--- _id: '6451' abstract: - lang: eng text: Epidermal growth factor receptor (EGFR) signaling controls skin development and homeostasis inmice and humans, and its deficiency causes severe skin inflammation, which might affect epidermalstem cell behavior. Here, we describe the inflammation-independent effects of EGFR deficiency dur-ing skin morphogenesis and in adult hair follicle stem cells. Expression and alternative splicing analysisof RNA sequencing data from interfollicular epidermis and outer root sheath indicate that EGFR con-trols genes involved in epidermal differentiation and also in centrosome function, DNA damage, cellcycle, and apoptosis. Genetic experiments employingp53deletion in EGFR-deficient epidermis revealthat EGFR signaling exhibitsp53-dependent functions in proliferative epidermal compartments, aswell asp53-independent functions in differentiated hair shaft keratinocytes. Loss of EGFR leads toabsence of LEF1 protein specifically in the innermost epithelial hair layers, resulting in disorganizationof medulla cells. Thus, our results uncover important spatial and temporal features of cell-autonomousEGFR functions in the epidermis. article_processing_charge: No author: - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Panagiota A. full_name: Sotiropoulou, Panagiota A. last_name: Sotiropoulou - first_name: Gerwin full_name: Heller, Gerwin last_name: Heller - first_name: Beate M. full_name: Lichtenberger, Beate M. last_name: Lichtenberger - first_name: Martin full_name: Holcmann, Martin last_name: Holcmann - first_name: Bahar full_name: Camurdanoglu, Bahar last_name: Camurdanoglu - first_name: Temenuschka full_name: Baykuscheva-Gentscheva, Temenuschka last_name: Baykuscheva-Gentscheva - first_name: Cedric full_name: Blanpain, Cedric last_name: Blanpain - first_name: Maria full_name: Sibilia, Maria last_name: Sibilia citation: ama: Amberg N, Sotiropoulou PA, Heller G, et al. EGFR controls hair shaft differentiation in a p53-independent manner. iScience. 2019;15:243-256. doi:10.1016/j.isci.2019.04.018 apa: Amberg, N., Sotiropoulou, P. A., Heller, G., Lichtenberger, B. M., Holcmann, M., Camurdanoglu, B., … Sibilia, M. (2019). EGFR controls hair shaft differentiation in a p53-independent manner. IScience. Elsevier. https://doi.org/10.1016/j.isci.2019.04.018 chicago: Amberg, Nicole, Panagiota A. Sotiropoulou, Gerwin Heller, Beate M. Lichtenberger, Martin Holcmann, Bahar Camurdanoglu, Temenuschka Baykuscheva-Gentscheva, Cedric Blanpain, and Maria Sibilia. “EGFR Controls Hair Shaft Differentiation in a P53-Independent Manner.” IScience. Elsevier, 2019. https://doi.org/10.1016/j.isci.2019.04.018. ieee: N. Amberg et al., “EGFR controls hair shaft differentiation in a p53-independent manner,” iScience, vol. 15. Elsevier, pp. 243–256, 2019. ista: Amberg N, Sotiropoulou PA, Heller G, Lichtenberger BM, Holcmann M, Camurdanoglu B, Baykuscheva-Gentscheva T, Blanpain C, Sibilia M. 2019. EGFR controls hair shaft differentiation in a p53-independent manner. iScience. 15, 243–256. mla: Amberg, Nicole, et al. “EGFR Controls Hair Shaft Differentiation in a P53-Independent Manner.” IScience, vol. 15, Elsevier, 2019, pp. 243–56, doi:10.1016/j.isci.2019.04.018. short: N. Amberg, P.A. Sotiropoulou, G. Heller, B.M. Lichtenberger, M. Holcmann, B. Camurdanoglu, T. Baykuscheva-Gentscheva, C. Blanpain, M. Sibilia, IScience 15 (2019) 243–256. date_created: 2019-05-14T11:47:40Z date_published: 2019-05-31T00:00:00Z date_updated: 2023-09-08T11:38:04Z day: '31' ddc: - '570' department: - _id: SiHi doi: 10.1016/j.isci.2019.04.018 external_id: isi: - '000470104600022' file: - access_level: open_access checksum: a9ad2296726c9474ad5860c9c2f53622 content_type: application/pdf creator: dernst date_created: 2019-05-14T11:51:51Z date_updated: 2020-07-14T12:47:30Z file_id: '6452' file_name: 2019_iScience_Amberg.pdf file_size: 