--- _id: '12724' abstract: - lang: eng text: 'We use general symmetry-based arguments to construct an effective model suitable for studying optical properties of lead halide perovskites. To build the model, we identify an atomic-level interaction between electromagnetic fields and the spin degree of freedom that should be added to a minimally coupled k⋅p Hamiltonian. As a first application, we study two basic optical characteristics of the material: the Verdet constant and the refractive index. Beyond these linear characteristics of the material, the model is suitable for calculating nonlinear effects such as the third-order optical susceptibility. Analysis of this quantity shows that the geometrical properties of the spin-electric term imply isotropic optical response of the system, and that optical anisotropy of lead halide perovskites is a manifestation of hopping of charge carriers. To illustrate this, we discuss third-harmonic generation.' article_number: '125201' article_processing_charge: No article_type: original author: - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Abhishek full_name: Shiva Kumar, Abhishek id: 5e9a6931-eb97-11eb-a6c2-e96f7058d77a last_name: Shiva Kumar - first_name: Dusan full_name: Lorenc, Dusan id: 40D8A3E6-F248-11E8-B48F-1D18A9856A87 last_name: Lorenc - first_name: Younes full_name: Ashourishokri, Younes id: e32c111f-f6e0-11ea-865d-eb955baea334 last_name: Ashourishokri - first_name: Ayan full_name: Zhumekenov, Ayan last_name: Zhumekenov - first_name: Osman M. full_name: Bakr, Osman M. last_name: Bakr - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 citation: ama: Volosniev A, Shiva Kumar A, Lorenc D, et al. Effective model for studying optical properties of lead halide perovskites. Physical Review B. 2023;107(12). doi:10.1103/physrevb.107.125201 apa: Volosniev, A., Shiva Kumar, A., Lorenc, D., Ashourishokri, Y., Zhumekenov, A., Bakr, O. M., … Alpichshev, Z. (2023). Effective model for studying optical properties of lead halide perovskites. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.107.125201 chicago: Volosniev, Artem, Abhishek Shiva Kumar, Dusan Lorenc, Younes Ashourishokri, Ayan Zhumekenov, Osman M. Bakr, Mikhail Lemeshko, and Zhanybek Alpichshev. “Effective Model for Studying Optical Properties of Lead Halide Perovskites.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/physrevb.107.125201. ieee: A. Volosniev et al., “Effective model for studying optical properties of lead halide perovskites,” Physical Review B, vol. 107, no. 12. American Physical Society, 2023. ista: Volosniev A, Shiva Kumar A, Lorenc D, Ashourishokri Y, Zhumekenov A, Bakr OM, Lemeshko M, Alpichshev Z. 2023. Effective model for studying optical properties of lead halide perovskites. Physical Review B. 107(12), 125201. mla: Volosniev, Artem, et al. “Effective Model for Studying Optical Properties of Lead Halide Perovskites.” Physical Review B, vol. 107, no. 12, 125201, American Physical Society, 2023, doi:10.1103/physrevb.107.125201. short: A. Volosniev, A. Shiva Kumar, D. Lorenc, Y. Ashourishokri, A. Zhumekenov, O.M. Bakr, M. Lemeshko, Z. Alpichshev, Physical Review B 107 (2023). date_created: 2023-03-14T13:13:05Z date_published: 2023-03-15T00:00:00Z date_updated: 2023-08-01T13:39:47Z day: '15' department: - _id: GradSch - _id: ZhAl - _id: MiLe doi: 10.1103/physrevb.107.125201 external_id: arxiv: - '2204.04022' isi: - '000972602200006' intvolume: ' 107' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2204.04022 month: '03' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Effective model for studying optical properties of lead halide perovskites type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '12759' abstract: - lang: eng text: Stereological methods for estimating the 3D particle size and density from 2D projections are essential to many research fields. These methods are, however, prone to errors arising from undetected particle profiles due to sectioning and limited resolution, known as ‘lost caps’. A potential solution developed by Keiding, Jensen, and Ranek in 1972, which we refer to as the Keiding model, accounts for lost caps by quantifying the smallest detectable profile in terms of its limiting ‘cap angle’ (ϕ), a size-independent measure of a particle’s distance from the section surface. However, this simple solution has not been widely adopted nor tested. Rather, model-independent design-based stereological methods, which do not explicitly account for lost caps, have come to the fore. Here, we provide the first experimental validation of the Keiding model by comparing the size and density of particles estimated from 2D projections with direct measurement from 3D EM reconstructions of the same tissue. We applied the Keiding model to estimate the size and density of somata, nuclei and vesicles in the cerebellum of mice and rats, where high packing density can be problematic for design-based methods. Our analysis reveals a Gaussian distribution for ϕ rather than a single value. Nevertheless, curve fits of the Keiding model to the 2D diameter distribution accurately estimate the mean ϕ and 3D diameter distribution. While systematic testing using simulations revealed an upper limit to determining ϕ, our analysis shows that estimated ϕ can be used to determine the 3D particle density from the 2D density under a wide range of conditions, and this method is potentially more accurate than minimum-size-based lost-cap corrections and disector methods. Our results show the Keiding model provides an efficient means of accurately estimating the size and density of particles from 2D projections even under conditions of a high density. acknowledged_ssus: - _id: EM-Fac acknowledgement: "We thank the IST Austria Electron Microscopy Facility for technical support, and Diccon Coyle, Andrea Lőrincz and Zoltan Nusser for their helpful comments and discussions.\r\nFunding for JSR and RAS was from the Wellcome Trust (203048; 224499; https://\r\nwellcome.org/). RAS is in receipt of a Wellcome Trust Principal Research Fellowship (224499).\r\nFunding for CBM and PJ was from Fond zur Förderung der Wissenschaftlichen Forschung (V\r\n739-B27 Elise-Richter Programme to CBM, Z 312-B27 Wittgenstein Award to PJ; \r\nhttps://www.fwf.ac.at). PJ received funding from the European Research Council (ERC; https://erc.europa.eu) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 692692). NH was supported by a European\r\nResearch Council Advanced Grant (ERC-AG787157)." article_number: e0277148 article_processing_charge: No article_type: original author: - first_name: Jason Seth full_name: Rothman, Jason Seth last_name: Rothman - first_name: Carolina full_name: Borges Merjane, Carolina id: 4305C450-F248-11E8-B48F-1D18A9856A87 last_name: Borges Merjane orcid: 0000-0003-0005-401X - first_name: Noemi full_name: Holderith, Noemi last_name: Holderith - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 - first_name: R. full_name: Angus Silver, R. last_name: Angus Silver citation: ama: Rothman JS, Borges Merjane C, Holderith N, Jonas PM, Angus Silver R. Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy. PLoS ONE. 2023;18(3 March). doi:10.1371/journal.pone.0277148 apa: Rothman, J. S., Borges Merjane, C., Holderith, N., Jonas, P. M., & Angus Silver, R. (2023). Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy. PLoS ONE. Public Library of Science. https://doi.org/10.1371/journal.pone.0277148 chicago: Rothman, Jason Seth, Carolina Borges Merjane, Noemi Holderith, Peter M Jonas, and R. Angus Silver. “Validation of a Stereological Method for Estimating Particle Size and Density from 2D Projections with High Accuracy.” PLoS ONE. Public Library of Science, 2023. https://doi.org/10.1371/journal.pone.0277148. ieee: J. S. Rothman, C. Borges Merjane, N. Holderith, P. M. Jonas, and R. Angus Silver, “Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy,” PLoS ONE, vol. 18, no. 3 March. Public Library of Science, 2023. ista: Rothman JS, Borges Merjane C, Holderith N, Jonas PM, Angus Silver R. 2023. Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy. PLoS ONE. 18(3 March), e0277148. mla: Rothman, Jason Seth, et al. “Validation of a Stereological Method for Estimating Particle Size and Density from 2D Projections with High Accuracy.” PLoS ONE, vol. 18, no. 3 March, e0277148, Public Library of Science, 2023, doi:10.1371/journal.pone.0277148. short: J.S. Rothman, C. Borges Merjane, N. Holderith, P.M. Jonas, R. Angus Silver, PLoS ONE 18 (2023). date_created: 2023-03-26T22:01:07Z date_published: 2023-03-17T00:00:00Z date_updated: 2023-08-01T13:46:39Z day: '17' ddc: - '570' department: - _id: PeJo doi: 10.1371/journal.pone.0277148 ec_funded: 1 external_id: isi: - '001024737400001' file: - access_level: open_access checksum: 2380331ec27cc87808826fc64419ac1c content_type: application/pdf creator: dernst date_created: 2023-03-27T06:51:09Z date_updated: 2023-03-27T06:51:09Z file_id: '12770' file_name: 2023_PLoSOne_Rothman.pdf file_size: 7290413 relation: main_file success: 1 file_date_updated: 2023-03-27T06:51:09Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: 3 March language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: 2696E7FE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: V00739 name: Structural plasticity at mossy fiber-CA3 synapses publication: PLoS ONE publication_identifier: eissn: - 1932-6203 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 18 year: '2023' ... --- _id: '12756' abstract: - lang: eng text: ESCRT-III family proteins form composite polymers that deform and cut membrane tubes in the context of a wide range of cell biological processes across the tree of life. In reconstituted systems, sequential changes in the composition of ESCRT-III polymers induced by the AAA–adenosine triphosphatase Vps4 have been shown to remodel membranes. However, it is not known how composite ESCRT-III polymers are organized and remodeled in space and time in a cellular context. Taking advantage of the relative simplicity of the ESCRT-III–dependent division system in Sulfolobus acidocaldarius, one of the closest experimentally tractable prokaryotic relatives of eukaryotes, we use super-resolution microscopy, electron microscopy, and computational modeling to show how CdvB/CdvB1/CdvB2 proteins form a precisely patterned composite ESCRT-III division ring, which undergoes stepwise Vps4-dependent disassembly and contracts to cut cells into two. These observations lead us to suggest sequential changes in a patterned composite polymer as a general mechanism of ESCRT-III–dependent membrane remodeling. acknowledgement: "We thank Y. Liu and V. Hale for help with electron cryotomography; the Medical Research Council (MRC) LMB Electron Microscopy Facility for access, training, and support; and T. Darling and J. Grimmett at the MRC LMB for help with computing infrastructure. We also thank the Flow Cytometry Facility and the MRC LMB for training and support.\r\n F.H. and G.T.-R. were supported by a grant from the Wellcome Trust (203276/Z/16/Z). A.C. was supported by an EMBO long-term fellowship: ALTF_1041-2021. J.T. was supported by a grant from the VW Foundation (94933). A.A.P. was supported by the Wellcome Trust (203276/Z/16/Z) and the HFSP (LT001027/2019). B.B. received support from the MRC LMB, the Wellcome Trust (203276/Z/16/Z), the VW Foundation (94933), the Life Sciences–Moore-Simons Foundation (735929LPI), and a Gordon and Betty Moore Foundation’s Symbiosis in Aquatic Systems Initiative (9346). A.Š. and X.J. acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 802960). L.H.-K. acknowledges support from Biotechnology and Biological Sciences Research Council LIDo Programme. T.N. and J.L. were supported by the MRC (U105184326) and the Wellcome Trust (203276/Z/16/Z)." article_number: eade5224 article_processing_charge: No article_type: original author: - first_name: Fredrik full_name: Hurtig, Fredrik last_name: Hurtig - first_name: Thomas C.Q. full_name: Burgers, Thomas C.Q. last_name: Burgers - first_name: Alice full_name: Cezanne, Alice last_name: Cezanne - first_name: Xiuyun full_name: Jiang, Xiuyun last_name: Jiang - first_name: Frank N. full_name: Mol, Frank N. last_name: Mol - first_name: Jovan full_name: Traparić, Jovan last_name: Traparić - first_name: Andre Arashiro full_name: Pulschen, Andre Arashiro last_name: Pulschen - first_name: Tim full_name: Nierhaus, Tim last_name: Nierhaus - first_name: Gabriel full_name: Tarrason-Risa, Gabriel last_name: Tarrason-Risa - first_name: Lena full_name: Harker-Kirschneck, Lena last_name: Harker-Kirschneck - first_name: Jan full_name: Löwe, Jan last_name: Löwe - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 - first_name: Rifka full_name: Vlijm, Rifka last_name: Vlijm - first_name: Buzz full_name: Baum, Buzz last_name: Baum citation: ama: Hurtig F, Burgers TCQ, Cezanne A, et al. The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. Science Advances. 2023;9(11). doi:10.1126/sciadv.ade5224 apa: Hurtig, F., Burgers, T. C. Q., Cezanne, A., Jiang, X., Mol, F. N., Traparić, J., … Baum, B. (2023). The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.ade5224 chicago: Hurtig, Fredrik, Thomas C.Q. Burgers, Alice Cezanne, Xiuyun Jiang, Frank N. Mol, Jovan Traparić, Andre Arashiro Pulschen, et al. “The Patterned Assembly and Stepwise Vps4-Mediated Disassembly of Composite ESCRT-III Polymers Drives Archaeal Cell Division.” Science Advances. American Association for the Advancement of Science, 2023. https://doi.org/10.1126/sciadv.ade5224. ieee: F. Hurtig et al., “The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division,” Science Advances, vol. 9, no. 11. American Association for the Advancement of Science, 2023. ista: Hurtig F, Burgers TCQ, Cezanne A, Jiang X, Mol FN, Traparić J, Pulschen AA, Nierhaus T, Tarrason-Risa G, Harker-Kirschneck L, Löwe J, Šarić A, Vlijm R, Baum B. 2023. The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. Science Advances. 9(11), eade5224. mla: Hurtig, Fredrik, et al. “The Patterned Assembly and Stepwise Vps4-Mediated Disassembly of Composite ESCRT-III Polymers Drives Archaeal Cell Division.” Science Advances, vol. 9, no. 11, eade5224, American Association for the Advancement of Science, 2023, doi:10.1126/sciadv.ade5224. short: F. Hurtig, T.C.Q. Burgers, A. Cezanne, X. Jiang, F.N. Mol, J. Traparić, A.A. Pulschen, T. Nierhaus, G. Tarrason-Risa, L. Harker-Kirschneck, J. Löwe, A. Šarić, R. Vlijm, B. Baum, Science Advances 9 (2023). date_created: 2023-03-26T22:01:06Z date_published: 2023-03-17T00:00:00Z date_updated: 2023-08-01T13:45:54Z day: '17' ddc: - '570' department: - _id: AnSa doi: 10.1126/sciadv.ade5224 ec_funded: 1 external_id: isi: - '000968083500010' file: - access_level: open_access checksum: 6d7dbe9ed86a116c8a002d62971202c5 content_type: application/pdf creator: dernst date_created: 2023-03-27T06:24:49Z date_updated: 2023-03-27T06:24:49Z file_id: '12768' file_name: 2023_ScienceAdvances_Hurtig.pdf file_size: 1826471 relation: main_file success: 1 file_date_updated: 2023-03-27T06:24:49Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '11' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: eba2549b-77a9-11ec-83b8-a81e493eae4e call_identifier: H2020 grant_number: '802960' name: 'Non-Equilibrium Protein Assembly: from Building Blocks to Biological Machines' publication: Science Advances publication_identifier: eissn: - 2375-2548 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' scopus_import: '1' status: public title: The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2023' ... --- _id: '12758' abstract: - lang: eng text: AlphaFold changed the field of structural biology by achieving three-dimensional (3D) structure prediction from protein sequence at experimental quality. The astounding success even led to claims that the protein folding problem is “solved”. However, protein folding problem is more than just structure prediction from sequence. Presently, it is unknown if the AlphaFold-triggered revolution could help to solve other problems related to protein folding. Here we assay the ability of AlphaFold to predict the impact of single mutations on protein stability (ΔΔG) and function. To study the question we extracted the pLDDT and metrics from AlphaFold predictions before and after single mutation in a protein and correlated the predicted change with the experimentally known ΔΔG values. Additionally, we correlated the same AlphaFold pLDDT metrics with the impact of a single mutation on structure using a large scale dataset of single mutations in GFP with the experimentally assayed levels of fluorescence. We found a very weak or no correlation between AlphaFold output metrics and change of protein stability or fluorescence. Our results imply that AlphaFold may not be immediately applied to other problems or applications in protein folding. acknowledgement: The authors acknowledge the use of Zhores supercomputer [28] for obtaining the results presented in this paper.The authors thank Zimin Foundation and Petrovax for support of the presented study at the School of Molecular and Theoretical Biology 2021. article_number: e0282689 article_processing_charge: No article_type: original author: - first_name: Marina A. full_name: Pak, Marina A. last_name: Pak - first_name: Karina A. full_name: Markhieva, Karina A. last_name: Markhieva - first_name: Mariia S. full_name: Novikova, Mariia S. last_name: Novikova - first_name: Dmitry S. full_name: Petrov, Dmitry S. last_name: Petrov - first_name: Ilya S. full_name: Vorobyev, Ilya S. last_name: Vorobyev - first_name: Ekaterina full_name: Maksimova, Ekaterina id: 2FBE0DE4-F248-11E8-B48F-1D18A9856A87 last_name: Maksimova - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Dmitry N. full_name: Ivankov, Dmitry N. last_name: Ivankov citation: ama: Pak MA, Markhieva KA, Novikova MS, et al. Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS ONE. 2023;18(3). doi:10.1371/journal.pone.0282689 apa: Pak, M. A., Markhieva, K. A., Novikova, M. S., Petrov, D. S., Vorobyev, I. S., Maksimova, E., … Ivankov, D. N. (2023). Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS ONE. Public Library of Science. https://doi.org/10.1371/journal.pone.0282689 chicago: Pak, Marina A., Karina A. Markhieva, Mariia S. Novikova, Dmitry S. Petrov, Ilya S. Vorobyev, Ekaterina Maksimova, Fyodor Kondrashov, and Dmitry N. Ivankov. “Using AlphaFold to Predict the Impact of Single Mutations on Protein Stability and Function.” PLoS ONE. Public Library of Science, 2023. https://doi.org/10.1371/journal.pone.0282689. ieee: M. A. Pak et al., “Using AlphaFold to predict the impact of single mutations on protein stability and function,” PLoS ONE, vol. 18, no. 3. Public Library of Science, 2023. ista: Pak MA, Markhieva KA, Novikova MS, Petrov DS, Vorobyev IS, Maksimova E, Kondrashov F, Ivankov DN. 2023. Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS ONE. 18(3), e0282689. mla: Pak, Marina A., et al. “Using AlphaFold to Predict the Impact of Single Mutations on Protein Stability and Function.” PLoS ONE, vol. 18, no. 3, e0282689, Public Library of Science, 2023, doi:10.1371/journal.pone.0282689. short: M.A. Pak, K.A. Markhieva, M.S. Novikova, D.S. Petrov, I.S. Vorobyev, E. Maksimova, F. Kondrashov, D.N. Ivankov, PLoS ONE 18 (2023). date_created: 2023-03-26T22:01:07Z date_published: 2023-03-16T00:00:00Z date_updated: 2023-08-01T13:47:14Z day: '16' ddc: - '570' department: - _id: FyKo - _id: MaRo doi: 10.1371/journal.pone.0282689 external_id: isi: - '000985134400106' file: - access_level: open_access checksum: 0281bdfccf8d76c4e08dd011c603f6b6 content_type: application/pdf creator: dernst date_created: 2023-03-27T07:09:08Z date_updated: 2023-03-27T07:09:08Z file_id: '12771' file_name: 2023_PLoSOne_Pak.pdf file_size: 856625 relation: main_file success: 1 file_date_updated: 2023-03-27T07:09:08Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: PLoS ONE publication_identifier: eissn: - 1932-6203 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Using AlphaFold to predict the impact of single mutations on protein stability and function tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 18 year: '2023' ... --- _id: '12757' abstract: - lang: eng text: My group and myself have studied respiratory complex I for almost 30 years, starting in 1994 when it was known as a L-shaped giant ‘black box' of bioenergetics. First breakthrough was the X-ray structure of the peripheral arm, followed by structures of the membrane arm and finally the entire complex from Thermus thermophilus. The developments in cryo-EM technology allowed us to solve the first complete structure of the twice larger, ∼1 MDa mammalian enzyme in 2016. However, the mechanism coupling, over large distances, the transfer of two electrons to pumping of four protons across the membrane remained an enigma. Recently we have solved high-resolution structures of mammalian and bacterial complex I under a range of redox conditions, including catalytic turnover. This allowed us to propose a robust and universal mechanism for complex I and related protein families. Redox reactions initially drive conformational changes around the quinone cavity and a long-distance transfer of substrate protons. These set up a stage for a series of electrostatically driven proton transfers along the membrane arm (‘domino effect'), eventually resulting in proton expulsion from the distal antiporter-like subunit. The mechanism radically differs from previous suggestions, however, it naturally explains all the unusual structural features of complex I. In this review I discuss the state of knowledge on complex I, including the current most controversial issues. article_processing_charge: No article_type: review author: - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 citation: ama: 'Sazanov LA. From the “black box” to “domino effect” mechanism: What have we learned from the structures of respiratory complex I. The Biochemical Journal. 2023;480(5):319-333. doi:10.1042/BCJ20210285' apa: 'Sazanov, L. A. (2023). From the “black box” to “domino effect” mechanism: What have we learned from the structures of respiratory complex I. The Biochemical Journal. Portland Press. https://doi.org/10.1042/BCJ20210285' chicago: 'Sazanov, Leonid A. “From the ‘black Box’ to ‘Domino Effect’ Mechanism: What Have We Learned from the Structures of Respiratory Complex I.” The Biochemical Journal. Portland Press, 2023. https://doi.org/10.1042/BCJ20210285.' ieee: 'L. A. Sazanov, “From the ‘black box’ to ‘domino effect’ mechanism: What have we learned from the structures of respiratory complex I,” The Biochemical Journal, vol. 480, no. 5. Portland Press, pp. 319–333, 2023.' ista: 'Sazanov LA. 2023. From the ‘black box’ to ‘domino effect’ mechanism: What have we learned from the structures of respiratory complex I. The Biochemical Journal. 480(5), 319–333.' mla: 'Sazanov, Leonid A. “From the ‘black Box’ to ‘Domino Effect’ Mechanism: What Have We Learned from the Structures of Respiratory Complex I.” The Biochemical Journal, vol. 480, no. 5, Portland Press, 2023, pp. 319–33, doi:10.1042/BCJ20210285.' short: L.A. Sazanov, The Biochemical Journal 480 (2023) 319–333. date_created: 2023-03-26T22:01:06Z date_published: 2023-03-15T00:00:00Z date_updated: 2023-08-01T13:45:12Z day: '15' ddc: - '570' department: - _id: LeSa doi: 10.1042/BCJ20210285 external_id: isi: - '000957065700001' pmid: - '36920092' has_accepted_license: '1' intvolume: ' 480' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1042/BCJ20210285 month: '03' oa: 1 oa_version: Published Version page: 319-333 pmid: 1 publication: The Biochemical Journal publication_identifier: eissn: - 1470-8728 issn: - 0264-6021 publication_status: published publisher: Portland Press quality_controlled: '1' scopus_import: '1' status: public title: 'From the ''black box'' to ''domino effect'' mechanism: What have we learned from the structures of respiratory complex I' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 480 year: '2023' ... --- _id: '12787' abstract: - lang: eng text: "Populations evolve in spatially heterogeneous environments. While a certain trait might bring a fitness advantage in some patch of the environment, a different trait might be advantageous in another patch. Here, we study the Moran birth–death process with two types of individuals in a population stretched across two patches of size N, each patch favouring one of the two types. We show that the long-term fate of such populations crucially depends on the migration rate μ\r\n between the patches. To classify the possible fates, we use the distinction between polynomial (short) and exponential (long) timescales. We show that when μ is high then one of the two types fixates on the whole population after a number of steps that is only polynomial in N. By contrast, when μ is low then each type holds majority in the patch where it is favoured for a number of steps that is at least exponential in N. Moreover, we precisely identify the threshold migration rate μ⋆ that separates those two scenarios, thereby exactly delineating the situations that support long-term coexistence of the two types. We also discuss the case of various cycle graphs and we present computer simulations that perfectly match our analytical results." acknowledgement: J.S. and K.C. acknowledge support from the ERC CoG 863818 (ForM-SMArt) article_number: '20220685' article_processing_charge: No article_type: original author: - first_name: Jakub full_name: Svoboda, Jakub id: 130759D2-D7DD-11E9-87D2-DE0DE6697425 last_name: Svoboda - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Kamran full_name: Kaveh, Kamran last_name: Kaveh - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: 'Svoboda J, Tkadlec J, Kaveh K, Chatterjee K. Coexistence times in the Moran process with environmental heterogeneity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2023;479(2271). doi:10.1098/rspa.2022.0685' apa: 'Svoboda, J., Tkadlec, J., Kaveh, K., & Chatterjee, K. (2023). Coexistence times in the Moran process with environmental heterogeneity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. The Royal Society. https://doi.org/10.1098/rspa.2022.0685' chicago: 'Svoboda, Jakub, Josef Tkadlec, Kamran Kaveh, and Krishnendu Chatterjee. “Coexistence Times in the Moran Process with Environmental Heterogeneity.