--- _id: '6490' abstract: - lang: eng text: "Smart contracts are programs that are stored and executed on the Blockchain and can receive, manage and transfer money (cryptocurrency units). Two important problems regarding smart contracts are formal analysis and compiler optimization. Formal analysis is extremely important, because smart contracts hold funds worth billions of dollars and their code is immutable after deployment. Hence, an undetected bug can cause significant financial losses. Compiler optimization is also crucial, because every action of a smart contract has to be executed by every node in the Blockchain network. Therefore, optimizations in compiling smart contracts can lead to significant savings in computation, time and energy.\r\n\r\nTwo classical approaches in program analysis and compiler optimization are intraprocedural and interprocedural analysis. In intraprocedural analysis, each function is analyzed separately, while interprocedural analysis considers the entire program. In both cases, the analyses are usually reduced to graph problems over the control flow graph (CFG) of the program. These graph problems are often computationally expensive. Hence, there has been ample research on exploiting structural properties of CFGs for efficient algorithms. One such well-studied property is the treewidth, which is a measure of tree-likeness of graphs. It is known that intraprocedural CFGs of structured programs have treewidth at most 6, whereas the interprocedural treewidth cannot be bounded. This result has been used as a basis for many efficient intraprocedural analyses.\r\n\r\nIn this paper, we explore the idea of exploiting the treewidth of smart contracts for formal analysis and compiler optimization. First, similar to classical programs, we show that the intraprocedural treewidth of structured Solidity and Vyper smart contracts is at most 9. Second, for global analysis, we prove that the interprocedural treewidth of structured smart contracts is bounded by 10 and, in sharp contrast with classical programs, treewidth-based algorithms can be easily applied for interprocedural analysis. Finally, we supplement our theoretical results with experiments using a tool we implemented for computing treewidth of smart contracts and show that the treewidth is much lower in practice. We use 36,764 real-world Ethereum smart contracts as benchmarks and find that they have an average treewidth of at most 3.35 for the intraprocedural case and 3.65 for the interprocedural case.\r\n" article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 - first_name: Ehsan Kafshdar full_name: Goharshady, Ehsan Kafshdar last_name: Goharshady citation: ama: 'Chatterjee K, Goharshady AK, Goharshady EK. The treewidth of smart contracts. In: Proceedings of the 34th ACM Symposium on Applied Computing. Vol Part F147772. ACM; :400-408. doi:10.1145/3297280.3297322' apa: 'Chatterjee, K., Goharshady, A. K., & Goharshady, E. K. (n.d.). The treewidth of smart contracts. In Proceedings of the 34th ACM Symposium on Applied Computing (Vol. Part F147772, pp. 400–408). Limassol, Cyprus: ACM. https://doi.org/10.1145/3297280.3297322' chicago: Chatterjee, Krishnendu, Amir Kafshdar Goharshady, and Ehsan Kafshdar Goharshady. “The Treewidth of Smart Contracts.” In Proceedings of the 34th ACM Symposium on Applied Computing, Part F147772:400–408. ACM, n.d. https://doi.org/10.1145/3297280.3297322. ieee: K. Chatterjee, A. K. Goharshady, and E. K. Goharshady, “The treewidth of smart contracts,” in Proceedings of the 34th ACM Symposium on Applied Computing, Limassol, Cyprus, vol. Part F147772, pp. 400–408. ista: 'Chatterjee K, Goharshady AK, Goharshady EK. The treewidth of smart contracts. Proceedings of the 34th ACM Symposium on Applied Computing. SAC: Symposium on Applied Computing vol. Part F147772, 400–408.' mla: Chatterjee, Krishnendu, et al. “The Treewidth of Smart Contracts.” Proceedings of the 34th ACM Symposium on Applied Computing, vol. Part F147772, ACM, pp. 400–08, doi:10.1145/3297280.3297322. short: K. Chatterjee, A.K. Goharshady, E.K. Goharshady, in:, Proceedings of the 34th ACM Symposium on Applied Computing, ACM, n.d., pp. 400–408. conference: end_date: 2019-04-12 location: Limassol, Cyprus name: 'SAC: Symposium on Applied Computing' start_date: 2019-04-08 date_created: 2019-05-26T21:59:15Z date_published: 2019-04-01T00:00:00Z date_updated: 2024-03-28T23:30:34Z day: '01' ddc: - '000' department: - _id: KrCh doi: 10.1145/3297280.3297322 