--- _id: '14794' abstract: - lang: eng text: "Mosaic analysis with double markers (MADM) technology enables the sparse labeling of genetically defined neurons. We present a protocol for time-lapse imaging of cortical projection neuron migration in mice using MADM. We describe steps for the isolation, culturing, and 4D imaging of neuronal dynamics in MADM-labeled brain tissue. While this protocol is compatible with other single-cell labeling methods, the MADM approach provides a genetic platform for the functional assessment of cell-autonomous candidate gene function and the relative contribution of non-cell-autonomous effects.\r\n\r\nFor complete details on the use and execution of this protocol, please refer to Hansen et al. (2022),1 Contreras et al. (2021),2 and Amberg and Hippenmeyer (2021).3" acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: We thank Florian Pauler for discussion and his expert technical support. This research was supported by the Scientific Service Units (SSU) at IST Austria through resources provided by the Imaging and Optics Facility (IOF) and Preclinical Facility (PCF). A.H.H. was a recipient of a DOC Fellowship (24812) of the Austrian Academy of Sciences. article_number: '102795' article_processing_charge: Yes article_type: review author: - first_name: Andi H full_name: Hansen, Andi H id: 38853E16-F248-11E8-B48F-1D18A9856A87 last_name: Hansen - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Hansen AH, Hippenmeyer S. Time-lapse imaging of cortical projection neuron migration in mice using mosaic analysis with double markers. STAR Protocols. 2024;5(1). doi:10.1016/j.xpro.2023.102795 apa: Hansen, A. H., & Hippenmeyer, S. (2024). Time-lapse imaging of cortical projection neuron migration in mice using mosaic analysis with double markers. STAR Protocols. Elsevier. https://doi.org/10.1016/j.xpro.2023.102795 chicago: Hansen, Andi H, and Simon Hippenmeyer. “Time-Lapse Imaging of Cortical Projection Neuron Migration in Mice Using Mosaic Analysis with Double Markers.” STAR Protocols. Elsevier, 2024. https://doi.org/10.1016/j.xpro.2023.102795. ieee: A. H. Hansen and S. Hippenmeyer, “Time-lapse imaging of cortical projection neuron migration in mice using mosaic analysis with double markers,” STAR Protocols, vol. 5, no. 1. Elsevier, 2024. ista: Hansen AH, Hippenmeyer S. 2024. Time-lapse imaging of cortical projection neuron migration in mice using mosaic analysis with double markers. STAR Protocols. 5(1), 102795. mla: Hansen, Andi H., and Simon Hippenmeyer. “Time-Lapse Imaging of Cortical Projection Neuron Migration in Mice Using Mosaic Analysis with Double Markers.” STAR Protocols, vol. 5, no. 1, 102795, Elsevier, 2024, doi:10.1016/j.xpro.2023.102795. short: A.H. Hansen, S. Hippenmeyer, STAR Protocols 5 (2024). date_created: 2024-01-14T23:00:56Z date_published: 2024-01-01T00:00:00Z date_updated: 2024-01-17T10:32:31Z day: '01' department: - _id: SiHi doi: 10.1016/j.xpro.2023.102795 external_id: pmid: - '38165800' intvolume: ' 5' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.xpro.2023.102795 month: '01' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2625A13E-B435-11E9-9278-68D0E5697425 grant_number: '24812' name: Molecular Mechanisms of Radial Neuronal Migration publication: STAR Protocols publication_identifier: eissn: - 2666-1667 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' related_material: link: - relation: software url: http://github.com/hippenmeyerlab scopus_import: '1' status: public title: Time-lapse imaging of cortical projection neuron migration in mice using mosaic analysis with double markers type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2024' ... --- _id: '14826' abstract: - lang: eng text: The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage. acknowledgement: 'We are grateful to Asuka Shitaku and Eri Koide for