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. The Royal Society, 2023. https://doi.org/10.1098/rspa.2022.0685.' ieee: 'J. Svoboda, J. Tkadlec, K. Kaveh, and K. Chatterjee, “Coexistence times in the Moran process with environmental heterogeneity,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 479, no. 2271. The Royal Society, 2023.' ista: 'Svoboda J, Tkadlec J, Kaveh K, Chatterjee K. 2023. Coexistence times in the Moran process with environmental heterogeneity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 479(2271), 20220685.' mla: 'Svoboda, Jakub, et al. “Coexistence Times in the Moran Process with Environmental Heterogeneity.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 479, no. 2271, 20220685, The Royal Society, 2023, doi:10.1098/rspa.2022.0685.' short: 'J. Svoboda, J. Tkadlec, K. Kaveh, K. Chatterjee, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 479 (2023).' date_created: 2023-04-02T22:01:09Z date_published: 2023-03-29T00:00:00Z date_updated: 2023-08-01T13:58:34Z day: '29' ddc: - '000' department: - _id: KrCh doi: 10.1098/rspa.2022.0685 ec_funded: 1 external_id: isi: - '000957125500002' file: - access_level: open_access checksum: 13953d349fbefcb5d21ccc6b303297eb content_type: application/pdf creator: dernst date_created: 2023-04-03T06:25:29Z date_updated: 2023-04-03T06:25:29Z file_id: '12796' file_name: 2023_ProceedingsRoyalSocietyA_Svoboda.pdf file_size: 827784 relation: main_file success: 1 file_date_updated: 2023-04-03T06:25:29Z has_accepted_license: '1' intvolume: ' 479' isi: 1 issue: '2271' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: 'Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences' publication_identifier: eissn: - 1471-2946 issn: - 1364-5021 publication_status: published publisher: The Royal Society quality_controlled: '1' related_material: link: - relation: research_data url: https://doi.org/10.6084/m9.figshare.21261771.v1 scopus_import: '1' status: public title: Coexistence times in the Moran process with environmental heterogeneity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 479 year: '2023' ... --- _id: '12788' abstract: - lang: eng text: We show that the simplest of existing molecules—closed-shell diatomics not interacting with one another—host topological charges when driven by periodic far-off-resonant laser pulses. A periodically kicked molecular rotor can be mapped onto a “crystalline” lattice in angular momentum space. This allows us to define quasimomenta and the band structure in the Floquet representation, by analogy with the Bloch waves of solid-state physics. Applying laser pulses spaced by 1/3 of the molecular rotational period creates a lattice with three atoms per unit cell with staggered hopping. Within the synthetic dimension of the laser strength, we discover Dirac cones with topological charges. These Dirac cones, topologically protected by reflection and time-reversal symmetry, are reminiscent of (although not equivalent to) that seen in graphene. They—and the corresponding edge states—are broadly tunable by adjusting the laser strength and can be observed in present-day experiments by measuring molecular alignment and populations of rotational levels. This paves the way to study controllable topological physics in gas-phase experiments with small molecules as well as to classify dynamical molecular states by their topological invariants. acknowledgement: M. L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). article_number: '103202' article_processing_charge: No article_type: original author: - first_name: Volker full_name: Karle, Volker id: D7C012AE-D7ED-11E9-95E8-1EC5E5697425 last_name: Karle - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Karle V, Ghazaryan A, Lemeshko M. Topological charges of periodically kicked molecules. Physical Review Letters. 2023;130(10). doi:10.1103/PhysRevLett.130.103202 apa: Karle, V., Ghazaryan, A., & Lemeshko, M. (2023). Topological charges of periodically kicked molecules. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.130.103202 chicago: Karle, Volker, Areg Ghazaryan, and Mikhail Lemeshko. “Topological Charges of Periodically Kicked Molecules.” Physical Review Letters. American Physical Society, 2023. https://doi.org/10.1103/PhysRevLett.130.103202. ieee: V. Karle, A. Ghazaryan, and M. Lemeshko, “Topological charges of periodically kicked molecules,” Physical Review Letters, vol. 130, no. 10. American Physical Society, 2023. ista: Karle V, Ghazaryan A, Lemeshko M. 2023. Topological charges of periodically kicked molecules. Physical Review Letters. 130(10), 103202. mla: Karle, Volker, et al. “Topological Charges of Periodically Kicked Molecules.” Physical Review Letters, vol. 130, no. 10, 103202, American Physical Society, 2023, doi:10.1103/PhysRevLett.130.103202. short: V. Karle, A. Ghazaryan, M. Lemeshko, Physical Review Letters 130 (2023). date_created: 2023-04-02T22:01:10Z date_published: 2023-03-10T00:00:00Z date_updated: 2023-08-01T14:02:06Z day: '10' department: - _id: MiLe doi: 10.1103/PhysRevLett.130.103202 ec_funded: 1 external_id: arxiv: - '2206.07067' isi: - '000957635500003' intvolume: ' 130' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2206.07067 month: '03' oa: 1 oa_version: Preprint project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News on the ISTA website relation: press_release url: https://ista.ac.at/en/news/topology-of-rotating-molecules/ scopus_import: '1' status: public title: Topological charges of periodically kicked molecules type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 130 year: '2023' ... --- _id: '12790' abstract: - lang: eng text: Motivated by the recent discoveries of superconductivity in bilayer and trilayer graphene, we theoretically investigate superconductivity and other interaction-driven phases in multilayer graphene stacks. To this end, we study the density of states of multilayer graphene with up to four layers at the single-particle band structure level in the presence of a transverse electric field. Among the considered structures, tetralayer graphene with rhombohedral (ABCA) stacking reaches the highest density of states. We study the phases that can arise in ABCA graphene by tuning the carrier density and transverse electric field. For a broad region of the tuning parameters, the presence of strong Coulomb repulsion leads to a spontaneous spin and valley symmetry breaking via Stoner transitions. Using a model that incorporates the spontaneous spin and valley polarization, we explore the Kohn-Luttinger mechanism for superconductivity driven by repulsive Coulomb interactions. We find that the strongest superconducting instability is in the p-wave channel, and occurs in proximity to the onset of Stoner transitions. Interestingly, we find a range of densities and transverse electric fields where superconductivity develops out of a strongly corrugated, singly connected Fermi surface in each valley, leading to a topologically nontrivial chiral p+ip superconducting state with an even number of copropagating chiral Majorana edge modes. Our work establishes ABCA-stacked tetralayer graphene as a promising platform for observing strongly correlated physics and topological superconductivity. acknowledgement: E.B. and T.H. were supported by the European Research Council (ERC) under grant HQMAT (Grant Agreement No. 817799), by the Israel-USA Binational Science Foundation (BSF), and by a Research grant from Irving and Cherna Moskowitz. article_number: '104502' article_processing_charge: No article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Tobias full_name: Holder, Tobias last_name: Holder - first_name: Erez full_name: Berg, Erez last_name: Berg - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Ghazaryan A, Holder T, Berg E, Serbyn M. Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity. Physical Review B. 2023;107(10). doi:10.1103/PhysRevB.107.104502 apa: Ghazaryan, A., Holder, T., Berg, E., & Serbyn, M. (2023). Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.107.104502 chicago: Ghazaryan, Areg, Tobias Holder, Erez Berg, and Maksym Serbyn. “Multilayer Graphenes as a Platform for Interaction-Driven Physics and Topological Superconductivity.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.107.104502. ieee: A. Ghazaryan, T. Holder, E. Berg, and M. Serbyn, “Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity,” Physical Review B, vol. 107, no. 10. American Physical Society, 2023. ista: Ghazaryan A, Holder T, Berg E, Serbyn M. 2023. Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity. Physical Review B. 107(10), 104502. mla: Ghazaryan, Areg, et al. “Multilayer Graphenes as a Platform for Interaction-Driven Physics and Topological Superconductivity.” Physical Review B, vol. 107, no. 10, 104502, American Physical Society, 2023, doi:10.1103/PhysRevB.107.104502. short: A. Ghazaryan, T. Holder, E. Berg, M. Serbyn, Physical Review B 107 (2023). date_created: 2023-04-02T22:01:10Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-01T13:59:29Z day: '01' department: - _id: MaSe - _id: MiLe doi: 10.1103/PhysRevB.107.104502 external_id: arxiv: - '2211.02492' isi: - '000945526400003' intvolume: ' 107' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2211.02492 month: '03' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News on the ISTA website relation: press_release url: https://ista.ac.at/en/news/reaching-superconductivity-layer-by-layer/ scopus_import: '1' status: public title: Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '12791' abstract: - lang: eng text: We investigate the capabilities of Physics-Informed Neural Networks (PINNs) to reconstruct turbulent Rayleigh–Bénard flows using only temperature information. We perform a quantitative analysis of the quality of the reconstructions at various amounts of low-passed-filtered information and turbulent intensities. We compare our results with those obtained via nudging, a classical equation-informed data assimilation technique. At low Rayleigh numbers, PINNs are able to reconstruct with high precision, comparable to the one achieved with nudging. At high Rayleigh numbers, PINNs outperform nudging and are able to achieve satisfactory reconstruction of the velocity fields only when data for temperature is provided with high spatial and temporal density. When data becomes sparse, the PINNs performance worsens, not only in a point-to-point error sense but also, and contrary to nudging, in a statistical sense, as can be seen in the probability density functions and energy spectra. acknowledgement: This project has received partial funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement No. 882340)) article_number: '16' article_processing_charge: No article_type: original author: - first_name: Patricio full_name: Clark Di Leoni, Patricio last_name: Clark Di Leoni - first_name: Lokahith N full_name: Agasthya, Lokahith N id: cd100965-0804-11ed-9c55-f4878ff4e877 last_name: Agasthya - first_name: Michele full_name: Buzzicotti, Michele last_name: Buzzicotti - first_name: Luca full_name: Biferale, Luca last_name: Biferale citation: ama: Clark Di Leoni P, Agasthya LN, Buzzicotti M, Biferale L. Reconstructing Rayleigh–Bénard flows out of temperature-only measurements using Physics-Informed Neural Networks. The European Physical Journal E. 2023;46(3). doi:10.1140/epje/s10189-023-00276-9 apa: Clark Di Leoni, P., Agasthya, L. N., Buzzicotti, M., & Biferale, L. (2023). Reconstructing Rayleigh–Bénard flows out of temperature-only measurements using Physics-Informed Neural Networks. The European Physical Journal E. Springer Nature. https://doi.org/10.1140/epje/s10189-023-00276-9 chicago: Clark Di Leoni, Patricio, Lokahith N Agasthya, Michele Buzzicotti, and Luca Biferale. “Reconstructing Rayleigh–Bénard Flows out of Temperature-Only Measurements Using Physics-Informed Neural Networks.” The European Physical Journal E. Springer Nature, 2023. https://doi.org/10.1140/epje/s10189-023-00276-9. ieee: P. Clark Di Leoni, L. N. Agasthya, M. Buzzicotti, and L. Biferale, “Reconstructing Rayleigh–Bénard flows out of temperature-only measurements using Physics-Informed Neural Networks,” The European Physical Journal E, vol. 46, no. 3. Springer Nature, 2023. ista: Clark Di Leoni P, Agasthya LN, Buzzicotti M, Biferale L. 2023. Reconstructing Rayleigh–Bénard flows out of temperature-only measurements using Physics-Informed Neural Networks. The European Physical Journal E. 46(3), 16. mla: Clark Di Leoni, Patricio, et al. “Reconstructing Rayleigh–Bénard Flows out of Temperature-Only Measurements Using Physics-Informed Neural Networks.” The European Physical Journal E, vol. 46, no. 3, 16, Springer Nature, 2023, doi:10.1140/epje/s10189-023-00276-9. short: P. Clark Di Leoni, L.N. Agasthya, M. Buzzicotti, L. Biferale, The European Physical Journal E 46 (2023). date_created: 2023-04-02T22:01:11Z date_published: 2023-03-20T00:00:00Z date_updated: 2023-08-01T14:03:47Z day: '20' department: - _id: CaMu doi: 10.1140/epje/s10189-023-00276-9 external_id: arxiv: - '2301.07769' isi: - '000956387200001' intvolume: ' 46' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2301.07769' month: '03' oa: 1 oa_version: Preprint publication: The European Physical Journal E publication_identifier: eissn: - 1292-895X issn: - 1292-8941 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Reconstructing Rayleigh–Bénard flows out of temperature-only measurements using Physics-Informed Neural Networks type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 46 year: '2023' ... --- _id: '12830' abstract: - lang: eng text: Interstitial fluid (IF) accumulation between embryonic cells is thought to be important for embryo patterning and morphogenesis. Here, we identify a positive mechanical feedback loop between cell migration and IF relocalization and find that it promotes embryonic axis formation during zebrafish gastrulation. We show that anterior axial mesendoderm (prechordal plate [ppl]) cells, moving in between the yolk cell and deep cell tissue to extend the embryonic axis, compress the overlying deep cell layer, thereby causing IF to flow from the deep cell layer to the boundary between the yolk cell and the deep cell layer, directly ahead of the advancing ppl. This IF relocalization, in turn, facilitates ppl cell protrusion formation and migration by opening up the space into which the ppl moves and, thereby, the ability of the ppl to trigger IF relocalization by pushing against the overlying deep cell layer. Thus, embryonic axis formation relies on a hydraulic feedback loop between cell migration and IF relocalization. acknowledged_ssus: - _id: PreCl - _id: Bio acknowledgement: We thank Andrea Pauli (IMP) and Edouard Hannezo (ISTA) for fruitful discussions and support with the SPIM experiments; the Heisenberg group, and especially Feyza Nur Arslan and Alexandra Schauer, for discussions and feedback; Michaela Jović (ISTA) for help with the quantitative real-time PCR protocol; the bioimaging and zebrafish facilities of ISTA for continuous support; Stephan Preibisch (Janelia Research Campus) for support with the SPIM data analysis; and Nobuhiro Nakamura (Tokyo Institute of Technology) for sharing α1-Na+/K+-ATPase antibody. This work was supported by funding from the European Union (European Research Council Advanced grant 742573 to C.-P.H.), postdoctoral fellowships from EMBO (LTF-850-2017) and HFSP (LT000429/2018-L2) to D.P., and a PhD fellowship from the Studienstiftung des deutschen Volkes to F.P. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Karla full_name: Huljev, Karla id: 44C6F6A6-F248-11E8-B48F-1D18A9856A87 last_name: Huljev - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Diana C full_name: Nunes Pinheiro, Diana C id: 2E839F16-F248-11E8-B48F-1D18A9856A87 last_name: Nunes Pinheiro orcid: 0000-0003-4333-7503 - first_name: Friedrich full_name: Preusser, Friedrich last_name: Preusser - first_name: Irene full_name: Steccari, Irene id: 2705C766-9FE2-11EA-B224-C6773DDC885E last_name: Steccari - first_name: Christoph M full_name: Sommer, Christoph M id: 4DF26D8C-F248-11E8-B48F-1D18A9856A87 last_name: Sommer orcid: 0000-0003-1216-9105 - first_name: Suyash full_name: Naik, Suyash id: 2C0B105C-F248-11E8-B48F-1D18A9856A87 last_name: Naik orcid: 0000-0001-8421-5508 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Huljev K, Shamipour S, Nunes Pinheiro DC, et al. A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish. Developmental Cell. 2023;58(7):582-596.e7. doi:10.1016/j.devcel.2023.02.016 apa: Huljev, K., Shamipour, S., Nunes Pinheiro, D. C., Preusser, F., Steccari, I., Sommer, C. M., … Heisenberg, C.