--- _id: '146' abstract: - lang: eng text: The root cap protects the stem cell niche of angiosperm roots from damage. In Arabidopsis, lateral root cap (LRC) cells covering the meristematic zone are regularly lost through programmed cell death, while the outermost layer of the root cap covering the tip is repeatedly sloughed. Efficient coordination with stem cells producing new layers is needed to maintain a constant size of the cap. We present a signalling pair, the peptide IDA-LIKE1 (IDL1) and its receptor HAESA-LIKE2 (HSL2), mediating such communication. Live imaging over several days characterized this process from initial fractures in LRC cell files to full separation of a layer. Enhanced expression of IDL1 in the separating root cap layers resulted in increased frequency of sloughing, balanced with generation of new layers in a HSL2-dependent manner. Transcriptome analyses linked IDL1-HSL2 signalling to the transcription factors BEARSKIN1/2 and genes associated with programmed cell death. Mutations in either IDL1 or HSL2 slowed down cell division, maturation and separation. Thus, IDL1-HSL2 signalling potentiates dynamic regulation of the homeostatic balance between stem cell division and sloughing activity. article_processing_charge: No article_type: original author: - first_name: Chun Lin full_name: Shi, Chun Lin last_name: Shi - first_name: Daniel full_name: Von Wangenheim, Daniel id: 49E91952-F248-11E8-B48F-1D18A9856A87 last_name: Von Wangenheim orcid: 0000-0002-6862-1247 - first_name: Ullrich full_name: Herrmann, Ullrich last_name: Herrmann - first_name: Mari full_name: Wildhagen, Mari last_name: Wildhagen - first_name: Ivan full_name: Kulik, Ivan id: F0AB3FCE-02D1-11E9-BD0E-99399A5D3DEB last_name: Kulik - first_name: Andreas full_name: Kopf, Andreas last_name: Kopf - first_name: Takashi full_name: Ishida, Takashi last_name: Ishida - first_name: Vilde full_name: Olsson, Vilde last_name: Olsson - first_name: Mari Kristine full_name: Anker, Mari Kristine last_name: Anker - first_name: Markus full_name: Albert, Markus last_name: Albert - first_name: Melinka A full_name: Butenko, Melinka A last_name: Butenko - first_name: Georg full_name: Felix, Georg last_name: Felix - first_name: Shinichiro full_name: Sawa, Shinichiro last_name: Sawa - first_name: Manfred full_name: Claassen, Manfred last_name: Claassen - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Reidunn B full_name: Aalen, Reidunn B last_name: Aalen citation: ama: Shi CL, von Wangenheim D, Herrmann U, et al. The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. Nature Plants. 2018;4(8):596-604. doi:10.1038/s41477-018-0212-z apa: Shi, C. L., von Wangenheim, D., Herrmann, U., Wildhagen, M., Kulik, I., Kopf, A., … Aalen, R. B. (2018). The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. Nature Plants. Nature Publishing Group. https://doi.org/10.1038/s41477-018-0212-z chicago: Shi, Chun Lin, Daniel von Wangenheim, Ullrich Herrmann, Mari Wildhagen, Ivan Kulik, Andreas Kopf, Takashi Ishida, et al. “The Dynamics of Root Cap Sloughing in Arabidopsis Is Regulated by Peptide Signalling.” Nature Plants. Nature Publishing Group, 2018. https://doi.org/10.1038/s41477-018-0212-z. ieee: C. L. Shi et al., “The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling,” Nature Plants, vol. 4, no. 8. Nature Publishing Group, pp. 596–604, 2018. ista: Shi CL, von Wangenheim D, Herrmann U, Wildhagen M, Kulik I, Kopf A, Ishida T, Olsson V, Anker MK, Albert M, Butenko MA, Felix G, Sawa S, Claassen M, Friml J, Aalen RB. 2018. The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. Nature Plants. 