generating and sharing the Marchantia PRAF-mCitrine line and Peng-Cheng Wang for sharing the Arabidopsis raf mutant. We are grateful to our team members for discussions and helpful advice. This work was supported by funding from the Netherlands Organization for Scientific Research (NWO): VICI grant 865.14.001 and ENW-KLEIN OCENW.KLEIN.027 grants to D.W.; VENI grant VI.VENI.212.003 to A.K.; the European Research Council AdG DIRNDL (contract number 833867) to D.W.; CoG CATCH to J.S.; StG CELLONGATE (contract 803048) to M.F.; and AdG ETAP (contract 742985) to J.F.; MEXT KAKENHI grant number JP19H05675 to T.K.; JSPS KAKENHI grant number JP20H03275 to R.N.; Takeda Science Foundation to R.N.; and the Austrian Science Fund (FWF, P29988) to J.F.' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Andre full_name: Kuhn, Andre last_name: Kuhn - first_name: Mark full_name: Roosjen, Mark last_name: Roosjen - first_name: Sumanth full_name: Mutte, Sumanth last_name: Mutte - first_name: Shiv Mani full_name: Dubey, Shiv Mani last_name: Dubey - first_name: Vanessa Polet full_name: Carrillo Carrasco, Vanessa Polet last_name: Carrillo Carrasco - first_name: Sjef full_name: Boeren, Sjef last_name: Boeren - first_name: Aline full_name: Monzer, Aline id: 2DB5D88C-D7B3-11E9-B8FD-7907E6697425 last_name: Monzer - first_name: Jasper full_name: Koehorst, Jasper last_name: Koehorst - first_name: Takayuki full_name: Kohchi, Takayuki last_name: Kohchi - first_name: Ryuichi full_name: Nishihama, Ryuichi last_name: Nishihama - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Joris full_name: Sprakel, Joris last_name: Sprakel - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers citation: ama: Kuhn A, Roosjen M, Mutte S, et al. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell. 2024;187(1):130-148.e17. doi:10.1016/j.cell.2023.11.021 apa: Kuhn, A., Roosjen, M., Mutte, S., Dubey, S. M., Carrillo Carrasco, V. P., Boeren, S., … Weijers, D. (2024). RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell. Elsevier. https://doi.org/10.1016/j.cell.2023.11.021 chicago: Kuhn, Andre, Mark Roosjen, Sumanth Mutte, Shiv Mani Dubey, Vanessa Polet Carrillo Carrasco, Sjef Boeren, Aline Monzer, et al. “RAF-like Protein Kinases Mediate a Deeply Conserved, Rapid Auxin Response.” Cell. Elsevier, 2024. https://doi.org/10.1016/j.cell.2023.11.021. ieee: A. Kuhn et al., “RAF-like protein kinases mediate a deeply conserved, rapid auxin response,” Cell, vol. 187, no. 1. Elsevier, p. 130–148.e17, 2024. ista: Kuhn A, Roosjen M, Mutte S, Dubey SM, Carrillo Carrasco VP, Boeren S, Monzer A, Koehorst J, Kohchi T, Nishihama R, Fendrych M, Sprakel J, Friml J, Weijers D. 2024. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell. 187(1), 130–148.e17. mla: Kuhn, Andre, et al. “RAF-like Protein Kinases Mediate a Deeply Conserved, Rapid Auxin Response.” Cell, vol. 187, no. 1, Elsevier, 2024, p. 130–148.e17, doi:10.1016/j.cell.2023.11.021. short: A. Kuhn, M. Roosjen, S. Mutte, S.M. Dubey, V.P. Carrillo Carrasco, S. Boeren, A. Monzer, J. Koehorst, T. Kohchi, R. Nishihama, M. Fendrych, J. Sprakel, J. Friml, D. Weijers, Cell 187 (2024) 130–148.e17. date_created: 2024-01-17T12:45:40Z date_published: 2024-01-04T00:00:00Z date_updated: 2024-01-22T13:43:40Z day: '04' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.cell.2023.11.021 ec_funded: 1 external_id: pmid: - '38128538' file: - access_level: open_access checksum: 06fd236a9ee0b46ccb05f44695bfc34b content_type: application/pdf creator: dernst date_created: 2024-01-22T13:41:41Z date_updated: 2024-01-22T13:41:41Z file_id: '14874' file_name: 2024_Cell_Kuhn.pdf file_size: 13194060 relation: main_file success: 1 file_date_updated: 2024-01-22T13:41:41Z has_accepted_license: '1' intvolume: ' 187' issue: '1' keyword: - General Biochemistry - Genetics and Molecular Biology