-P. J. (2023). A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2023.02.016 chicago: Huljev, Karla, Shayan Shamipour, Diana C Nunes Pinheiro, Friedrich Preusser, Irene Steccari, Christoph M Sommer, Suyash Naik, and Carl-Philipp J Heisenberg. “A Hydraulic Feedback Loop between Mesendoderm Cell Migration and Interstitial Fluid Relocalization Promotes Embryonic Axis Formation in Zebrafish.” Developmental Cell. Elsevier, 2023. https://doi.org/10.1016/j.devcel.2023.02.016. ieee: K. Huljev et al., “A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish,” Developmental Cell, vol. 58, no. 7. Elsevier, p. 582–596.e7, 2023. ista: Huljev K, Shamipour S, Nunes Pinheiro DC, Preusser F, Steccari I, Sommer CM, Naik S, Heisenberg C-PJ. 2023. A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish. Developmental Cell. 58(7), 582–596.e7. mla: Huljev, Karla, et al. “A Hydraulic Feedback Loop between Mesendoderm Cell Migration and Interstitial Fluid Relocalization Promotes Embryonic Axis Formation in Zebrafish.” Developmental Cell, vol. 58, no. 7, Elsevier, 2023, p. 582–596.e7, doi:10.1016/j.devcel.2023.02.016. short: K. Huljev, S. Shamipour, D.C. Nunes Pinheiro, F. Preusser, I. Steccari, C.M. Sommer, S. Naik, C.-P.J. Heisenberg, Developmental Cell 58 (2023) 582–596.e7. date_created: 2023-04-16T22:01:07Z date_published: 2023-04-10T00:00:00Z date_updated: 2023-08-01T14:10:38Z day: '10' ddc: - '570' department: - _id: CaHe - _id: Bio doi: 10.1016/j.devcel.2023.02.016 ec_funded: 1 external_id: isi: - '000982111800001' file: - access_level: open_access checksum: c80ca2ebc241232aacdb5aa4b4c80957 content_type: application/pdf creator: dernst date_created: 2023-04-17T07:41:25Z date_updated: 2023-04-17T07:41:25Z file_id: '12842' file_name: 2023_DevelopmentalCell_Huljev.pdf file_size: 7925886 relation: main_file success: 1 file_date_updated: 2023-04-17T07:41:25Z has_accepted_license: '1' intvolume: ' 58' isi: 1 issue: '7' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 582-596.e7 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 26520D1E-B435-11E9-9278-68D0E5697425 grant_number: ALTF 850-2017 name: Coordination of mesendoderm cell fate specification and internalization during zebrafish gastrulation - _id: 266BC5CE-B435-11E9-9278-68D0E5697425 grant_number: LT000429 name: Coordination of mesendoderm fate specification and internalization during zebrafish gastrulation publication: Developmental Cell publication_identifier: eissn: - 1878-1551 issn: - 1534-5807 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 58 year: '2023' ... --- _id: '12831' abstract: - lang: eng text: The angulon, a quasiparticle formed by a quantum rotor dressed by the excitations of a many-body bath, can be used to describe an impurity rotating in a fluid or solid environment. Here, we propose a coherent state ansatz in the co-rotating frame, which provides a comprehensive theoretical description of angulons. We reveal the quasiparticle properties, such as energies, quasiparticle weights, and spectral functions, and show that our ansatz yields a persistent decrease in the impurity’s rotational constant due to many-body dressing, which is consistent with experimental observations. From our study, a picture of the angulon emerges as an effective spin interacting with a magnetic field that is self-consistently generated by the molecule’s rotation. Moreover, we discuss rotational spectroscopy, which focuses on the response of rotating molecules to a laser perturbation in the linear response regime. Importantly, we take into account initial-state interactions that have been neglected in prior studies and reveal their impact on the excitation spectrum. To examine the angulon instability regime, we use a single-excitation ansatz and obtain results consistent with experiments, in which a broadening of spectral lines is observed while phonon wings remain highly suppressed due to initial-state interactions. acknowledgement: We thank Ignacio Cirac, Christian Schmauder, and Henrik Stapelfeldt for their valuable discussions. We acknowledge support by the Max Planck Society and the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy EXC 2181/1—390900948 (the Heidelberg STRUCTURES Excellence Cluster). M.L. acknowledges support from the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). T.S. is supported by the National Key Research and Development Program of China (Grant No. 2017YFA0718304) and the National Natural Science Foundation of China (Grant Nos. 11974363, 12135018, and 12047503). article_number: '134301' article_processing_charge: No article_type: original author: - first_name: Zhongda full_name: Zeng, Zhongda last_name: Zeng - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Tao full_name: Shi, Tao last_name: Shi - first_name: Richard full_name: Schmidt, Richard last_name: Schmidt citation: ama: Zeng Z, Yakaboylu E, Lemeshko M, Shi T, Schmidt R. Variational theory of angulons and their rotational spectroscopy. The Journal of Chemical Physics. 2023;158(13). doi:10.1063/5.0135893 apa: Zeng, Z., Yakaboylu, E., Lemeshko, M., Shi, T., & Schmidt, R. (2023). Variational theory of angulons and their rotational spectroscopy. The Journal of Chemical Physics. American Institute of Physics. https://doi.org/10.1063/5.0135893 chicago: Zeng, Zhongda, Enderalp Yakaboylu, Mikhail Lemeshko, Tao Shi, and Richard Schmidt. “Variational Theory of Angulons and Their Rotational Spectroscopy.” The Journal of Chemical Physics. American Institute of Physics, 2023. https://doi.org/10.1063/5.0135893. ieee: Z. Zeng, E. Yakaboylu, M. Lemeshko, T. Shi, and R. Schmidt, “Variational theory of angulons and their rotational spectroscopy,” The Journal of Chemical Physics, vol. 158, no. 13. American Institute of Physics, 2023. ista: Zeng Z, Yakaboylu E, Lemeshko M, Shi T, Schmidt R. 2023. Variational theory of angulons and their rotational spectroscopy. The Journal of Chemical Physics. 158(13), 134301. mla: Zeng, Zhongda, et al. “Variational Theory of Angulons and Their Rotational Spectroscopy.” The Journal of Chemical Physics, vol. 158, no. 13, 134301, American Institute of Physics, 2023, doi:10.1063/5.0135893. short: Z. Zeng, E. Yakaboylu, M. Lemeshko, T. Shi, R. Schmidt, The Journal of Chemical Physics 158 (2023). date_created: 2023-04-16T22:01:07Z date_published: 2023-04-07T00:00:00Z date_updated: 2023-08-01T14:08:47Z day: '07' ddc: - '530' department: - _id: MiLe doi: 10.1063/5.0135893 ec_funded: 1 external_id: arxiv: - '2211.08070' isi: - '000970038800001' file: - access_level: open_access checksum: 8d801babea4df48e08895c76571bb19e content_type: application/pdf creator: dernst date_created: 2023-04-17T07:28:38Z date_updated: 2023-04-17T07:28:38Z file_id: '12841' file_name: 2023_JourChemicalPhysics_Zeng.pdf file_size: 7388057 relation: main_file success: 1 file_date_updated: 2023-04-17T07:28:38Z has_accepted_license: '1' intvolume: ' 158' isi: 1 issue: '13' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: The Journal of Chemical Physics publication_identifier: eissn: - 1089-7690 publication_status: published publisher: American Institute of Physics quality_controlled: '1' scopus_import: '1' status: public title: Variational theory of angulons and their rotational spectroscopy tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 158 year: '2023' ... --- _id: '12839' abstract: - lang: eng text: Universal nonequilibrium properties of isolated quantum systems are typically probed by studying transport of conserved quantities, such as charge or spin, while transport of energy has received considerably less attention. Here, we study infinite-temperature energy transport in the kinetically constrained PXP model describing Rydberg atom quantum simulators. Our state-of-the-art numerical simulations, including exact diagonalization and time-evolving block decimation methods, reveal the existence of two distinct transport regimes. At moderate times, the energy-energy correlation function displays periodic oscillations due to families of eigenstates forming different su(2) representations hidden within the spectrum. These families of eigenstates generalize the quantum many-body scarred states found in previous works and leave an imprint on the infinite-temperature energy transport. At later times, we observe a long-lived superdiffusive transport regime that we attribute to the proximity of a nearby integrable point. While generic strong deformations of the PXP model indeed restore diffusive transport, adding a strong chemical potential intriguingly gives rise to a well-converged superdiffusive exponent z≈3/2. Our results suggest constrained models to be potential hosts of novel transport regimes and call for developing an analytic understanding of their energy transport. acknowledgement: "We would like to thank Alexios Michailidis, Sarang Gopalakrishnan, and Achilleas Lazarides for useful comments. M. L. and M. S. acknowledge support by the European Research Council under the European Union’s Horizon 2020 research and innovation program (Grant\r\nAgreement No. 850899). J.