4(8), 596–604. mla: Shi, Chun Lin, et al. “The Dynamics of Root Cap Sloughing in Arabidopsis Is Regulated by Peptide Signalling.” Nature Plants, vol. 4, no. 8, Nature Publishing Group, 2018, pp. 596–604, doi:10.1038/s41477-018-0212-z. short: C.L. Shi, D. von Wangenheim, U. Herrmann, M. Wildhagen, I. Kulik, A. Kopf, T. Ishida, V. Olsson, M.K. Anker, M. Albert, M.A. Butenko, G. Felix, S. Sawa, M. Claassen, J. Friml, R.B. Aalen, Nature Plants 4 (2018) 596–604. date_created: 2018-12-11T11:44:52Z date_published: 2018-07-30T00:00:00Z date_updated: 2023-09-19T10:08:45Z day: '30' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41477-018-0212-z external_id: isi: - '000443861300016' pmid: - '30061750' file: - access_level: open_access checksum: da33101c76ee1b2dc5ab28fd2ccba9d0 content_type: application/pdf creator: dernst date_created: 2019-11-18T16:24:07Z date_updated: 2020-07-14T12:44:56Z file_id: '7043' file_name: 2018_NaturePlants_Shi.pdf file_size: 226829 relation: main_file file_date_updated: 2020-07-14T12:44:56Z has_accepted_license: '1' intvolume: ' 4' isi: 1 issue: '8' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 596 - 604 pmid: 1 publication: Nature Plants publication_status: published publisher: Nature Publishing Group publist_id: '7777' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/new-process-in-root-development-discovered/ scopus_import: '1' status: public title: The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 4 year: '2018' ... --- _id: '293' abstract: - lang: eng text: People sometimes make their admirable deeds and accomplishments hard to spot, such as by giving anonymously or avoiding bragging. Such ‘buried’ signals are hard to reconcile with standard models of signalling or indirect reciprocity, which motivate costly pro-social behaviour by reputational gains. To explain these phenomena, we design a simple game theory model, which we call the signal-burying game. This game has the feature that senders can bury their signal by deliberately reducing the probability of the signal being observed. If the signal is observed, however, it is identified as having been buried. We show under which conditions buried signals can be maintained, using static equilibrium concepts and calculations of the evolutionary dynamics. We apply our analysis to shed light on a number of otherwise puzzling social phenomena, including modesty, anonymous donations, subtlety in art and fashion, and overeagerness. acknowledgement: This work was supported by a grant from the John Templeton Foundation and by the Office of Naval Research Grant N00014-16-1-2914 (M.A.N.). C.H. acknowledges generous support from the ISTFELLOW programme and by the Schrödinger scholarship of the Austrian Science Fund (FWF) J3475. article_processing_charge: No article_type: original author: - first_name: Moshe full_name: Hoffman, Moshe last_name: Hoffman - first_name: Christian full_name: Hilbe, Christian id: 2FDF8F3C-F248-11E8-B48F-1D18A9856A87 last_name: Hilbe orcid: 0000-0001-5116-955X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Hoffman M, Hilbe C, Nowak M. The signal-burying game can explain why we obscure positive traits and good deeds. Nature Human Behaviour. 2018;2:397-404. doi:10.1038/s41562-018-0354-z apa: Hoffman, M., Hilbe, C., & Nowak, M. (2018). The signal-burying game can explain why we obscure positive traits and good deeds. Nature Human Behaviour. Nature Publishing Group. https://doi.org/10.1038/s41562-018-0354-z chicago: Hoffman, Moshe, Christian Hilbe, and Martin Nowak. “The Signal-Burying Game Can Explain Why We Obscure Positive Traits and Good Deeds.” Nature Human Behaviour. Nature Publishing Group, 2018. https://doi.org/10.1038/s41562-018-0354-z. ieee: M. Hoffman, C. Hilbe, and M. Nowak, “The signal-burying game can explain why we obscure positive traits and good deeds,” Nature Human Behaviour, vol. 2. Nature Publishing Group, pp. 397–404, 2018. ista: Hoffman M, Hilbe C, Nowak M. 2018. The signal-burying game can explain why we obscure positive traits and good deeds. Nature Human Behaviour. 