language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '01' oa: 1 oa_version: Published Version page: 130-148.e17 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 262EF96E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29988 name: RNA-directed DNA methylation in plant development publication: Cell publication_identifier: eissn: - 1097-4172 issn: - 0092-8674 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: RAF-like protein kinases mediate a deeply conserved, rapid auxin response tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 187 year: '2024' ... --- _id: '14828' abstract: - lang: eng text: Production of hydrogen at large scale requires development of non-noble, inexpensive, and high-performing catalysts for constructing water-splitting devices. Herein, we report the synthesis of Zn-doped NiO heterostructure (ZnNiO) catalysts at room temperature via a coprecipitation method followed by drying (at 80 °C, 6 h) and calcination at an elevated temperature of 400 °C for 5 h under three distinct conditions, namely, air, N2, and vacuum. The vacuum-synthesized catalyst demonstrates a low overpotential of 88 mV at −10 mA cm–2 and a small Tafel slope of 73 mV dec–1 suggesting relatively higher charge transfer kinetics for hydrogen evolution reactions (HER) compared with the specimens synthesized under N2 or O2 atmosphere. It also demonstrates an oxygen evolution (OER) overpotential of 260 mV at 10 mA cm–2 with a low Tafel slope of 63 mV dec–1. In a full-cell water-splitting device, the vacuum-synthesized ZnNiO heterostructure demonstrates a cell voltage of 1.94 V at 50 mA cm–2 and shows remarkable stability over 24 h at a high current density of 100 mA cm–2. It is also demonstrated in this study that Zn-doping, surface, and interface engineering in transition-metal oxides play a crucial role in efficient electrocatalytic water splitting. Also, the results obtained from density functional theory (DFT + U = 0–8 eV), where U is the on-site Coulomb repulsion parameter also known as Hubbard U, based electronic structure calculations confirm that Zn doping constructively modifies the electronic structure, in both the valence band and the conduction band, and found to be suitable in tailoring the carrier’s effective masses of electrons and holes. The decrease in electron’s effective masses together with large differences between the effective masses of electrons and holes is noticed, which is found to be mainly responsible for achieving the best water-splitting performance from a 9% Zn-doped NiO sample prepared under vacuum. acknowledgement: This work was supported by the Technology Innovation Program (20011622, Development of Battery System Applied High-Efficiency Heat Control Polymer and Part Component) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). Author acknowledge to Prof. Tsunehiro Takeuchi from Toyota Technological Institute, Nagoya, Japan for the support of computational resources. article_processing_charge: No article_type: original author: - first_name: Gundegowda Kalligowdanadoddi full_name: Kiran, Gundegowda Kalligowdanadoddi last_name: Kiran - first_name: Saurabh full_name: Singh, Saurabh id: 12d625da-9cb3-11ed-9667-af09d37d3f0a last_name: Singh orcid: 0000-0003-2209-5269 - first_name: Neelima full_name: Mahato, Neelima last_name: Mahato - first_name: Thupakula Venkata Madhukar full_name: Sreekanth, Thupakula Venkata Madhukar last_name: Sreekanth - first_name: Gowra Raghupathy full_name: Dillip, Gowra Raghupathy last_name: Dillip - first_name: Kisoo full_name: Yoo, Kisoo last_name: Yoo - first_name: Jonghoon full_name: Kim, Jonghoon last_name: Kim citation: ama: Kiran GK, Singh S, Mahato N, et al. Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity. ACS Applied Energy Materials. 2024;7(1):214-229. doi:10.1021/acsaem.3c02519 apa: Kiran, G. K., Singh, S., Mahato, N., Sreekanth, T. V. M., Dillip, G. R., Yoo, K., & Kim, J. (2024). Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity. ACS Applied Energy Materials. American Chemical Society. https://doi.org/10.1021/acsaem.3c02519 chicago: Kiran, Gundegowda Kalligowdanadoddi, Saurabh Singh, Neelima Mahato, Thupakula Venkata Madhukar Sreekanth, Gowra Raghupathy Dillip, Kisoo Yoo, and Jonghoon Kim. “Interface Engineering Modulation Combined with Electronic Structure Modification of Zn-Doped NiO Heterostructure for Efficient Water-Splitting Activity.” ACS Applied Energy Materials. American Chemical Society, 2024. https://doi.org/10.1021/acsaem.3c02519. ieee: G. K. Kiran et al., “Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity,” ACS Applied Energy Materials, vol. 7, no. 1. American Chemical Society, pp. 214–229, 2024. ista: Kiran GK, Singh S, Mahato N, Sreekanth TVM, Dillip GR, Yoo K, Kim J. 2024. Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity. ACS Applied Energy Materials. 7(1), 214–229. mla: Kiran, Gundegowda Kalligowdanadoddi, et al. “Interface Engineering Modulation Combined with Electronic Structure Modification of Zn-Doped NiO Heterostructure for Efficient Water-Splitting Activity.” ACS Applied Energy Materials, vol. 7, no. 1, American Chemical Society, 2024, pp. 214–29, doi:10.1021/acsaem.3c02519. short: G.K. Kiran, S. Singh, N. Mahato, T.V.M. Sreekanth, G.R. Dillip, K. Yoo, J. Kim, ACS Applied Energy Materials 7 (2024) 214–229. date_created: 2024-01-17T12:48:35Z date_published: 2024-01-08T00:00:00Z date_updated: 2024-01-22T13:47:39Z day: '08' department: - _id: MaIb doi: 10.1021/acsaem.3c02519 external_id: isi: - '001138342900001' intvolume: ' 7' isi: 1 issue: '1' keyword: - Electrical and Electronic Engineering - Materials Chemistry - Electrochemistry - Energy Engineering and Power Technology - Chemical Engineering (miscellaneous) language: - iso: eng month: '01' oa_version: None page: 214-229 publication: ACS Applied Energy Materials publication_identifier: issn: - 2574-0962 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2024' ... --- _id: '14834' abstract: - lang: eng text: Bacteria divide by binary fission. The protein machine responsible for this process is the divisome, a transient assembly of more than 30 proteins in and on the surface of the cytoplasmic membrane. Together, they constrict the cell envelope and remodel the peptidoglycan layer to eventually split the cell into two. For Escherichia coli, most molecular players involved in this process have probably been identified, but obtaining the quantitative information needed for a mechanistic understanding can often not be achieved from experiments in vivo alone. Since the discovery of the Z-ring more than 30 years ago, in vitro reconstitution experiments have been crucial to shed light on molecular processes normally hidden in the complex environment of the living cell. In this review, we summarize how rebuilding the divisome from purified components – or at least parts of it - have been instrumental to obtain the detailed mechanistic understanding of the bacterial cell division machinery that we have today. acknowledgement: We acknowledge members of the Loose laboratory at ISTA for helpful discussions—in particular M. Kojic for his insightful comments. This work was supported by the Austrian Science Fund (FWF P34607) to M.L. article_number: '151380' article_processing_charge: Yes article_type: review author: - first_name: Philipp full_name: Radler, Philipp id: 40136C2A-F248-11E8-B48F-1D18A9856A87 last_name: Radler orcid: '0000-0001-9198-2182 ' - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 citation: ama: 'Radler P, Loose M. A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches. European Journal of Cell Biology. 