8365970 relation: main_file file_date_updated: 2020-07-14T12:47:30Z has_accepted_license: '1' intvolume: ' 15' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 243-256 publication: iScience publication_identifier: issn: - 2589-0042 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: EGFR controls hair shaft differentiation in a p53-independent manner tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 15 year: '2019' ... --- _id: '10879' abstract: - lang: eng text: We study effects of a bounded and compactly supported perturbation on multidimensional continuum random Schrödinger operators in the region of complete localisation. Our main emphasis is on Anderson orthogonality for random Schrödinger operators. Among others, we prove that Anderson orthogonality does occur for Fermi energies in the region of complete localisation with a non-zero probability. This partially confirms recent non-rigorous findings [V. Khemani et al., Nature Phys. 11 (2015), 560–565]. The spectral shift function plays an important role in our analysis of Anderson orthogonality. We identify it with the index of the corresponding pair of spectral projections and explore the consequences thereof. All our results rely on the main technical estimate of this paper which guarantees separate exponential decay of the disorder-averaged Schatten p-norm of χa(f(H)−f(Hτ))χb in a and b. Here, Hτ is a perturbation of the random Schrödinger operator H, χa is the multiplication operator corresponding to the indicator function of a unit cube centred about a∈Rd, and f is in a suitable class of functions of bounded variation with distributional derivative supported in the region of complete localisation for H. acknowledgement: M.G. was supported by the DFG under grant GE 2871/1-1. article_processing_charge: No article_type: original author: - first_name: Adrian M full_name: Dietlein, Adrian M id: 317CB464-F248-11E8-B48F-1D18A9856A87 last_name: Dietlein - first_name: Martin full_name: Gebert, Martin last_name: Gebert - first_name: Peter full_name: Müller, Peter last_name: Müller citation: ama: Dietlein AM, Gebert M, Müller P. Perturbations of continuum random Schrödinger operators with applications to Anderson orthogonality and the spectral shift function. Journal of Spectral Theory. 2019;9(3):921-965. doi:10.4171/jst/267 apa: Dietlein, A. M., Gebert, M., & Müller, P. (2019). Perturbations of continuum random Schrödinger operators with applications to Anderson orthogonality and the spectral shift function. Journal of Spectral Theory. European Mathematical Society Publishing House. https://doi.org/10.4171/jst/267 chicago: Dietlein, Adrian M, Martin Gebert, and Peter Müller. “Perturbations of Continuum Random Schrödinger Operators with Applications to Anderson Orthogonality and the Spectral Shift Function.” Journal of Spectral Theory. European Mathematical Society Publishing House, 2019. https://doi.org/10.4171/jst/267. ieee: A. M. Dietlein, M. Gebert, and P. Müller, “Perturbations of continuum random Schrödinger operators with applications to Anderson orthogonality and the spectral shift function,” Journal of Spectral Theory, vol. 9, no. 3. European Mathematical Society Publishing House, pp. 921–965, 2019. ista: Dietlein AM, Gebert M, Müller P. 2019. Perturbations of continuum random Schrödinger operators with applications to Anderson orthogonality and the spectral shift function. Journal of Spectral Theory. 