-Y. D. and Z. P. acknowledge support by EPSRC Grant No. EP/R513258/1 and the Leverhulme Trust Research Leadership Grant No. RL2019-015. Statement of compliance with EPSRC policy framework on research data: This publication is theoretical work that does not require supporting research data. M. S., M. L., and Z. P. acknowledge support by the Erwin Schrödinger International Institute for Mathematics and\r\nPhysics. M. L. and M. S. acknowledge PRACE for awarding us access to Joliot-Curie at GENCI@CEA, France, where the TEBD simulations were performed. The TEBD\r\nsimulations were performed using the ITENSOR library [54]." article_number: '011033' article_processing_charge: No article_type: original author: - first_name: Marko full_name: Ljubotina, Marko id: F75EE9BE-5C90-11EA-905D-16643DDC885E last_name: Ljubotina - first_name: Jean Yves full_name: Desaules, Jean Yves last_name: Desaules - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Zlatko full_name: Papić, Zlatko last_name: Papić citation: ama: Ljubotina M, Desaules JY, Serbyn M, Papić Z. Superdiffusive energy transport in kinetically constrained models. Physical Review X. 2023;13(1). doi:10.1103/PhysRevX.13.011033 apa: Ljubotina, M., Desaules, J. Y., Serbyn, M., & Papić, Z. (2023). Superdiffusive energy transport in kinetically constrained models. Physical Review X. American Physical Society. https://doi.org/10.1103/PhysRevX.13.011033 chicago: Ljubotina, Marko, Jean Yves Desaules, Maksym Serbyn, and Zlatko Papić. “Superdiffusive Energy Transport in Kinetically Constrained Models.” Physical Review X. American Physical Society, 2023. https://doi.org/10.1103/PhysRevX.13.011033. ieee: M. Ljubotina, J. Y. Desaules, M. Serbyn, and Z. Papić, “Superdiffusive energy transport in kinetically constrained models,” Physical Review X, vol. 13, no. 1. American Physical Society, 2023. ista: Ljubotina M, Desaules JY, Serbyn M, Papić Z. 2023. Superdiffusive energy transport in kinetically constrained models. Physical Review X. 13(1), 011033. mla: Ljubotina, Marko, et al. “Superdiffusive Energy Transport in Kinetically Constrained Models.” Physical Review X, vol. 13, no. 1, 011033, American Physical Society, 2023, doi:10.1103/PhysRevX.13.011033. short: M. Ljubotina, J.Y. Desaules, M. Serbyn, Z. Papić, Physical Review X 13 (2023). date_created: 2023-04-16T22:01:09Z date_published: 2023-03-07T00:00:00Z date_updated: 2023-08-01T14:11:28Z day: '07' ddc: - '530' department: - _id: MaSe doi: 10.1103/PhysRevX.13.011033 ec_funded: 1 external_id: isi: - '000957625700001' file: - access_level: open_access checksum: ee060cea609af79bba7af74b1ce28078 content_type: application/pdf creator: dernst date_created: 2023-04-17T08:36:53Z date_updated: 2023-04-17T08:36:53Z file_id: '12845' file_name: 2023_PhysReviewX_Ljubotina.pdf file_size: 1958523 relation: main_file success: 1 file_date_updated: 2023-04-17T08:36:53Z has_accepted_license: '1' intvolume: ' 13' isi: 1 issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review X publication_identifier: eissn: - 2160-3308 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Superdiffusive energy transport in kinetically constrained models tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2023' ... --- _id: '12832' abstract: - lang: eng text: The development of cost-effective, high-activity and stable bifunctional catalysts for the oxygen reduction and evolution reactions (ORR/OER) is essential for zinc–air batteries (ZABs) to reach the market. Such catalysts must contain multiple adsorption/reaction sites to cope with the high demands of reversible oxygen electrodes. Herein, we propose a high entropy alloy (HEA) based on relatively abundant elements as a bifunctional ORR/OER catalyst. More specifically, we detail the synthesis of a CrMnFeCoNi HEA through a low-temperature solution-based approach. Such HEA displays superior OER performance with an overpotential of 265 mV at a current density of 10 mA/cm2, and a 37.9 mV/dec Tafel slope, well above the properties of a standard commercial catalyst based on RuO2. This high performance is partially explained by the presence of twinned defects, the incidence of large lattice distortions, and the electronic synergy between the different components, being Cr key to decreasing the energy barrier of the OER rate-determining step. CrMnFeCoNi also displays superior ORR performance with a half-potential of 0.78 V and an onset potential of 0.88 V, comparable with commercial Pt/C. The potential gap (Egap) between the OER overpotential and the ORR half-potential of CrMnFeCoNi is just 0.734 V. Taking advantage of these outstanding properties, ZABs are assembled using the CrMnFeCoNi HEA as air cathode and a zinc foil as the anode. The assembled cells provide an open-circuit voltage of 1.489 V, i.e. 90% of its theoretical limit (1.66 V), a peak power density of 116.5 mW/cm2, and a specific capacity of 836 mAh/g that stays stable for more than 10 days of continuous cycling, i.e. 720 cycles @ 8 mA/cm2 and 16.6 days of continuous cycling, i.e. 1200 cycles @ 5 mA/cm2. acknowledged_ssus: - _id: EM-Fac acknowledgement: 'The authors thank the support from the project COMBENERGY, PID2019-105490RB-C32, from the Spanish Ministerio de Ciencia e Innovación. The authors acknowledge funding from Generalitat de Catalunya 2021 SGR 01581 and 2021 SGR 00457. ICN2 acknowledges the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706). IREC and ICN2 are funded by the CERCA Programme from the Generalitat de Catalunya. ICN2 is supported by the Severo Ochoa program from Spanish MCIN / AEI (Grant No.: CEX2021-001214-S). ICN2 acknowledges funding from Generalitat de Catalunya 2017 SGR 327. This study was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and Generalitat de Catalunya. The authors thank the support from the project NANOGEN (PID2020-116093RB-C43), funded by MCIN/ AEI/10.13039/501100011033/ and by “ERDF A way of making Europe”, by the “European Union”. Part of the present work has been performed in the frameworks of Universitat de Barcelona Nanoscience PhD program. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Electron Microscopy Facility (EMF). S. Lee. and M. Ibáñez acknowledge funding by IST Austria and the Werner Siemens Foundation. J. Llorca is a Serra Húnter Fellow and is grateful to ICREA Academia program and projects MICINN/FEDER PID2021-124572OB-C31 and GC 2017 SGR 128. L. L.Yang thanks the China Scholarship Council (CSC) for the scholarship support (202008130132). Z. F. Liang acknowledges funding from MINECO SO-FPT PhD grant (SEV-2013-0295-17-1). J. W. Chen and Y. Xu thank the support from The Key Research and Development Program of Hebei Province (No. 20314305D) and the cooperative scientific research project of the “Chunhui Program” of the Ministry of Education (2018-7). This work was supported by the Natural Science Foundation of Sichuan province (NSFSC) and funded by the Science and Technology Department of Sichuan Province (2022NSFSC1229).' article_processing_charge: No article_type: original author: - first_name: Ren full_name: He, Ren last_name: He - first_name: Linlin full_name: Yang, Linlin last_name: Yang - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Xiang full_name: Wang, Xiang last_name: Wang - first_name: Seungho full_name: Lee, Seungho id: BB243B88-D767-11E9-B658-BC13E6697425 last_name: Lee orcid: 0000-0002-6962-8598 - first_name: Ting full_name: Zhang, Ting last_name: Zhang - first_name: Lingxiao full_name: Li, Lingxiao last_name: Li - first_name: Zhifu full_name: Liang, Zhifu last_name: Liang - first_name: Jingwei full_name: Chen, Jingwei last_name: Chen - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Ahmad full_name: Ostovari Moghaddam, Ahmad last_name: Ostovari Moghaddam - first_name: Jordi full_name: Llorca, Jordi last_name: Llorca - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Ying full_name: Xu, Ying last_name: Xu - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: He R, Yang L, Zhang Y, et al. A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Materials. 