external_id: isi: - '000474685800052' file: - access_level: open_access checksum: dddc20f6d9881f23b8755eb720ec9d6f content_type: application/pdf creator: dernst date_created: 2020-05-14T09:50:11Z date_updated: 2020-07-14T12:47:32Z file_id: '7827' file_name: 2019_ACM_Chatterjee.pdf file_size: 6937138 relation: main_file file_date_updated: 2020-07-14T12:47:32Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version page: 400-408 publication: Proceedings of the 34th ACM Symposium on Applied Computing publication_identifier: isbn: - '9781450359337' publication_status: submitted publisher: ACM pubrep_id: '1070' quality_controlled: '1' related_material: record: - id: '8934' relation: dissertation_contains status: public scopus_import: '1' status: public title: The treewidth of smart contracts type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: Part F147772 year: '2019' ... --- _id: '7158' abstract: - lang: eng text: "Interprocedural analysis is at the heart of numerous applications in programming languages, such as alias analysis, constant propagation, and so on. Recursive state machines (RSMs) are standard models for interprocedural analysis. We consider a general framework with RSMs where the transitions are labeled from a semiring and path properties are algebraic with semiring operations. RSMs with algebraic path properties can model interprocedural dataflow analysis problems, the shortest path problem, the most probable path problem, and so on. The traditional algorithms for interprocedural analysis focus on path properties where the starting point is fixed as the entry point of a specific method. In this work, we consider possible multiple queries as required in many applications such as in alias analysis. The study of multiple queries allows us to bring in an important algorithmic distinction between the resource usage of the one-time preprocessing vs for each individual query. The second aspect we consider is that the control flow graphs for most programs have constant treewidth.\r\n\r\nOur main contributions are simple and implementable algorithms that support multiple queries for algebraic path properties for RSMs that have constant treewidth. Our theoretical results show that our algorithms have small additional one-time preprocessing but can answer subsequent queries significantly faster as compared to the current algorithmic solutions for interprocedural dataflow analysis. We have also implemented our algorithms and evaluated their performance for performing on-demand interprocedural dataflow analysis on various domains, such as for live variable analysis and reaching definitions, on a standard benchmark set. Our experimental results align with our theoretical statements and show that after a lightweight preprocessing, on-demand queries are answered much faster than the standard existing algorithmic approaches.\r\n" article_number: '23' article_processing_charge: No article_type: original author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 - first_name: Prateesh full_name: Goyal, Prateesh last_name: Goyal - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: Chatterjee K, Goharshady AK, Goyal P, Ibsen-Jensen R, Pavlogiannis A. Faster algorithms for dynamic algebraic queries in basic RSMs with constant treewidth. ACM Transactions on Programming Languages and Systems. 2019;41(4). doi:10.1145/3363525 apa: Chatterjee, K., Goharshady, A. K., Goyal, P., Ibsen-Jensen, R., & Pavlogiannis, A. (2019). Faster algorithms for dynamic algebraic queries in basic RSMs with constant treewidth. ACM Transactions on Programming Languages and Systems. ACM. https://doi.org/10.1145/3363525 chicago: Chatterjee, Krishnendu, Amir Kafshdar Goharshady, Prateesh Goyal, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. “Faster Algorithms for Dynamic Algebraic Queries in Basic RSMs with Constant Treewidth.” ACM Transactions on Programming Languages and Systems. ACM, 2019. https://doi.org/10.1145/3363525. ieee: K. Chatterjee, A. K. Goharshady, P. Goyal, R. Ibsen-Jensen, and A. Pavlogiannis, “Faster algorithms for dynamic algebraic queries in basic RSMs with constant treewidth,” ACM Transactions on Programming Languages and Systems, vol. 41, no. 4. ACM, 2019. ista: Chatterjee K, Goharshady AK, Goyal P, Ibsen-Jensen R, Pavlogiannis A. 2019. Faster algorithms for dynamic algebraic queries in basic RSMs with constant treewidth. ACM Transactions on Programming Languages and Systems. 