9(3), 921–965. mla: Dietlein, Adrian M., et al. “Perturbations of Continuum Random Schrödinger Operators with Applications to Anderson Orthogonality and the Spectral Shift Function.” Journal of Spectral Theory, vol. 9, no. 3, European Mathematical Society Publishing House, 2019, pp. 921–65, doi:10.4171/jst/267. short: A.M. Dietlein, M. Gebert, P. Müller, Journal of Spectral Theory 9 (2019) 921–965. date_created: 2022-03-18T12:36:42Z date_published: 2019-03-01T00:00:00Z date_updated: 2023-09-08T11:35:31Z day: '01' department: - _id: LaEr doi: 10.4171/jst/267 external_id: arxiv: - '1701.02956' isi: - '000484709400006' intvolume: ' 9' isi: 1 issue: '3' keyword: - Random Schrödinger operators - spectral shift function - Anderson orthogonality language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1701.02956 month: '03' oa: 1 oa_version: Preprint page: 921-965 publication: Journal of Spectral Theory publication_identifier: issn: - 1664-039X publication_status: published publisher: European Mathematical Society Publishing House quality_controlled: '1' scopus_import: '1' status: public title: Perturbations of continuum random Schrödinger operators with applications to Anderson orthogonality and the spectral shift function type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 9 year: '2019' ... --- _id: '10878' abstract: - lang: eng text: Starting from a microscopic model for a system of neurons evolving in time which individually follow a stochastic integrate-and-fire type model, we study a mean-field limit of the system. Our model is described by a system of SDEs with discontinuous coefficients for the action potential of each neuron and takes into account the (random) spatial configuration of neurons allowing the interaction to depend on it. In the limit as the number of particles tends to infinity, we obtain a nonlinear Fokker-Planck type PDE in two variables, with derivatives only with respect to one variable and discontinuous coefficients. We also study strong well-posedness of the system of SDEs and prove the existence and uniqueness of a weak measure-valued solution to the PDE, obtained as the limit of the laws of the empirical measures for the system of particles. acknowledgement: "The second author has been partially supported by INdAM through the GNAMPA Research\r\nProject (2017) “Sistemi stocastici singolari: buona posizione e problemi di controllo”. The third\r\nauthor was partly funded by the Austrian Science Fund (FWF) project F 65." article_processing_charge: No article_type: original author: - first_name: Franco full_name: Flandoli, Franco last_name: Flandoli - first_name: Enrico full_name: Priola, Enrico last_name: Priola - first_name: Giovanni A full_name: Zanco, Giovanni A id: 47491882-F248-11E8-B48F-1D18A9856A87 last_name: Zanco citation: ama: Flandoli F, Priola E, Zanco GA. A mean-field model with discontinuous coefficients for neurons with spatial interaction. Discrete and Continuous Dynamical Systems. 2019;39(6):3037-3067. doi:10.3934/dcds.2019126 apa: Flandoli, F., Priola, E., & Zanco, G. A. (2019). A mean-field model with discontinuous coefficients for neurons with spatial interaction. Discrete and Continuous Dynamical Systems. American Institute of Mathematical Sciences. https://doi.org/10.3934/dcds.2019126 chicago: Flandoli, Franco, Enrico Priola, and Giovanni A Zanco. “A Mean-Field Model with Discontinuous Coefficients for Neurons with Spatial Interaction.” Discrete and Continuous Dynamical Systems. American Institute of Mathematical Sciences, 2019. https://doi.org/10.3934/dcds.2019126. ieee: F. Flandoli, E. Priola, and G. A. Zanco, “A mean-field model with discontinuous coefficients for neurons with spatial interaction,” Discrete and Continuous Dynamical Systems, vol. 39, no. 6. American Institute of Mathematical Sciences, pp. 3037–3067, 2019. ista: Flandoli F, Priola E, Zanco GA. 2019. A mean-field model with discontinuous coefficients for neurons with spatial interaction. Discrete and Continuous Dynamical Systems. 