--- _id: '6552' abstract: - lang: eng text: 'When animals become sick, infected cells and an armada of activated immune cells attempt to eliminate the pathogen from the body. Once infectious particles have breached the body''s physical barriers of the skin or gut lining, an initially local response quickly escalates into a systemic response, attracting mobile immune cells to the site of infection. These cells complement the initial, unspecific defense with a more specialized, targeted response. This can also provide long-term immune memory and protection against future infection. The cell-autonomous defenses of the infected cells are thus aided by the actions of recruited immune cells. These specialized cells are the most mobile cells in the body, constantly patrolling through the otherwise static tissue to detect incoming pathogens. Such constant immune surveillance means infections are noticed immediately and can be rapidly cleared from the body. Some immune cells also remove infected cells that have succumbed to infection. All this prevents pathogen replication and spread to healthy tissues. Although this may involve the sacrifice of some somatic tissue, this is typically replaced quickly. Particular care is, however, given to the reproductive organs, which should always remain disease free (immune privilege). ' article_processing_charge: No article_type: original author: - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Cremer S. Social immunity in insects. Current Biology. 2019;29(11):R458-R463. doi:10.1016/j.cub.2019.03.035 apa: Cremer, S. (2019). Social immunity in insects. Current Biology. Elsevier. https://doi.org/10.1016/j.cub.2019.03.035 chicago: Cremer, Sylvia. “Social Immunity in Insects.” Current Biology. Elsevier, 2019. https://doi.org/10.1016/j.cub.2019.03.035. ieee: S. Cremer, “Social immunity in insects,” Current Biology, vol. 29, no. 11. Elsevier, pp. R458–R463, 2019. ista: Cremer S. 2019. Social immunity in insects. Current Biology. 29(11), R458–R463. mla: Cremer, Sylvia. “Social Immunity in Insects.” Current Biology, vol. 29, no. 11, Elsevier, 2019, pp. R458–63, doi:10.1016/j.cub.2019.03.035. short: S. Cremer, Current Biology 29 (2019) R458–R463. date_created: 2019-06-09T21:59:10Z date_published: 2019-06-03T00:00:00Z date_updated: 2023-08-28T09:38:00Z day: '03' department: - _id: SyCr doi: 10.1016/j.cub.2019.03.035 external_id: isi: - '000470902000023' pmid: - '31163158' intvolume: ' 29' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cub.2019.03.035 month: '06' oa: 1 oa_version: Published Version page: R458-R463 pmid: 1 publication: Current Biology publication_identifier: issn: - '09609822' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Social immunity in insects type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 29 year: '2019' ... --- _id: '6511' abstract: - lang: eng text: Let U and V be two independent N by N random matrices that are distributed according to Haar measure on U(N). Let Σ be a nonnegative deterministic N by N matrix. The single ring theorem [Ann. of Math. (2) 174 (2011) 1189–1217] asserts that the empirical eigenvalue distribution of the matrix X:=UΣV∗ converges weakly, in the limit of large N, to a deterministic measure which is supported on a single ring centered at the origin in ℂ. Within the bulk regime, that is, in the interior of the single ring, we establish the convergence of the empirical eigenvalue distribution on the optimal local scale of order N−1/2+ε and establish the optimal convergence rate. The same results hold true when U and V are Haar distributed on O(N). article_processing_charge: No author: - first_name: Zhigang full_name: Bao, Zhigang id: 442E6A6C-F248-11E8-B48F-1D18A9856A87 last_name: Bao orcid: 0000-0003-3036-1475 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Kevin full_name: Schnelli, Kevin id: 434AD0AE-F248-11E8-B48F-1D18A9856A87 last_name: Schnelli orcid: 0000-0003-0954-3231 citation: ama: Bao Z, Erdös L, Schnelli K. Local single ring theorem on optimal scale. Annals of Probability. 2019;47(3):1270-1334. doi:10.1214/18-AOP1284 apa: Bao, Z., Erdös, L., & Schnelli, K. (2019). Local single ring theorem on optimal scale. Annals of Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/18-AOP1284 chicago: Bao, Zhigang, László Erdös, and Kevin Schnelli. “Local Single Ring Theorem on Optimal Scale.” Annals of Probability. Institute of Mathematical Statistics, 2019. https://doi.org/10.1214/18-AOP1284. ieee: Z. Bao, L. Erdös, and K. Schnelli, “Local single ring theorem on optimal scale,” Annals of Probability, vol. 47, no. 3. Institute of Mathematical Statistics, pp. 1270–1334, 2019. ista: Bao Z, Erdös L, Schnelli K. 2019. Local single ring theorem on optimal scale. Annals of Probability. 