41(4), 23. mla: Chatterjee, Krishnendu, et al. “Faster Algorithms for Dynamic Algebraic Queries in Basic RSMs with Constant Treewidth.” ACM Transactions on Programming Languages and Systems, vol. 41, no. 4, 23, ACM, 2019, doi:10.1145/3363525. short: K. Chatterjee, A.K. Goharshady, P. Goyal, R. Ibsen-Jensen, A. Pavlogiannis, ACM Transactions on Programming Languages and Systems 41 (2019). date_created: 2019-12-09T08:33:33Z date_published: 2019-11-01T00:00:00Z date_updated: 2024-03-28T23:30:34Z day: '01' ddc: - '000' department: - _id: KrCh doi: 10.1145/3363525 ec_funded: 1 external_id: isi: - '000564108400004' file: - access_level: open_access checksum: 291cc86a07bd010d4815e177dac57b70 content_type: application/pdf creator: dernst date_created: 2020-10-08T12:58:10Z date_updated: 2020-10-08T12:58:10Z file_id: '8632' file_name: 2019_ACMTransactions_Chatterjee.pdf file_size: 667357 relation: main_file success: 1 file_date_updated: 2020-10-08T12:58:10Z has_accepted_license: '1' intvolume: ' 41' isi: 1 issue: '4' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication: ACM Transactions on Programming Languages and Systems publication_identifier: issn: - 0164-0925 publication_status: published publisher: ACM quality_controlled: '1' related_material: record: - id: '8934' relation: dissertation_contains status: public scopus_import: '1' status: public title: Faster algorithms for dynamic algebraic queries in basic RSMs with constant treewidth type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 41 year: '2019' ... --- _id: '7014' abstract: - lang: eng text: "We study the problem of developing efficient approaches for proving\r\nworst-case bounds of non-deterministic recursive programs. Ranking functions\r\nare sound and complete for proving termination and worst-case bounds of\r\nnonrecursive programs. First, we apply ranking functions to recursion,\r\nresulting in measure functions. We show that measure functions provide a sound\r\nand complete approach to prove worst-case bounds of non-deterministic recursive\r\nprograms. Our second contribution is the synthesis of measure functions in\r\nnonpolynomial forms. We show that non-polynomial measure functions with\r\nlogarithm and exponentiation can be synthesized through abstraction of\r\nlogarithmic or exponentiation terms, Farkas' Lemma, and Handelman's Theorem\r\nusing linear programming. While previous methods obtain worst-case polynomial\r\nbounds, our approach can synthesize bounds of the form $\\mathcal{O}(n\\log n)$\r\nas well as $\\mathcal{O}(n^r)$ where $r$ is not an integer. We present\r\nexperimental results to demonstrate that our approach can obtain efficiently\r\nworst-case bounds of classical recursive algorithms such as (i) Merge-Sort, the\r\ndivide-and-conquer algorithm for the Closest-Pair problem, where we obtain\r\n$\\mathcal{O}(n \\log n)$ worst-case bound, and (ii) Karatsuba's algorithm for\r\npolynomial multiplication and Strassen's algorithm for matrix multiplication,\r\nwhere we obtain $\\mathcal{O}(n^r)$ bound such that $r$ is not an integer and\r\nclose to the best-known bounds for the respective algorithms." article_number: '20' article_processing_charge: No article_type: original author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Hongfei full_name: Fu, Hongfei last_name: Fu - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 citation: ama: Chatterjee K, Fu H, Goharshady AK. Non-polynomial worst-case analysis of recursive programs. ACM Transactions on Programming Languages and Systems. 2019;41(4). doi:10.1145/3339984 apa: Chatterjee, K., Fu, H., & Goharshady, A. K. (2019). Non-polynomial worst-case analysis of recursive programs. ACM Transactions on Programming Languages and Systems. ACM. https://doi.org/10.1145/3339984 chicago: Chatterjee, Krishnendu, Hongfei Fu, and Amir Kafshdar Goharshady. “Non-Polynomial Worst-Case Analysis of Recursive Programs.” ACM Transactions on Programming Languages and Systems. ACM, 2019. https://doi.org/10.1145/3339984. ieee: K. Chatterjee, H. Fu, and A. K. Goharshady, “Non-polynomial worst-case analysis of recursive programs,” ACM Transactions on Programming Languages and Systems, vol. 41, no. 4. ACM, 2019. ista: Chatterjee K, Fu H, Goharshady AK. 2019. Non-polynomial worst-case analysis of recursive programs. ACM Transactions on Programming Languages and Systems. 