39(6), 3037–3067. mla: Flandoli, Franco, et al. “A Mean-Field Model with Discontinuous Coefficients for Neurons with Spatial Interaction.” Discrete and Continuous Dynamical Systems, vol. 39, no. 6, American Institute of Mathematical Sciences, 2019, pp. 3037–67, doi:10.3934/dcds.2019126. short: F. Flandoli, E. Priola, G.A. Zanco, Discrete and Continuous Dynamical Systems 39 (2019) 3037–3067. date_created: 2022-03-18T12:33:34Z date_published: 2019-06-01T00:00:00Z date_updated: 2023-09-08T11:34:45Z day: '01' department: - _id: JaMa doi: 10.3934/dcds.2019126 external_id: arxiv: - '1708.04156' isi: - '000459954800003' intvolume: ' 39' isi: 1 issue: '6' keyword: - Applied Mathematics - Discrete Mathematics and Combinatorics - Analysis language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1708.04156 month: '06' oa: 1 oa_version: Preprint page: 3037-3067 project: - _id: fc31cba2-9c52-11eb-aca3-ff467d239cd2 grant_number: F6504 name: Taming Complexity in Partial Differential Systems publication: Discrete and Continuous Dynamical Systems publication_identifier: issn: - 1553-5231 publication_status: published publisher: American Institute of Mathematical Sciences quality_controlled: '1' scopus_import: '1' status: public title: A mean-field model with discontinuous coefficients for neurons with spatial interaction type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 39 year: '2019' ... --- _id: '6935' abstract: - lang: eng text: "This paper investigates the power of preprocessing in the CONGEST model. Schmid and Suomela (ACM HotSDN 2013) introduced the SUPPORTED CONGEST model to study the application of distributed algorithms in Software-Defined Networks (SDNs). In this paper, we show that a large class of lower bounds in the CONGEST model still hold in the SUPPORTED model, highlighting the robustness of these bounds. This also raises the question how much does\r\npreprocessing help in the CONGEST model." article_processing_charge: No author: - first_name: Klaus-Tycho full_name: Foerster, Klaus-Tycho last_name: Foerster - first_name: Janne full_name: Korhonen, Janne id: C5402D42-15BC-11E9-A202-CA2BE6697425 last_name: Korhonen - first_name: Joel full_name: Rybicki, Joel id: 334EFD2E-F248-11E8-B48F-1D18A9856A87 last_name: Rybicki orcid: 0000-0002-6432-6646 - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid citation: ama: 'Foerster K-T, Korhonen J, Rybicki J, Schmid S. Does preprocessing help under congestion? In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. ACM; 2019:259-261. doi:10.1145/3293611.3331581' apa: 'Foerster, K.-T., Korhonen, J., Rybicki, J., & Schmid, S. (2019). Does preprocessing help under congestion? In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (pp. 259–261). Toronto, ON, Canada: ACM. https://doi.org/10.1145/3293611.3331581' chicago: Foerster, Klaus-Tycho, Janne Korhonen, Joel Rybicki, and Stefan Schmid. “Does Preprocessing Help under Congestion?” In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, 259–61. ACM, 2019. https://doi.org/10.1145/3293611.3331581. ieee: K.-T. Foerster, J. Korhonen, J. Rybicki, and S. Schmid, “Does preprocessing help under congestion?,” in Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, Toronto, ON, Canada, 2019, pp. 259–261. ista: 'Foerster K-T, Korhonen J, Rybicki J, Schmid S. 2019. Does preprocessing help under congestion? Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. PODC: Symposium on Principles of Distributed Computing, 259–261.' mla: Foerster, Klaus-Tycho, et al. “Does Preprocessing Help under Congestion?” Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, ACM, 2019, pp. 259–61, doi:10.1145/3293611.3331581. short: K.