusty star formation or an AGN. Here we show that the majority of the compact red sources in UNCOVER are dust-reddened AGN: 60% show definitive evidence for broad-line Hα with a FWHM > 2000 km s −1, 20% of the current data are inconclusive, and 20% are brown dwarf stars. We propose an updated photometric criterion to select red z > 5 AGN that excludes brown dwarfs and is expected to yield >80% AGN. Remarkably, among all zphot > 5 galaxies with F277W – F444W > 1 in UNCOVER at least 33% are AGN regardless of compactness, climbing to at least 80% AGN for sources with F277W – F444W > 1.6. The confirmed AGN have black hole masses of 107–109M⊙. While their UV luminosities (−16 > MUV > −20 AB mag) are low compared to UV-selected AGN at these epochs, consistent with percent-level scattered AGN light or low levels of unobscured star formation, the inferred bolometric luminosities are typical of 107–109M⊙ black holes radiating at ∼10%–40% the Eddington limit. The number densities are surprisingly high at ∼10−5 Mpc−3 mag−1, 100 times more common than the faintest UV-selected quasars, while accounting for ∼1% of the UV-selected galaxies. While their UV faintness suggests they may not contribute strongly to reionization, their ubiquity poses challenges to models of black hole growth.' acknowledgement: J.E.G. and A.D.G acknowledge support from NSF/AAG grant No. 1007094, and J.E.G. also acknowledges support from NSF/AAG grant No. 1007052. A.Z. acknowledges support by grant No. 2020750 from the United States-Israel Binational Science Foundation (BSF) and grant No. 2109066 from the United States National Science Foundation (NSF), and by the Ministry of Science & Technology of Israel. The Cosmic Dawn Center is funded by the Danish National Research Foundation (DNRF) under grant No. 140. This work has received funding from the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number MB22.00072, as well as from the Swiss National Science Foundation (SNSF) through project grant 200020_207349. P.D. acknowledges support from the NWO grant 016.VIDI.189.162 ("ODIN") and from the European Commission's and University of Groningen's CO-FUND Rosalind Franklin program. K.G. and T.N. acknowledge support from Australian Research Council Laureate Fellowship FL180100060. H.A. and I.C. acknowledge support from CNES, focused on the JWST mission, and the Programme National Cosmology and Galaxies (PNCG) of CNRS/INSU with INP and IN2P3, cofunded by CEA and CNES. R.P.N. acknowledges funding from JWST programs GO-1933 and GO-2279. Support for this work was provided by NASA through the NASA Hubble Fellowship grant HST-HF2-51515.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. The research of C.C.W. is supported by NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. B.W. acknowledges support from JWST-GO-02561.022-A. A.J.B. acknowledges funding support from NASA/ADAP grant 21-ADAP21-0187. Support for this work was provided by The Brinson Foundation through a Brinson Prize Fellowship grant. R.P.N. acknowledges support for this work provided by NASA through the NASA Hubble Fellowship grant HST-HF2-51515.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. C.P. thanks Marsha and Ralph Schilling for the generous support of this research. article_number: '39' article_processing_charge: Yes article_type: original author: - first_name: Jenny E. full_name: Greene, Jenny E. last_name: Greene - first_name: Ivo full_name: Labbe, Ivo last_name: Labbe - first_name: Andy D. full_name: Goulding, Andy D. last_name: Goulding - first_name: Lukas J. full_name: Furtak, Lukas J. last_name: Furtak - first_name: Iryna full_name: Chemerynska, Iryna last_name: Chemerynska - first_name: Vasily full_name: Kokorev, Vasily last_name: Kokorev - first_name: Pratika full_name: Dayal, Pratika last_name: Dayal - first_name: Marta full_name: Volonteri, Marta last_name: Volonteri - first_name: Christina C. full_name: Williams, Christina C. last_name: Williams - first_name: Bingjie full_name: Wang, Bingjie last_name: Wang - first_name: David J. full_name: Setton, David J. last_name: Setton - first_name: Adam J. full_name: Burgasser, Adam J. last_name: Burgasser - first_name: Rachel full_name: Bezanson, Rachel last_name: Bezanson - first_name: Hakim full_name: Atek, Hakim last_name: Atek - first_name: Gabriel full_name: Brammer, Gabriel last_name: Brammer - first_name: Sam E. full_name: Cutler, Sam E. last_name: Cutler - first_name: Robert full_name: Feldmann, Robert last_name: Feldmann - first_name: Seiji full_name: Fujimoto, Seiji last_name: Fujimoto - first_name: Karl full_name: Glazebrook, Karl last_name: Glazebrook - first_name: Anna full_name: De Graaff, Anna last_name: De Graaff - first_name: Gourav full_name: Khullar, Gourav last_name: Khullar - first_name: Joel full_name: Leja, Joel last_name: Leja - first_name: Danilo full_name: Marchesini, Danilo last_name: Marchesini - first_name: Michael V. full_name: Maseda, Michael V. last_name: Maseda - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Tim B. full_name: Miller, Tim B. last_name: Miller - first_name: Rohan P. full_name: Naidu, Rohan P. last_name: Naidu - first_name: Themiya full_name: Nanayakkara, Themiya last_name: Nanayakkara - first_name: Pascal A. full_name: Oesch, Pascal A. last_name: Oesch - first_name: Richard full_name: Pan, Richard last_name: Pan - first_name: Casey full_name: Papovich, Casey last_name: Papovich - first_name: Sedona H. full_name: Price, Sedona H. last_name: Price - first_name: Pieter full_name: Van Dokkum, Pieter last_name: Van Dokkum - first_name: John R. full_name: Weaver, John R. last_name: Weaver - first_name: Katherine E. full_name: Whitaker, Katherine E. last_name: Whitaker - first_name: Adi full_name: Zitrin, Adi last_name: Zitrin citation: ama: Greene JE, Labbe I, Goulding AD, et al. UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5. Astrophysical Journal. 2024;964. doi:10.3847/1538-4357/ad1e5f apa: Greene, J. E., Labbe, I., Goulding, A. D., Furtak, L. J., Chemerynska, I., Kokorev, V., … Zitrin, A. (2024). UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5. Astrophysical Journal. IOP Publishing. https://doi.org/10.3847/1538-4357/ad1e5f chicago: Greene, Jenny E., Ivo Labbe, Andy D. Goulding, Lukas J. Furtak, Iryna Chemerynska, Vasily Kokorev, Pratika Dayal, et al. “UNCOVER Spectroscopy Confirms the Surprising Ubiquity of Active Galactic Nuclei in Red Sources at z > 5.” Astrophysical Journal. IOP Publishing, 2024. https://doi.org/10.3847/1538-4357/ad1e5f. ieee: J. E. Greene et al., “UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5,” Astrophysical Journal, vol. 964. IOP Publishing, 2024. ista: Greene JE, Labbe I, Goulding AD, Furtak LJ, Chemerynska I, Kokorev V, Dayal P, Volonteri M, Williams CC, Wang B, Setton DJ, Burgasser AJ, Bezanson R, Atek H, Brammer G, Cutler SE, Feldmann R, Fujimoto S, Glazebrook K, De Graaff A, Khullar G, Leja J, Marchesini D, Maseda MV, Matthee JJ, Miller TB, Naidu RP, Nanayakkara T, Oesch PA, Pan R, Papovich C, Price SH, Van Dokkum P, Weaver JR, Whitaker KE, Zitrin A. 2024. UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5. Astrophysical Journal. 964, 39. mla: Greene, Jenny E., et al. “UNCOVER Spectroscopy Confirms the Surprising Ubiquity of Active Galactic Nuclei in Red Sources at z > 5.” Astrophysical Journal, vol. 964, 39, IOP Publishing, 2024, doi:10.3847/1538-4357/ad1e5f. short: J.E. Greene, I. Labbe, A.D. Goulding, L.J. Furtak, I. Chemerynska, V. Kokorev, P. Dayal, M. Volonteri, C.C. Williams, B. Wang, D.J. Setton, A.J. Burgasser, R. Bezanson, H. Atek, G. Brammer, S.E. Cutler, R. Feldmann, S. Fujimoto, K. Glazebrook, A. De Graaff, G. Khullar, J. Leja, D. Marchesini, M.V. Maseda, J.J. Matthee, T.B. Miller, R.P. Naidu, T. Nanayakkara, P.A. Oesch, R. Pan, C. Papovich, S.H. Price, P. Van Dokkum, J.R. Weaver, K.E. Whitaker, A. Zitrin, Astrophysical Journal 964 (2024). date_created: 