41(4), 20. mla: Chatterjee, Krishnendu, et al. “Non-Polynomial Worst-Case Analysis of Recursive Programs.” ACM Transactions on Programming Languages and Systems, vol. 41, no. 4, 20, ACM, 2019, doi:10.1145/3339984. short: K. Chatterjee, H. Fu, A.K. Goharshady, ACM Transactions on Programming Languages and Systems 41 (2019). date_created: 2019-11-13T08:33:43Z date_published: 2019-10-01T00:00:00Z date_updated: 2024-03-28T23:30:34Z day: '01' department: - _id: KrCh doi: 10.1145/3339984 ec_funded: 1 external_id: arxiv: - '1705.00317' isi: - '000564108400001' intvolume: ' 41' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.00317 month: '10' oa: 1 oa_version: Preprint project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 267066CE-B435-11E9-9278-68D0E5697425 name: Quantitative Analysis of Probablistic Systems with a focus on Crypto-currencies - _id: 266EEEC0-B435-11E9-9278-68D0E5697425 name: Quantitative Game-theoretic Analysis of Blockchain Applications and Smart Contracts publication: ACM Transactions on Programming Languages and Systems publication_status: published publisher: ACM quality_controlled: '1' related_material: record: - id: '639' relation: earlier_version status: public - id: '8934' relation: dissertation_contains status: public scopus_import: '1' status: public title: Non-polynomial worst-case analysis of recursive programs type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2019' ... --- _id: '6486' abstract: - lang: eng text: Based on a novel control scheme, where a steady modification of the streamwise velocity profile leads to complete relaminarization of initially fully turbulent pipe flow, we investigate the applicability and usefulness of custom-shaped honeycombs for such control. The custom-shaped honeycombs are used as stationary flow management devices which generate specific modifications of the streamwise velocity profile. Stereoscopic particle image velocimetry and pressure drop measurements are used to investigate and capture the development of the relaminarizing flow downstream these devices. We compare the performance of straight (constant length across the radius of the pipe) honeycombs with custom-shaped ones (variable length across the radius) and try to determine the optimal shape for maximal relaminarization at minimal pressure loss. The optimally modified streamwise velocity profile is found to be M-shaped, and the maximum attainable Reynolds number for total relaminarization is found to be of the order of 10,000. Consequently, the respective reduction in skin friction downstream of the device is almost by a factor of 5. The break-even point, where the additional pressure drop caused by the device is balanced by the savings due to relaminarization and a net gain is obtained, corresponds to a downstream stretch of distances as low as approximately 100 pipe diameters of laminar flow. acknowledged_ssus: - _id: M-Shop article_number: '111105' article_processing_charge: No article_type: original author: - first_name: Jakob full_name: Kühnen, Jakob id: 3A47AE32-F248-11E8-B48F-1D18A9856A87 last_name: Kühnen orcid: 0000-0003-4312-0179 - first_name: Davide full_name: Scarselli, Davide id: 40315C30-F248-11E8-B48F-1D18A9856A87 last_name: Scarselli orcid: 0000-0001-5227-4271 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Kühnen J, Scarselli D, Hof B. Relaminarization of pipe flow by means of 3D-printed shaped honeycombs. Journal of Fluids Engineering. 2019;141(11). doi:10.1115/1.4043494 apa: Kühnen, J., Scarselli, D., & Hof, B. (2019). Relaminarization of pipe flow by means of 3D-printed shaped honeycombs. Journal of Fluids Engineering. ASME. https://doi.org/10.1115/1.4043494 chicago: Kühnen, Jakob, Davide Scarselli, and Björn Hof. “Relaminarization of Pipe Flow by Means of 3D-Printed Shaped Honeycombs.” Journal of Fluids Engineering. ASME, 2019. https://doi.org/10.1115/1.4043494. ieee: J. Kühnen, D. Scarselli, and B. Hof, “Relaminarization of pipe flow by means of 3D-printed shaped honeycombs,” Journal of Fluids Engineering, vol. 141, no. 11. ASME, 2019. ista: Kühnen J, Scarselli D, Hof B. 2019. Relaminarization of pipe flow by means of 3D-printed shaped honeycombs. Journal of Fluids Engineering. 