2024;103(1). doi:10.1016/j.ejcb.2023.151380' apa: 'Radler, P., & Loose, M. (2024). A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches. European Journal of Cell Biology. Elsevier. https://doi.org/10.1016/j.ejcb.2023.151380' chicago: 'Radler, Philipp, and Martin Loose. “A Dynamic Duo: Understanding the Roles of FtsZ and FtsA for Escherichia Coli Cell Division through in Vitro Approaches.” European Journal of Cell Biology. Elsevier, 2024. https://doi.org/10.1016/j.ejcb.2023.151380.' ieee: 'P. Radler and M. Loose, “A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches,” European Journal of Cell Biology, vol. 103, no. 1. Elsevier, 2024.' ista: 'Radler P, Loose M. 2024. A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches. European Journal of Cell Biology. 103(1), 151380.' mla: 'Radler, Philipp, and Martin Loose. “A Dynamic Duo: Understanding the Roles of FtsZ and FtsA for Escherichia Coli Cell Division through in Vitro Approaches.” European Journal of Cell Biology, vol. 103, no. 1, 151380, Elsevier, 2024, doi:10.1016/j.ejcb.2023.151380.' short: P. Radler, M. Loose, European Journal of Cell Biology 103 (2024). date_created: 2024-01-18T08:16:43Z date_published: 2024-01-12T00:00:00Z date_updated: 2024-01-23T08:37:13Z day: '12' ddc: - '570' department: - _id: MaLo doi: 10.1016/j.ejcb.2023.151380 external_id: pmid: - '38218128' has_accepted_license: '1' intvolume: ' 103' issue: '1' keyword: - Cell Biology - General Medicine - Histology - Pathology and Forensic Medicine language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.ejcb.2023.151380 month: '01' oa: 1 oa_version: Published Version pmid: 1 project: - _id: fc38323b-9c52-11eb-aca3-ff8afb4a011d grant_number: P34607 name: "Understanding bacterial cell division by in vitro\r\nreconstitution" publication: European Journal of Cell Biology publication_identifier: issn: - 0171-9335 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 103 year: '2024' ... --- _id: '14841' abstract: - lang: eng text: De novo heterozygous variants in KCNC2 encoding the voltage-gated potassium (K+) channel subunit Kv3.2 are a recently described cause of developmental and epileptic encephalopathy (DEE). A de novo variant in KCNC2 c.374G > A (p.Cys125Tyr) was identified via exome sequencing in a patient with DEE. Relative to wild-type Kv3.2, Kv3.2-p.Cys125Tyr induces K+ currents exhibiting a large hyperpolarizing shift in the voltage dependence of activation, accelerated activation, and delayed deactivation consistent with a relative stabilization of the open conformation, along with increased current density. Leveraging the cryogenic electron microscopy (cryo-EM) structure of Kv3.1, molecular dynamic simulations suggest that a strong π-π stacking interaction between the variant Tyr125 and Tyr156 in the α-6 helix of the T1 domain promotes a relative stabilization of the open conformation of the channel, which underlies the observed gain of function. A multicompartment computational model of a Kv3-expressing parvalbumin-positive cerebral cortex fast-spiking γ-aminobutyric acidergic (GABAergic) interneuron (PV-IN) demonstrates how the Kv3.2-Cys125Tyr variant impairs neuronal excitability and dysregulates inhibition in cerebral cortex circuits to explain the resulting epilepsy. acknowledgement: This work was supported by an ERC Consolidator Grant (SYNAPSEEK) to T.P.V., the NOMIS Foundation through the NOMIS Fellowships program at IST Austria to C.B.C., a Jefferson Synaptic Biology Center Pilot Project Grant to M.C., NIH NINDS U54 NS108874 (PI, Alfred L. George), and NIH NINDS R01 NS122887 to E.M.G. The computations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at the PDC Center for High-Performance Computing, KTH Royal Institute of Technology, partially funded by the Swedish Research Council through grant agreement no. 2018-05973. We thank Akshay Sridhar for the fruitful discussion of the project. article_number: e2307776121 article_processing_charge: No article_type: original author: - first_name: Jerome full_name: Clatot, Jerome last_name: Clatot - first_name: Christopher full_name: Currin, Christopher id: e8321fc5-3091-11eb-8a53-83f309a11ac9 last_name: Currin orcid: 0000-0002-4809-5059 - first_name: Qiansheng full_name: Liang, Qiansheng last_name: Liang - first_name: Tanadet full_name: Pipatpolkai, Tanadet last_name: Pipatpolkai - first_name: Shavonne L. full_name: Massey, Shavonne L. last_name: Massey - first_name: Ingo full_name: Helbig, Ingo last_name: Helbig - first_name: Lucie full_name: Delemotte, Lucie last_name: Delemotte - first_name: Tim P full_name: Vogels, Tim P id: CB6FF8D2-008F-11EA-8E08-2637E6697425 last_name: Vogels orcid: 0000-0003-3295-6181 - first_name: Manuel full_name: Covarrubias, Manuel last_name: Covarrubias - first_name: Ethan M. full_name: Goldberg, Ethan M. last_name: Goldberg citation: ama: Clatot J, Currin C, Liang Q, et al. A structurally precise mechanism links an epilepsy-associated KCNC2 potassium channel mutation to interneuron dysfunction. Proceedings of the National Academy of Sciences of the United States of America. 2024;121(3). doi:10.1073/pnas.2307776121 apa: Clatot, J., Currin, C., Liang, Q., Pipatpolkai, T., Massey, S. L., Helbig, I., … Goldberg, E. M. (2024). A structurally precise mechanism links an epilepsy-associated KCNC2 potassium channel mutation to interneuron dysfunction. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2307776121 chicago: Clatot, Jerome, Christopher Currin, Qiansheng Liang, Tanadet Pipatpolkai, Shavonne L. Massey, Ingo Helbig, Lucie Delemotte, Tim P Vogels, Manuel Covarrubias, and Ethan M. Goldberg. “A Structurally Precise Mechanism Links an Epilepsy-Associated KCNC2 Potassium Channel Mutation to Interneuron Dysfunction.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2307776121. ieee: J. Clatot et al., “A structurally precise mechanism links an epilepsy-associated KCNC2 potassium channel mutation to interneuron dysfunction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 3. Proceedings of the National Academy of Sciences, 2024. ista: Clatot J, Currin C, Liang Q, Pipatpolkai T, Massey SL, Helbig I, Delemotte L, Vogels TP, Covarrubias M, Goldberg EM. 2024. A structurally precise mechanism links an epilepsy-associated KCNC2 potassium channel mutation to interneuron dysfunction. Proceedings of the National Academy of Sciences of the United States of America. 121(3), e2307776121. mla: Clatot, Jerome, et al. “A Structurally Precise Mechanism Links an Epilepsy-Associated KCNC2 Potassium Channel Mutation to Interneuron Dysfunction.” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 3, e2307776121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2307776121. short: J. Clatot, C. Currin, Q. Liang, T. Pipatpolkai, S.L. Massey, I. Helbig, L. Delemotte, T.P. Vogels, M. Covarrubias, E.M. Goldberg, Proceedings of the National Academy of Sciences of the United States of America 121 (2024). date_created: 2024-01-21T23:00:56Z date_published: 2024-01-16T00:00:00Z date_updated: 2024-01-23T10:20:40Z day: '16' department: - _id: TiVo doi: 10.1073/pnas.2307776121 ec_funded: 1 external_id: pmid: - '38194456' intvolume: ' 121' issue: '3' language: - iso: eng month: '01' oa_version: None pmid: 1 project: - _id: 0aacfa84-070f-11eb-9043-d7eb2c709234 call_identifier: H2020 grant_number: '819603' name: Learning the shape of synaptic plasticity rules for neuronal architectures and function through machine learning. publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: link: - relation: software url: 'https://github.com/ChrisCurrin/pv-kcnc2 ' scopus_import: '1' status: public title: A structurally precise mechanism links an epilepsy-associated KCNC2 potassium channel mutation to interneuron dysfunction type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2024' ...