-T. Foerster, J. Korhonen, J. Rybicki, S. Schmid, in:, Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, ACM, 2019, pp. 259–261. conference: end_date: 2019-08-02 location: Toronto, ON, Canada name: 'PODC: Symposium on Principles of Distributed Computing' start_date: 2019-07-29 date_created: 2019-10-08T12:57:14Z date_published: 2019-08-01T00:00:00Z date_updated: 2023-09-08T11:37:22Z day: '01' department: - _id: DaAl doi: 10.1145/3293611.3331581 ec_funded: 1 external_id: arxiv: - '1905.03012' isi: - '000570442000037' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1905.03012 month: '08' oa: 1 oa_version: Preprint page: 259-261 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing publication_identifier: isbn: - '9781450362177' publication_status: published publisher: ACM quality_controlled: '1' scopus_import: '1' status: public title: Does preprocessing help under congestion? type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '138' abstract: - lang: eng text: Autoregulation is the direct modulation of gene expression by the product of the corresponding gene. Autoregulation of bacterial gene expression has been mostly studied at the transcriptional level, when a protein acts as the cognate transcriptional repressor. A recent study investigating dynamics of the bacterial toxin–antitoxin MazEF system has shown how autoregulation at both the transcriptional and post-transcriptional levels affects the heterogeneity of Escherichia coli populations. Toxin–antitoxin systems hold a crucial but still elusive part in bacterial response to stress. This perspective highlights how these modules can also serve as a great model system for investigating basic concepts in gene regulation. However, as the genomic background and environmental conditions substantially influence toxin activation, it is important to study (auto)regulation of toxin–antitoxin systems in well-defined setups as well as in conditions that resemble the environmental niche. article_processing_charge: Yes (via OA deal) author: - first_name: Nela full_name: Nikolic, Nela id: 42D9CABC-F248-11E8-B48F-1D18A9856A87 last_name: Nikolic orcid: 0000-0001-9068-6090 citation: ama: 'Nikolic N. Autoregulation of bacterial gene expression: lessons from the MazEF toxin–antitoxin system. Current Genetics. 2019;65(1):133-138. doi:10.1007/s00294-018-0879-8' apa: 'Nikolic, N. (2019). Autoregulation of bacterial gene expression: lessons from the MazEF toxin–antitoxin system. Current Genetics. Springer. https://doi.org/10.1007/s00294-018-0879-8' chicago: 'Nikolic, Nela. “Autoregulation of Bacterial Gene Expression: Lessons from the MazEF Toxin–Antitoxin System.” Current Genetics. Springer, 2019. https://doi.org/10.1007/s00294-018-0879-8.' ieee: 'N. Nikolic, “Autoregulation of bacterial gene expression: lessons from the MazEF toxin–antitoxin system,” Current Genetics, vol. 65, no. 1. Springer, pp. 133–138, 2019.' ista: 'Nikolic N. 2019. Autoregulation of bacterial gene expression: lessons from the MazEF toxin–antitoxin system. Current Genetics. 65(1), 133–138.' mla: 'Nikolic, Nela. “Autoregulation of Bacterial Gene Expression: Lessons from the MazEF Toxin–Antitoxin System.” Current Genetics, vol. 65, no. 1, Springer, 2019, pp. 133–38, doi:10.1007/s00294-018-0879-8.' short: N. Nikolic, Current Genetics 65 (2019) 133–138. date_created: 2018-12-11T11:44:50Z date_published: 2019-02-01T00:00:00Z date_updated: 2023-09-08T13:23:42Z day: '01' ddc: - '570' department: - _id: CaGu doi: 10.1007/s00294-018-0879-8 ec_funded: 1 external_id: isi: - '000456958800017' file: - access_level: open_access checksum: 6779708b0b632a1a6ed28c56f5161142 content_type: application/pdf creator: dernst date_created: 2019-02-06T07:50:58Z date_updated: 2020-07-14T12:44:47Z file_id: '5930' file_name: 2019_CurrentGenetics_Nikolic.pdf file_size: 776399 relation: main_file file_date_updated: 2020-07-14T12:44:47Z has_accepted_license: '1' intvolume: ' 65' isi: 1 issue: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 133-138 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Current Genetics publication_status: published publisher: Springer publist_id: '7785' quality_controlled: '1' scopus_import: '1' status: public title: 'Autoregulation of bacterial gene expression: lessons from the MazEF toxin–antitoxin system' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 65 year: '2019' ...