2024-03-24T23:00:59Z date_published: 2024-03-01T00:00:00Z date_updated: 2024-03-25T08:04:13Z day: '01' ddc: - '550' department: - _id: JoMa doi: 10.3847/1538-4357/ad1e5f external_id: arxiv: - '2309.05714' file: - access_level: open_access checksum: 389a880e176799d5c062ea7cb82d08c9 content_type: application/pdf creator: dernst date_created: 2024-03-25T08:02:43Z date_updated: 2024-03-25T08:02:43Z file_id: '15176' file_name: 2024_AstrophysicalJourn_Greene.pdf file_size: 2700137 relation: main_file success: 1 file_date_updated: 2024-03-25T08:02:43Z has_accepted_license: '1' intvolume: ' 964' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '03' oa: 1 oa_version: Published Version publication: Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 964 year: '2024' ... --- _id: '15168' abstract: - lang: eng text: 'A linearly ordered (LO) k-colouring of a hypergraph is a colouring of its vertices with colours 1, … , k such that each edge contains a unique maximal colour. Deciding whether an input hypergraph admits LO k-colouring with a fixed number of colours is NP-complete (and in the special case of graphs, LO colouring coincides with the usual graph colouring). Here, we investigate the complexity of approximating the "linearly ordered chromatic number" of a hypergraph. We prove that the following promise problem is NP-complete: Given a 3-uniform hypergraph, distinguish between the case that it is LO 3-colourable, and the case that it is not even LO 4-colourable. We prove this result by a combination of algebraic, topological, and combinatorial methods, building on and extending a topological approach for studying approximate graph colouring introduced by Krokhin, Opršal, Wrochna, and Živný (2023).' acknowledgement: "Marek Filakovský: This research was supported by Charles University (project PRIMUS/\r\n21/SCI/014), the Austrian Science Fund (FWF project P31312-N35), and MSCAfellow5_MUNI\r\n(CZ.02.01.01/00/22_010/0003229). Tamio-Vesa Nakajima: This research was funded by UKRI EP/X024431/1 and by a Clarendon Fund Scholarship. All data is provided in full in the results section of this paper. Jakub Opršal: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No 101034413. Uli Wagner: This research was supported by the Austrian Science Fund (FWF project P31312-N35)." alternative_title: - LIPIcs article_number: '34' article_processing_charge: No author: - first_name: Marek full_name: Filakovský, Marek id: 3E8AF77E-F248-11E8-B48F-1D18A9856A87 last_name: Filakovský - first_name: Tamio Vesa full_name: Nakajima, Tamio Vesa last_name: Nakajima - first_name: Jakub full_name: Opršal, Jakub id: ec596741-c539-11ec-b829-c79322a91242 last_name: Opršal orcid: 0000-0003-1245-3456 - first_name: Gianluca full_name: Tasinato, Gianluca id: 0433290C-AF8F-11E9-A4C7-F729E6697425 last_name: Tasinato - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 citation: ama: 'Filakovský M, Nakajima TV, Opršal J, Tasinato G, Wagner U. Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs. In: 41st International Symposium on Theoretical Aspects of Computer Science. Vol 289. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2024. doi:10.4230/LIPIcs.STACS.2024.34' apa: 'Filakovský, M., Nakajima, T. V., Opršal, J., Tasinato, G., & Wagner, U. (2024). Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs. In 41st International Symposium on Theoretical Aspects of Computer Science (Vol. 289). Clermont-Ferrand, France: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.STACS.2024.34' chicago: Filakovský, Marek, Tamio Vesa Nakajima, Jakub Opršal, Gianluca Tasinato, and Uli Wagner. “Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs.” In 41st International Symposium on Theoretical Aspects of Computer Science, Vol. 289. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. https://doi.org/10.4230/LIPIcs.STACS.2024.34. ieee: M. Filakovský, T. V. Nakajima, J. Opršal, G. Tasinato, and U. Wagner, “Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs,” in 41st International Symposium on Theoretical Aspects of Computer Science, Clermont-Ferrand, France, 2024, vol. 289. ista: 'Filakovský M, Nakajima TV, Opršal J, Tasinato G, Wagner U. 2024. Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs. 41st International Symposium on Theoretical Aspects of Computer Science. STACS: Symposium on Theoretical Aspects of Computer Science, LIPIcs, vol. 289, 34.' mla: Filakovský, Marek, et al. “Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs.” 41st International Symposium on Theoretical Aspects of Computer Science, vol. 289, 34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, doi:10.4230/LIPIcs.STACS.2024.34. short: M. Filakovský, T.V. Nakajima, J. Opršal, G. Tasinato, U. Wagner, in:, 41st International Symposium on Theoretical Aspects of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. conference: end_date: 2024-03-14 location: Clermont-Ferrand, France name: 'STACS: Symposium on Theoretical Aspects of Computer Science' start_date: 2024-03-12 date_created: 2024-03-24T23:00:59Z date_published: 2024-03-01T00:00:00Z date_updated: 2024-03-25T07:45:54Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.STACS.2024.34 ec_funded: 1 external_id: arxiv: - '2312.12981' file: - access_level: open_access checksum: 0524d4189fd1ed08989546511343edf3 content_type: application/pdf creator: dernst date_created: 2024-03-25T07:44:30Z date_updated: 2024-03-25T07:44:30Z file_id: '15175' file_name: 2024_LIPICs_Filakovsky.pdf file_size: 927290 relation: main_file success: 1 file_date_updated: 2024-03-25T07:44:30Z has_accepted_license: '1' intvolume: ' 289' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 26611F5C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31312 name: Algorithms for Embeddings and Homotopy Theory - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: 41st International Symposium on Theoretical Aspects of Computer Science publication_identifier: eissn: - 1868-8969 isbn: - '9783959773119' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 289 year: '2024' ... --- _id: '15164' abstract: - lang: eng text: Primary implant stability, which refers to the stability of the implant during the initial healing period is a crucial factor in determining the long-term success of the implant and lays the foundation for secondary implant stability achieved through osseointegration. Factors affecting primary stability include implant design, surgical technique, and patient-specific factors like bone quality and morphology. In vivo, the cyclic nature of anatomical loading puts osteosynthesis locking screws under dynamic loads, which can lead to the formation of micro cracks and defects that slowly degrade the mechanical connection between the bone and screw, thus compromising the initial stability and secondary stability of the implant. Monotonic quasi-static loading used for testing the holding capacity of implanted screws is not well suited to capture this behavior since it cannot capture the progressive deterioration of peri‑implant bone at small displacements. In order to address this issue, this study aims to determine a critical point of loss of primary implant stability in osteosynthesis locking screws under cyclic overloading by investigating the evolution of damage, dissipated energy, and permanent deformation. A custom-made test setup was used to test implanted 2.5 mm locking screws under cyclic overloading test. For each loading cycle, maximum forces and displacement were recorded as well as initial and final cycle displacements and used to calculate damage and energy dissipation evolution. The results of this study demonstrate that for axial, shear, and mixed loading significant damage and energy dissipation can be observed at approximately 20 % of the failure force. Additionally, at this load level, permanent deformations on the screw-bone interface were found to be in the range of 50 to 150 mm which promotes