47(3), 1270–1334. mla: Bao, Zhigang, et al. “Local Single Ring Theorem on Optimal Scale.” Annals of Probability, vol. 47, no. 3, Institute of Mathematical Statistics, 2019, pp. 1270–334, doi:10.1214/18-AOP1284. short: Z. Bao, L. Erdös, K. Schnelli, Annals of Probability 47 (2019) 1270–1334. date_created: 2019-06-02T21:59:13Z date_published: 2019-05-01T00:00:00Z date_updated: 2023-08-28T09:32:29Z day: '01' department: - _id: LaEr doi: 10.1214/18-AOP1284 ec_funded: 1 external_id: arxiv: - '1612.05920' isi: - '000466616100003' intvolume: ' 47' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1612.05920 month: '05' oa: 1 oa_version: Preprint page: 1270-1334 project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication: Annals of Probability publication_identifier: issn: - '00911798' publication_status: published publisher: Institute of Mathematical Statistics quality_controlled: '1' scopus_import: '1' status: public title: Local single ring theorem on optimal scale type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 47 year: '2019' ... --- _id: '6559' abstract: - lang: eng text: Branching morphogenesis is a prototypical example of complex three-dimensional organ sculpting, required in multiple developmental settings to maximize the area of exchange surfaces. It requires, in particular, the coordinated growth of different cell types together with complex patterning to lead to robust macroscopic outputs. In recent years, novel multiscale quantitative biology approaches, together with biophysical modelling, have begun to shed new light of this topic. Here, we wish to review some of these recent developments, highlighting the generic design principles that can be abstracted across different branched organs, as well as the implications for the broader fields of stem cell, developmental and systems biology. article_processing_charge: No article_type: original author: - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Benjamin D. full_name: Simons, Benjamin D. last_name: Simons citation: ama: Hannezo EB, Simons BD. Multiscale dynamics of branching morphogenesis. Current Opinion in Cell Biology. 2019;60:99-105. doi:10.1016/j.ceb.2019.04.008 apa: Hannezo, E. B., & Simons, B. D. (2019). Multiscale dynamics of branching morphogenesis. Current Opinion in Cell Biology. Elsevier. https://doi.org/10.1016/j.ceb.2019.04.008 chicago: Hannezo, Edouard B, and Benjamin D. Simons. “Multiscale Dynamics of Branching Morphogenesis.” Current Opinion in Cell Biology. Elsevier, 2019. https://doi.org/10.1016/j.ceb.2019.04.008. ieee: E. B. Hannezo and B. D. Simons, “Multiscale dynamics of branching morphogenesis,” Current Opinion in Cell Biology, vol. 60. Elsevier, pp. 99–105, 2019. ista: Hannezo EB, Simons BD. 2019. Multiscale dynamics of branching morphogenesis. Current Opinion in Cell Biology. 60, 99–105. mla: Hannezo, Edouard B., and Benjamin D. Simons. “Multiscale Dynamics of Branching Morphogenesis.” Current Opinion in Cell Biology, vol. 60, Elsevier, 2019, pp. 99–105, doi:10.1016/j.ceb.2019.04.008. short: E.B. Hannezo, B.D. Simons, Current Opinion in Cell Biology 60 (2019) 99–105. date_created: 2019-06-16T21:59:12Z date_published: 2019-10-01T00:00:00Z date_updated: 2023-08-28T09:38:57Z day: '01' department: - _id: EdHa doi: 10.1016/j.ceb.2019.04.008 external_id: isi: - '000486545800014' pmid: - '31181348' intvolume: ' 60' isi: 1 language: - iso: eng month: '10' oa_version: None page: 99-105 pmid: 1 publication: Current Opinion in Cell Biology publication_identifier: eissn: - '18790410' issn: - '09550674' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Multiscale dynamics of branching morphogenesis type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 60 year: '2019' ... --- _id: '6566' abstract: - lang: eng text: Methodologies that involve the use of nanoparticles as “artificial atoms” to rationally build materials in a bottom-up fashion are particularly well-suited to control the matter at the nanoscale. Colloidal synthetic routes allow for an exquisite control over such “artificial atoms” in terms of size, shape, and crystal phase as well as core and surface compositions. We present here a bottom-up approach to produce Pb–Ag–K–S–Te nanocomposites, which is a highly promising system for thermoelectric energy conversion. First, we developed a high-yield and scalable colloidal synthesis route to uniform lead sulfide (PbS) nanorods, whose tips are made of silver sulfide (Ag2S). We then took advantage of the large surface-to-volume ratio to introduce a p-type dopant (K) by replacing native organic ligands with K2Te. Upon thermal consolidation, K2Te-surface modified PbS–Ag2S nanorods yield p-type doped nanocomposites with PbTe and PbS as major phases and Ag2S and Ag2Te as embedded nanoinclusions. Thermoelectric characterization of such consolidated nanosolids showed a high thermoelectric figure-of-merit of 1 at 620 K. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Aziz full_name: Genç, Aziz last_name: Genç - first_name: Roger full_name: Hasler, Roger last_name: Hasler - first_name: Yu full_name: Liu, Yu id: 2A70014E-F248-11E8-B48F-1D18A9856A87 last_name: Liu orcid: 0000-0001-7313-6740 - first_name: Oleksandr full_name: Dobrozhan, Oleksandr last_name: Dobrozhan - first_name: Olga full_name: Nazarenko, Olga last_name: Nazarenko - first_name: María de la full_name: Mata, María de la last_name: Mata - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot - first_name: Maksym V. full_name: Kovalenko, Maksym V. last_name: Kovalenko citation: ama: Ibáñez M, Genç A, Hasler R, et al. Tuning transport properties in thermoelectric nanocomposites through inorganic ligands and heterostructured building blocks. ACS Nano. 2019;13(6):6572-6580. doi:10.1021/acsnano.9b00346 apa: Ibáñez, M., Genç, A., Hasler, R., Liu, Y., Dobrozhan, O., Nazarenko, O., … Kovalenko, M. V. (2019). Tuning transport properties in thermoelectric nanocomposites through inorganic ligands and heterostructured building blocks. ACS Nano. American Chemical Society. https://doi.org/10.1021/acsnano.9b00346 chicago: Ibáñez, Maria, Aziz Genç, Roger Hasler, Yu Liu, Oleksandr Dobrozhan, Olga Nazarenko, María de la Mata, Jordi Arbiol, Andreu Cabot, and Maksym V. Kovalenko. “Tuning Transport Properties in Thermoelectric Nanocomposites through Inorganic Ligands and Heterostructured Building Blocks.” ACS Nano. American Chemical Society, 2019. https://doi.org/10.1021/acsnano.9b00346. ieee: M. Ibáñez et al., “Tuning transport properties in thermoelectric nanocomposites through inorganic ligands and heterostructured building blocks,” ACS Nano, vol. 13, no. 6. American Chemical Society, pp. 6572–6580, 2019. ista: Ibáñez M, Genç A, Hasler R, Liu Y, Dobrozhan O, Nazarenko O, Mata M de la, Arbiol J, Cabot A, Kovalenko MV. 2019. Tuning transport properties in thermoelectric nanocomposites through inorganic ligands and heterostructured building blocks. ACS Nano. 13(6), 6572–6580. mla: Ibáñez, Maria, et al. “Tuning Transport Properties in Thermoelectric Nanocomposites through Inorganic Ligands and Heterostructured Building Blocks.” ACS Nano, vol. 13, no. 6, American Chemical Society, 2019, pp. 6572–80, doi:10.1021/acsnano.9b00346. short: M. Ibáñez, A. Genç, R. Hasler, Y. Liu, O. Dobrozhan, O. Nazarenko, M. de la Mata, J. Arbiol, A. Cabot, M.V. Kovalenko, ACS Nano 13 (2019) 6572–6580. date_created: 2019-06-18T13:54:34Z date_published: 2019-06-25T00:00:00Z date_updated: 2023-08-28T12:20:53Z day: '25' ddc: - '540' department: - _id: MaIb doi: 10.1021/acsnano.9b00346 ec_funded: 1 external_id: isi: - '000473248300043' pmid: - '31185159' file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2019-07-16T14:17:09Z date_updated: 2020-07-14T12:47:33Z file_id: '6644' file_name: 2019_ACSNano_Ibanez.pdf file_size: 8628690 relation: main_file file_date_updated: 2020-07-14T12:47:33Z has_accepted_license: '1' intvolume: ' 13' isi: 1 issue: '6' keyword: - colloidal nanoparticles - asymmetric nanoparticles - inorganic ligands - heterostructures - catalyst assisted growth - nanocomposites - thermoelectrics language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 6572-6580 pmid: 1 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: ACS Nano publication_identifier: eissn: - 1936-086X issn: - 1936-0851 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Tuning transport properties in thermoelectric nanocomposites through inorganic ligands and heterostructured building blocks type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2019' ... --- _id: '6607' abstract: - lang: eng text: Acute myeloid leukemia (AML) is a heterogeneous disease with respect to its genetic and molecular basis and to patients´ outcome. Clinical, cytogenetic, and mutational data are used to classify patients into risk groups with different survival, however, within-group heterogeneity is still an issue. Here, we used a robust likelihood-based survival modeling approach