2, 397–404. mla: Hoffman, Moshe, et al. “The Signal-Burying Game Can Explain Why We Obscure Positive Traits and Good Deeds.” Nature Human Behaviour, vol. 2, Nature Publishing Group, 2018, pp. 397–404, doi:10.1038/s41562-018-0354-z. short: M. Hoffman, C. Hilbe, M. Nowak, Nature Human Behaviour 2 (2018) 397–404. date_created: 2018-12-11T11:45:39Z date_published: 2018-05-28T00:00:00Z date_updated: 2023-09-19T10:12:03Z day: '28' ddc: - '000' department: - _id: KrCh doi: 10.1038/s41562-018-0354-z ec_funded: 1 external_id: isi: - '000435551300009' file: - access_level: open_access checksum: 32efaf06a597495c184df91b3fbb19c0 content_type: application/pdf creator: dernst date_created: 2019-11-19T08:17:23Z date_updated: 2020-07-14T12:45:54Z file_id: '7051' file_name: 2018_NatureHumanBeh_Hoffman.pdf file_size: 194734 relation: main_file file_date_updated: 2020-07-14T12:45:54Z has_accepted_license: '1' intvolume: ' 2' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 397 - 404 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Nature Human Behaviour publication_status: published publisher: Nature Publishing Group publist_id: '7588' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/the-logic-of-modesty-why-it-pays-to-be-humble/ scopus_import: '1' status: public title: The signal-burying game can explain why we obscure positive traits and good deeds type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 2 year: '2018' ... --- _id: '455' abstract: - lang: eng text: The derivation of effective evolution equations is central to the study of non-stationary quantum many-body systems, and widely used in contexts such as superconductivity, nuclear physics, Bose–Einstein condensation and quantum chemistry. We reformulate the Dirac–Frenkel approximation principle in terms of reduced density matrices and apply it to fermionic and bosonic many-body systems. We obtain the Bogoliubov–de Gennes and Hartree–Fock–Bogoliubov equations, respectively. While we do not prove quantitative error estimates, our formulation does show that the approximation is optimal within the class of quasifree states. Furthermore, we prove well-posedness of the Bogoliubov–de Gennes equations in energy space and discuss conserved quantities acknowledgement: Open access funding provided by Institute of Science and Technology (IST Austria). The authors acknowledge support by ERC Advanced Grant 321029 and by VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059). The authors would like to thank Sébastien Breteaux, Enno Lenzmann, Mathieu Lewin and Jochen Schmid for comments and discussions about well-posedness of the Bogoliubov–de Gennes equations. alternative_title: - Annales Henri Poincare article_processing_charge: No author: - first_name: Niels P full_name: Benedikter, Niels P id: 3DE6C32A-F248-11E8-B48F-1D18A9856A87 last_name: Benedikter orcid: 0000-0002-1071-6091 - first_name: Jérémy full_name: Sok, Jérémy last_name: Sok - first_name: Jan full_name: Solovej, Jan last_name: Solovej citation: ama: Benedikter NP, Sok J, Solovej J. The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations. Annales Henri Poincare. 2018;19(4):1167-1214. doi:10.1007/s00023-018-0644-z apa: Benedikter, N. P., Sok, J., & Solovej, J. (2018). The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations. Annales Henri Poincare. Birkhäuser. https://doi.org/10.1007/s00023-018-0644-z chicago: Benedikter, Niels P, Jérémy Sok, and Jan Solovej. “The Dirac–Frenkel Principle for Reduced Density Matrices and the Bogoliubov–de Gennes Equations.” Annales Henri Poincare. Birkhäuser, 2018. https://doi.org/10.1007/s00023-018-0644-z. ieee: N. P. Benedikter, J. Sok, and J. Solovej, “The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations,” Annales Henri Poincare, vol. 19, no. 4. Birkhäuser, pp. 1167–1214, 2018. ista: Benedikter NP, Sok J, Solovej J. 2018. The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations. Annales Henri Poincare. 