osseointegration and secondary implant stability. This research can assist surgeons in making informed preoperative decisions by providing a better understanding of the critical point of loss of primary implant stability, thus improving the long-term success of the implant and overall patient satisfaction. acknowledgement: The authors declare no conflict of interest related to this study. This project was funded by the Gesellschaft fuer Forschungsfoerderung Niederoesterreich m.b.H. Life Science Call 2017 Grant No. LS17004 and Science call 2019 Dissertationen Grant No. SC19014. No ethical approval was required for this study. article_number: '104143' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Juan D. full_name: Silva-Henao, Juan D. last_name: Silva-Henao - first_name: Sophie full_name: Schober, Sophie id: 80b0a0ef-4b9f-11ec-b119-8d9d94c4a1d8 last_name: Schober - first_name: Dieter H. full_name: Pahr, Dieter H. last_name: Pahr - first_name: Andreas G. full_name: Reisinger, Andreas G. last_name: Reisinger citation: ama: Silva-Henao JD, Schober S, Pahr DH, Reisinger AG. Critical loss of primary implant stability in osteosynthesis locking screws under cyclic overloading. Medical Engineering and Physics. 2024;126. doi:10.1016/j.medengphy.2024.104143 apa: Silva-Henao, J. D., Schober, S., Pahr, D. H., & Reisinger, A. G. (2024). Critical loss of primary implant stability in osteosynthesis locking screws under cyclic overloading. Medical Engineering and Physics. Elsevier. https://doi.org/10.1016/j.medengphy.2024.104143 chicago: Silva-Henao, Juan D., Sophie Schober, Dieter H. Pahr, and Andreas G. Reisinger. “Critical Loss of Primary Implant Stability in Osteosynthesis Locking Screws under Cyclic Overloading.” Medical Engineering and Physics. Elsevier, 2024. https://doi.org/10.1016/j.medengphy.2024.104143. ieee: J. D. Silva-Henao, S. Schober, D. H. Pahr, and A. G. Reisinger, “Critical loss of primary implant stability in osteosynthesis locking screws under cyclic overloading,” Medical Engineering and Physics, vol. 126. Elsevier, 2024. ista: Silva-Henao JD, Schober S, Pahr DH, Reisinger AG. 2024. Critical loss of primary implant stability in osteosynthesis locking screws under cyclic overloading. Medical Engineering and Physics. 126, 104143. mla: Silva-Henao, Juan D., et al. “Critical Loss of Primary Implant Stability in Osteosynthesis Locking Screws under Cyclic Overloading.” Medical Engineering and Physics, vol. 126, 104143, Elsevier, 2024, doi:10.1016/j.medengphy.2024.104143. short: J.D. Silva-Henao, S. Schober, D.H. Pahr, A.G. Reisinger, Medical Engineering and Physics 126 (2024). date_created: 2024-03-24T23:00:58Z date_published: 2024-04-01T00:00:00Z date_updated: 2024-03-25T08:31:01Z day: '01' ddc: - '610' department: - _id: PreCl doi: 10.1016/j.medengphy.2024.104143 file: - access_level: open_access checksum: 974acbf2731e7382dcf5920ac762e551 content_type: application/pdf creator: dernst date_created: 2024-03-25T08:29:52Z date_updated: 2024-03-25T08:29:52Z file_id: '15177' file_name: 2024_MedEngineeringPhysics_SilvaHenao.pdf file_size: 10039402 relation: main_file success: 1 file_date_updated: 2024-03-25T08:29:52Z has_accepted_license: '1' intvolume: ' 126' language: - iso: eng month: '04' oa: 1 oa_version: Published Version publication: Medical Engineering and Physics publication_identifier: eissn: - 1873-4030 issn: - 1350-4533 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Critical loss of primary implant stability in osteosynthesis locking screws under cyclic overloading tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 126 year: '2024' ... --- _id: '15169' abstract: - lang: eng text: Interpretation of extracellular recordings can be challenging due to the long range of electric field. This challenge can be mitigated by estimating the current source density (CSD). Here we introduce kCSD-python, an open Python package implementing Kernel Current Source Density (kCSD) method