141(11), 111105. mla: Kühnen, Jakob, et al. “Relaminarization of Pipe Flow by Means of 3D-Printed Shaped Honeycombs.” Journal of Fluids Engineering, vol. 141, no. 11, 111105, ASME, 2019, doi:10.1115/1.4043494. short: J. Kühnen, D. Scarselli, B. Hof, Journal of Fluids Engineering 141 (2019). date_created: 2019-05-26T21:59:13Z date_published: 2019-11-01T00:00:00Z date_updated: 2024-03-28T23:30:36Z day: '01' department: - _id: BjHo doi: 10.1115/1.4043494 ec_funded: 1 external_id: arxiv: - '1809.07625' isi: - '000487748600005' intvolume: ' 141' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1809.07625 month: '11' oa: 1 oa_version: Preprint project: - _id: 25152F3A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '306589' name: Decoding the complexity of turbulence at its origin publication: Journal of Fluids Engineering publication_identifier: eissn: - 1528901X issn: - '00982202' publication_status: published publisher: ASME quality_controlled: '1' related_material: record: - id: '7258' relation: dissertation_contains status: public scopus_import: '1' status: public title: Relaminarization of pipe flow by means of 3D-printed shaped honeycombs type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 141 year: '2019' ... --- _id: '6228' abstract: - lang: eng text: Following the recent observation that turbulent pipe flow can be relaminarised bya relatively simple modification of the mean velocity profile, we here carry out aquantitative experimental investigation of this phenomenon. Our study confirms thata flat velocity profile leads to a collapse of turbulence and in order to achieve theblunted profile shape, we employ a moving pipe segment that is briefly and rapidlyshifted in the streamwise direction. The relaminarisation threshold and the minimumshift length and speeds are determined as a function of Reynolds number. Althoughturbulence is still active after the acceleration phase, the modulated profile possessesa severely decreased lift-up potential as measured by transient growth. As shown,this results in an exponential decay of fluctuations and the flow relaminarises. Whilethis method can be easily applied at low to moderate flow speeds, the minimumstreamwise length over which the acceleration needs to act increases linearly with theReynolds number. article_processing_charge: No author: - first_name: Davide full_name: Scarselli, Davide id: 40315C30-F248-11E8-B48F-1D18A9856A87 last_name: Scarselli orcid: 0000-0001-5227-4271 - first_name: Jakob full_name: Kühnen, Jakob id: 3A47AE32-F248-11E8-B48F-1D18A9856A87 last_name: Kühnen orcid: 0000-0003-4312-0179 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Scarselli D, Kühnen J, Hof B. Relaminarising pipe flow by wall movement. Journal of Fluid Mechanics. 2019;867:934-948. doi:10.1017/jfm.2019.191 apa: Scarselli, D., Kühnen, J., & Hof, B. (2019). Relaminarising pipe flow by wall movement. Journal of Fluid Mechanics. Cambridge University Press. https://doi.org/10.1017/jfm.2019.191 chicago: Scarselli, Davide, Jakob Kühnen, and Björn Hof. “Relaminarising Pipe Flow by Wall Movement.” Journal of Fluid Mechanics. Cambridge University Press, 2019. https://doi.org/10.1017/jfm.2019.191. ieee: D. Scarselli, J. Kühnen, and B. Hof, “Relaminarising pipe flow by wall movement,” Journal of Fluid Mechanics, vol. 867. Cambridge University Press, pp. 934–948, 2019. ista: Scarselli D, Kühnen J, Hof B. 2019. Relaminarising pipe flow by wall movement. Journal of Fluid Mechanics. 867, 934–948. mla: Scarselli, Davide, et al. “Relaminarising Pipe Flow by Wall Movement.” Journal of Fluid Mechanics, vol. 867, Cambridge University Press, 2019, pp. 934–48, doi:10.1017/jfm.2019.191. short: D. Scarselli, J. Kühnen, B. Hof, Journal of Fluid Mechanics 867 (2019) 934–948. date_created: 2019-04-07T21:59:14Z date_published: 2019-05-25T00:00:00Z date_updated: 2024-03-28T23:30:36Z day: '25' department: - _id: BjHo doi: 10.1017/jfm.2019.191 ec_funded: 1 external_id: arxiv: - '1807.05357' isi: - '000462606100001' intvolume: ' 867' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1807.05357 month: '05' oa: 1 oa_version: Preprint page: 934-948 project: - _id: 25152F3A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '306589' name: Decoding the complexity of turbulence at its origin - _id: 25104D44-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '737549' name: Eliminating turbulence in oil pipelines publication: Journal of Fluid Mechanics publication_identifier: eissn: - '14697645' issn: - '00221120' publication_status: published publisher: Cambridge University Press quality_controlled: '1' related_material: link: - relation: supplementary_material url: https://doi.org/10.1017/jfm.2019.191 record: - id: '7258' relation: dissertation_contains status: public scopus_import: '1' status: public title: Relaminarising pipe flow by wall movement type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 867 year: '2019' ...