19(4), 1167–1214. mla: Benedikter, Niels P., et al. “The Dirac–Frenkel Principle for Reduced Density Matrices and the Bogoliubov–de Gennes Equations.” Annales Henri Poincare, vol. 19, no. 4, Birkhäuser, 2018, pp. 1167–214, doi:10.1007/s00023-018-0644-z. short: N.P. Benedikter, J. Sok, J. Solovej, Annales Henri Poincare 19 (2018) 1167–1214. date_created: 2018-12-11T11:46:34Z date_published: 2018-04-01T00:00:00Z date_updated: 2023-09-19T10:07:41Z day: '01' ddc: - '510' - '539' department: - _id: RoSe doi: 10.1007/s00023-018-0644-z external_id: isi: - '000427578900006' file: - access_level: open_access checksum: 883eeccba8384ad7fcaa28761d99a0fa content_type: application/pdf creator: system date_created: 2018-12-12T10:11:57Z date_updated: 2020-07-14T12:46:31Z file_id: '4914' file_name: IST-2018-993-v1+1_2018_Benedikter_Dirac.pdf file_size: 923252 relation: main_file file_date_updated: 2020-07-14T12:46:31Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 1167 - 1214 publication: Annales Henri Poincare publication_status: published publisher: Birkhäuser publist_id: '7367' pubrep_id: '993' quality_controlled: '1' scopus_import: '1' status: public title: The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 19 year: '2018' ... --- _id: '314' abstract: - lang: eng text: The interface of physics and biology pro-vides a fruitful environment for generatingnew concepts and exciting ways forwardto understanding living matter. Examplesof successful studies include the estab-lishment and readout of morphogen gra-dients during development, signal pro-cessing in protein and genetic networks,the role of fluctuations in determining thefates of cells and tissues, and collectiveeffects in proteins and in tissues. It is nothard to envision that significant further ad-vances will translate to societal benefitsby initiating the development of new de-vices and strategies for curing disease.However, research at the interface posesvarious challenges, in particular for youngscientists, and current institutions arerarely designed to facilitate such scientificprograms. In this Letter, we propose aninternational initiative that addressesthese challenges through the establish-ment of a worldwide network of platformsfor cross-disciplinary training and incuba-tors for starting new collaborations. article_processing_charge: No article_type: letter_note author: - first_name: Guntram full_name: Bauer, Guntram last_name: Bauer - first_name: Nikta full_name: Fakhri, Nikta last_name: Fakhri - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: Jané full_name: Kondev, Jané last_name: Kondev - first_name: Karsten full_name: Kruse, Karsten last_name: Kruse - first_name: Hiroyuki full_name: Noji, Hiroyuki last_name: Noji - first_name: Daniel full_name: Riveline, Daniel last_name: Riveline - first_name: Timothy full_name: Saunders, Timothy last_name: Saunders - first_name: Mukund full_name: Thatta, Mukund last_name: Thatta - first_name: Eric full_name: Wieschaus, Eric last_name: Wieschaus citation: ama: Bauer G, Fakhri N, Kicheva A, et al. The science of living matter for tomorrow. Cell Systems. 2018;6(4):400-402. doi:10.1016/j.cels.2018.04.003 apa: Bauer, G., Fakhri, N., Kicheva, A., Kondev, J., Kruse, K., Noji, H., … Wieschaus, E. (2018). The science of living matter for tomorrow. Cell Systems. Cell Press. https://doi.org/10.1016/j.cels.2018.04.003 chicago: Bauer, Guntram, Nikta Fakhri, Anna Kicheva, Jané Kondev, Karsten Kruse, Hiroyuki Noji, Daniel Riveline, Timothy Saunders, Mukund Thatta, and Eric Wieschaus. “The Science of Living Matter for Tomorrow.” Cell Systems. Cell Press, 2018. https://doi.org/10.1016/j.cels.2018.04.003. ieee: G. Bauer et al., “The science of living matter for tomorrow,” Cell Systems, vol. 6, no. 4. Cell Press, pp. 400–402, 2018. ista: Bauer G, Fakhri N, Kicheva A, Kondev J, Kruse K, Noji H, Riveline D, Saunders T, Thatta M, Wieschaus E. 2018. The science of living matter for tomorrow. Cell Systems. 