and related tools to facilitate CSD analysis of experimental data and the interpretation of results. We show how to counter the limitations imposed by noise and assumptions in the method itself. kCSD-python allows CSD estimation for an arbitrary distribution of electrodes in 1D, 2D, and 3D, assuming distributions of sources in tissue, a slice, or in a single cell, and includes a range of diagnostic aids. We demonstrate its features in a Jupyter Notebook tutorial which illustrates a typical analytical workflow and main functionalities useful in validating analysis results. acknowledgement: 'The Python implementation of kCSD was started by Grzegorz Parka during Google Summer of Code project through the International Neuroinformatics Coordinating Facility. Jan Mąka implemented the first Python version of skCSD class. This work was supported by the Polish National Science Centre (2013/08/W/NZ4/00691 to DKW; 2015/17/B/ST7/04123 to DKW). ' article_number: e1011941 article_processing_charge: Yes article_type: original author: - first_name: Chaitanya full_name: Chintaluri, Chaitanya id: E4EDB536-3485-11EA-98D2-20AF3DDC885E last_name: Chintaluri - first_name: Marta full_name: Bejtka, Marta last_name: Bejtka - first_name: Wladyslaw full_name: Sredniawa, Wladyslaw last_name: Sredniawa - first_name: Michal full_name: Czerwinski, Michal last_name: Czerwinski - first_name: Jakub M. full_name: Dzik, Jakub M. last_name: Dzik - first_name: Joanna full_name: Jedrzejewska-Szmek, Joanna last_name: Jedrzejewska-Szmek - first_name: Daniel K. full_name: Wojciki, Daniel K. last_name: Wojciki citation: ama: Chintaluri C, Bejtka M, Sredniawa W, et al. kCSD-python, reliable current source density estimation with quality control. PLoS Computational Biology. 2024;20(3). doi:10.1371/journal.pcbi.1011941 apa: Chintaluri, C., Bejtka, M., Sredniawa, W., Czerwinski, M., Dzik, J. M., Jedrzejewska-Szmek, J., & Wojciki, D. K. (2024). kCSD-python, reliable current source density estimation with quality control. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1011941 chicago: Chintaluri, Chaitanya, Marta Bejtka, Wladyslaw Sredniawa, Michal Czerwinski, Jakub M. Dzik, Joanna Jedrzejewska-Szmek, and Daniel K. Wojciki. “KCSD-Python, Reliable Current Source Density Estimation with Quality Control.” PLoS Computational Biology. Public Library of Science, 2024. https://doi.org/10.1371/journal.pcbi.1011941. ieee: C. Chintaluri et al., “kCSD-python, reliable current source density estimation with quality control,” PLoS Computational Biology, vol. 20, no. 3. Public Library of Science, 2024. ista: Chintaluri C, Bejtka M, Sredniawa W, Czerwinski M, Dzik JM, Jedrzejewska-Szmek J, Wojciki DK. 2024. kCSD-python, reliable current source density estimation with quality control. PLoS Computational Biology. 20(3), e1011941. mla: Chintaluri, Chaitanya, et al. “KCSD-Python, Reliable Current Source Density Estimation with Quality Control.” PLoS Computational Biology, vol. 20, no. 3, e1011941, Public Library of Science, 2024, doi:10.1371/journal.pcbi.1011941. short: C. Chintaluri, M. Bejtka, W. Sredniawa, M. Czerwinski, J.M. Dzik, J. Jedrzejewska-Szmek, D.K. Wojciki, PLoS Computational Biology 20 (2024). date_created: 2024-03-24T23:00:59Z date_published: 2024-03-14T00:00:00Z date_updated: 2024-03-25T07:54:23Z day: '14' department: - _id: TiVo doi: 10.1371/journal.pcbi.1011941 intvolume: ' 20' issue: '3' language: - iso: eng month: '03' oa_version: Published Version publication: PLoS Computational Biology publication_identifier: eissn: - 1553-7358 issn: - 1553-734X publication_status: published publisher: Public Library of Science quality_controlled: '1' related_material: link: - relation: software url: https://github.com/Neuroinflab/kCSD-python scopus_import: '1' status: public title: kCSD-python, reliable current source density estimation with quality control type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 20 year: '2024' ...