and publicly available gene expression data to identify a minimal number of genes whose combined expression values were prognostic of overall survival. The resulting gene expression signature (4-GES) consisted of 4 genes (SOCS2, IL2RA, NPDC1, PHGDH), predicted patient survival as an independent prognostic parameter in several cohorts of AML patients (total, 1272 patients), and further refined prognostication based on the European Leukemia Net classification. An oncogenic role of the top scoring gene in this signature, SOCS2, was investigated using MLL-AF9 and Flt3-ITD/NPM1c driven mouse models of AML. SOCS2 promoted leukemogenesis as well as the abundance, quiescence, and activity of AML stem cells. Overall, the 4-GES represents a highly discriminating prognostic parameter in AML, whose clinical applicability is greatly enhanced by its small number of genes. The newly established role of SOCS2 in leukemia aggressiveness and stemness raises the possibility that the signature might even be exploitable therapeutically. article_number: '9139' article_processing_charge: No author: - first_name: Chi Huu full_name: Nguyen, Chi Huu last_name: Nguyen - first_name: Tobias full_name: Glüxam, Tobias last_name: Glüxam - first_name: Angela full_name: Schlerka, Angela last_name: Schlerka - first_name: Katharina full_name: Bauer, Katharina id: 2ED6B14C-F248-11E8-B48F-1D18A9856A87 last_name: Bauer - first_name: Alexander M. full_name: Grandits, Alexander M. last_name: Grandits - first_name: Hubert full_name: Hackl, Hubert last_name: Hackl - first_name: Oliver full_name: Dovey, Oliver last_name: Dovey - first_name: Sabine full_name: Zöchbauer-Müller, Sabine last_name: Zöchbauer-Müller - first_name: Jonathan L. full_name: Cooper, Jonathan L. last_name: Cooper - first_name: George S. full_name: Vassiliou, George S. last_name: Vassiliou - first_name: Dagmar full_name: Stoiber, Dagmar last_name: Stoiber - first_name: Rotraud full_name: Wieser, Rotraud last_name: Wieser - first_name: Gerwin full_name: Heller, Gerwin last_name: Heller citation: ama: Nguyen CH, Glüxam T, Schlerka A, et al. SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness. Scientific Reports. 2019;9(1). doi:10.1038/s41598-019-45579-0 apa: Nguyen, C. H., Glüxam, T., Schlerka, A., Bauer, K., Grandits, A. M., Hackl, H., … Heller, G. (2019). SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness. Scientific Reports. Nature Publishing Group. https://doi.org/10.1038/s41598-019-45579-0 chicago: Nguyen, Chi Huu, Tobias Glüxam, Angela Schlerka, Katharina Bauer, Alexander M. Grandits, Hubert Hackl, Oliver Dovey, et al. “SOCS2 Is Part of a Highly Prognostic 4-Gene Signature in AML and Promotes Disease Aggressiveness.” Scientific Reports. Nature Publishing Group, 2019. https://doi.org/10.1038/s41598-019-45579-0. ieee: C. H. Nguyen et al., “SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness,” Scientific Reports, vol. 9, no. 1. Nature Publishing Group, 2019. ista: Nguyen CH, Glüxam T, Schlerka A, Bauer K, Grandits AM, Hackl H, Dovey O, Zöchbauer-Müller S, Cooper JL, Vassiliou GS, Stoiber D, Wieser R, Heller G. 2019. SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness. Scientific Reports. 9(1), 9139. mla: Nguyen, Chi Huu, et al. “SOCS2 Is Part of a Highly Prognostic 4-Gene Signature in AML and Promotes Disease Aggressiveness.” Scientific Reports, vol. 9, no. 1, 9139, Nature Publishing Group, 2019, doi:10.1038/s41598-019-45579-0. short: C.H. Nguyen, T. Glüxam, A. Schlerka, K. Bauer, A.M. Grandits, H. Hackl, O. Dovey, S. Zöchbauer-Müller, J.L. Cooper, G.S. Vassiliou, D. Stoiber, R. Wieser, G. Heller, Scientific Reports 9 (2019). date_created: 2019-07-07T21:59:19Z date_published: 2019-06-24T00:00:00Z date_updated: 2023-08-28T12:26:51Z day: '24' ddc: - '576' department: - _id: PreCl doi: 10.1038/s41598-019-45579-0 external_id: isi: - '000472597400042' file: - access_level: open_access checksum: 3283522fffadf4b5fc8c7adfe3ba4564 content_type: application/pdf creator: kschuh date_created: 2019-07-08T15:15:28Z date_updated: 2020-07-14T12:47:34Z file_id: '6623' file_name: nature_2019_Nguyen.pdf file_size: 2017352 relation: main_file file_date_updated: 2020-07-14T12:47:34Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '1' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '06' oa: 1 oa_version: Published Version publication: Scientific Reports publication_status: published publisher: Nature Publishing Group quality_controlled: '1' scopus_import: '1' status: public title: SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2019' ...