6(4), 400–402. mla: Bauer, Guntram, et al. “The Science of Living Matter for Tomorrow.” Cell Systems, vol. 6, no. 4, Cell Press, 2018, pp. 400–02, doi:10.1016/j.cels.2018.04.003. short: G. Bauer, N. Fakhri, A. Kicheva, J. Kondev, K. Kruse, H. Noji, D. Riveline, T. Saunders, M. Thatta, E. Wieschaus, Cell Systems 6 (2018) 400–402. date_created: 2018-12-11T11:45:46Z date_published: 2018-04-25T00:00:00Z date_updated: 2023-09-19T10:11:25Z day: '25' department: - _id: AnKi doi: 10.1016/j.cels.2018.04.003 external_id: isi: - '000432192100003' pmid: - '29698645' intvolume: ' 6' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cels.2018.04.003 month: '04' oa: 1 oa_version: Published Version page: 400 - 402 pmid: 1 publication: Cell Systems publication_identifier: eissn: - 2405-4712 publication_status: published publisher: Cell Press publist_id: '7551' quality_controlled: '1' scopus_import: '1' status: public title: The science of living matter for tomorrow type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 6 year: '2018' ... --- _id: '565' abstract: - lang: eng text: 'We re-examine the model of Kirkpatrick and Barton for the spread of an inversion into a local population. This model assumes that local selection maintains alleles at two or more loci, despite immigration of alternative alleles at these loci from another population. We show that an inversion is favored because it prevents the breakdown of linkage disequilibrium generated by migration; the selective advantage of an inversion is proportional to the amount of recombination between the loci involved, as in other cases where inversions are selected for. We derive expressions for the rate of spread of an inversion; when the loci covered by the inversion are tightly linked, these conditions deviate substantially from those proposed previously, and imply that an inversion can then have only a small advantage. ' article_processing_charge: No article_type: original author: - first_name: Brian full_name: Charlesworth, Brian last_name: Charlesworth - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Charlesworth B, Barton NH. The spread of an inversion with migration and selection. Genetics. 2018;208(1):377-382. doi:10.1534/genetics.117.300426 apa: Charlesworth, B., & Barton, N. H. (2018). The spread of an inversion with migration and selection. Genetics. Genetics . https://doi.org/10.1534/genetics.117.300426 chicago: Charlesworth, Brian, and Nicholas H Barton. “The Spread of an Inversion with Migration and Selection.” Genetics. Genetics , 2018. https://doi.org/10.1534/genetics.117.300426. ieee: B. Charlesworth and N. H. Barton, “The spread of an inversion with migration and selection,” Genetics, vol. 208, no. 1. Genetics , pp. 377–382, 2018. ista: Charlesworth B, Barton NH. 2018. The spread of an inversion with migration and selection. Genetics. 208(1), 377–382. mla: Charlesworth, Brian, and Nicholas H. Barton. “The Spread of an Inversion with Migration and Selection.” Genetics, vol. 208, no. 1, Genetics , 2018, pp. 377–82, doi:10.1534/genetics.117.300426. short: B. Charlesworth, N.H. Barton, Genetics 208 (2018) 377–382. date_created: 2018-12-11T11:47:12Z date_published: 2018-01-01T00:00:00Z date_updated: 2023-09-19T10:12:31Z day: '01' department: - _id: NiBa doi: 10.1534/genetics.117.300426 external_id: isi: - '000419356300025' pmid: - '29158424' intvolume: ' 208' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753870/ month: '01' oa: 1 oa_version: Published Version page: 377 - 382 pmid: 1 publication: Genetics publication_status: published publisher: 'Genetics ' publist_id: '7249' quality_controlled: '1' scopus_import: '1' status: public title: The spread of an inversion with migration and selection type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 208 year: '2018' ...