2023;58(4):287-298. doi:10.1016/j.ensm.2023.03.022 apa: He, R., Yang, L., Zhang, Y., Wang, X., Lee, S., Zhang, T., … Cabot, A. (2023). A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Materials. Elsevier. https://doi.org/10.1016/j.ensm.2023.03.022 chicago: He, Ren, Linlin Yang, Yu Zhang, Xiang Wang, Seungho Lee, Ting Zhang, Lingxiao Li, et al. “A CrMnFeCoNi High Entropy Alloy Boosting Oxygen Evolution/Reduction Reactions and Zinc-Air Battery Performance.” Energy Storage Materials. Elsevier, 2023. https://doi.org/10.1016/j.ensm.2023.03.022. ieee: R. He et al., “A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance,” Energy Storage Materials, vol. 58, no. 4. Elsevier, pp. 287–298, 2023. ista: He R, Yang L, Zhang Y, Wang X, Lee S, Zhang T, Li L, Liang Z, Chen J, Li J, Ostovari Moghaddam A, Llorca J, Ibáñez M, Arbiol J, Xu Y, Cabot A. 2023. A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Materials. 58(4), 287–298. mla: He, Ren, et al. “A CrMnFeCoNi High Entropy Alloy Boosting Oxygen Evolution/Reduction Reactions and Zinc-Air Battery Performance.” Energy Storage Materials, vol. 58, no. 4, Elsevier, 2023, pp. 287–98, doi:10.1016/j.ensm.2023.03.022. short: R. He, L. Yang, Y. Zhang, X. Wang, S. Lee, T. Zhang, L. Li, Z. Liang, J. Chen, J. Li, A. Ostovari Moghaddam, J. Llorca, M. Ibáñez, J. Arbiol, Y. Xu, A. Cabot, Energy Storage Materials 58 (2023) 287–298. date_created: 2023-04-16T22:01:07Z date_published: 2023-04-01T00:00:00Z date_updated: 2023-08-01T14:08:02Z day: '01' department: - _id: MaIb doi: 10.1016/j.ensm.2023.03.022 external_id: isi: - '000967601700001' intvolume: ' 58' isi: 1 issue: '4' language: - iso: eng month: '04' oa_version: None page: 287-298 project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: Energy Storage Materials publication_identifier: eissn: - 2405-8297 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 58 year: '2023' ... --- _id: '12822' abstract: - lang: eng text: Gears and cogwheels are elemental components of machines. They restrain degrees of freedom and channel power into a specified motion. Building and powering small-scale cogwheels are key steps toward feasible micro and nanomachinery. Assembly, energy injection, and control are, however, a challenge at the microscale. In contrast with passive gears, whose function is to transmit torques from one to another, interlocking and untethered active gears have the potential to unveil dynamics and functions untapped by externally driven mechanisms. Here, it is shown the assembly and control of a family of self-spinning cogwheels with varying teeth numbers and study the interlocking of multiple cogwheels. The teeth are formed by colloidal microswimmers that power the structure. The cogwheels are autonomous and active, showing persistent rotation. Leveraging the angular momentum of optical vortices, we control the direction of rotation of the cogwheels. The pairs of interlocking and active cogwheels that roll over each other in a random walk and have curvature-dependent mobility are studied. This behavior is leveraged to self-position parts and program microbots, demonstrating the ability to pick up, direct, and release a load. The work constitutes a step toward autonomous machinery with external control as well as (re)programmable microbots and matter. acknowledgement: 'Army Research Office. Grant Number: W911NF-20-1-0112' article_number: '2200129' article_processing_charge: No article_type: original author: - first_name: Quentin full_name: Martinet, Quentin id: b37485a8-d343-11eb-a0e9-df8c484ef8ab last_name: Martinet - first_name: Antoine full_name: Aubret, Antoine last_name: Aubret - first_name: Jérémie A full_name: Palacci, Jérémie A id: 8fb92548-2b22-11eb-b7c1-a3f0d08d7c7d last_name: Palacci orcid: 0000-0002-7253-9465 citation: ama: Martinet Q, Aubret A, Palacci JA. Rotation control, interlocking, and self‐positioning of active cogwheels. Advanced Intelligent Systems. 2023;5(1). doi:10.1002/aisy.202200129 apa: Martinet, Q., Aubret, A., & Palacci, J. A. (2023). Rotation control, interlocking, and self‐positioning of active cogwheels. Advanced Intelligent Systems. Wiley. https://doi.org/10.1002/aisy.202200129 chicago: Martinet, Quentin, Antoine Aubret, and Jérémie A Palacci. “Rotation Control, Interlocking, and Self‐positioning of Active Cogwheels.” Advanced Intelligent Systems. Wiley, 2023. https://doi.org/10.1002/aisy.202200129. ieee: Q. Martinet, A. Aubret, and J. A. Palacci, “Rotation control, interlocking, and self‐positioning of active cogwheels,” Advanced Intelligent Systems, vol. 5, no. 1. Wiley, 2023. ista: Martinet Q, Aubret A, Palacci JA. 2023. Rotation control, interlocking, and self‐positioning of active cogwheels. Advanced Intelligent Systems. 5(1), 2200129. mla: Martinet, Quentin, et al. “Rotation Control, Interlocking, and Self‐positioning of Active Cogwheels.” Advanced Intelligent Systems, vol. 5, no. 1, 2200129, Wiley, 2023, doi:10.1002/aisy.202200129. short: Q. Martinet, A. Aubret, J.A. Palacci, Advanced Intelligent Systems 5 (2023). date_created: 2023-04-12T08:30:03Z date_published: 2023-01-01T00:00:00Z date_updated: 2023-08-01T14:06:50Z day: '01' ddc: - '530' department: - _id: JePa doi: 10.1002/aisy.202200129 external_id: arxiv: - '2201.03333' isi: - '000852291200001' file: - access_level: open_access checksum: d48fc41d39892e7fa0d44cb352dd46aa content_type: application/pdf creator: dernst date_created: 2023-04-17T06:44:17Z date_updated: 2023-04-17T06:44:17Z file_id: '12840' file_name: 2023_AdvancedIntelligentSystems_Martinet.pdf file_size: 2414125 relation: main_file success: 1 file_date_updated: 2023-04-17T06:44:17Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: Advanced Intelligent Systems publication_identifier: issn: - 2640-4567 publication_status: published publisher: Wiley quality_controlled: '1' status: public title: Rotation control, interlocking, and self‐positioning of active cogwheels tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2023' ... --- _id: '12818' abstract: - lang: eng text: The multicellular organization of diverse systems, including embryos, intestines, and tumors relies on coordinated cell migration in curved environments. In these settings, cells establish supracellular patterns of motion, including collective rotation and invasion. While such collective modes have been studied extensively in flat systems, the consequences of geometrical and topological constraints on collective migration in curved systems are largely unknown. Here, we discover a collective mode of cell migration in rotating spherical tissues manifesting as a propagating single-wavelength velocity wave. This wave is accompanied by an apparently incompressible supracellular flow pattern featuring topological defects as dictated by the spherical topology. Using a minimal active particle model, we reveal that this collective mode arises from the effect of curvature on the active flocking behavior of a cell layer confined to a spherical surface. Our results thus identify curvature-induced velocity waves as a mode of collective cell migration, impacting the dynamical organization of 3D curved tissues. acknowledgement: We thank H. Abbaszadeh, M.J. Bowick, G. Gradziuk, M.C. Marchetti, and S. Shankar for their helpful discussions. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 201269156-SFB 1032 (Project B12). D.B.B. is a NOMIS fellow supported by the NOMIS foundation and was in part supported by a DFG fellowship within the Graduate School of Quantitative Biosciences Munich (QBM) and Joachim Herz Stiftung. R.A. acknowledges support from the Human Frontier Science Program (LT000475/2018-C) and from the National Science Foundation, through the Center for the Physics of Biological Function (PHY-1734030). M.G. acknowledges support from NIH R01GM140108 and Alfred Sloan Foundation. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 201269156-SFB 1032 (Project B12).Open Access funding enabled and organized by Projekt DEAL. article_number: '1643' article_processing_charge: No article_type: original author: - first_name: Tom full_name: Brandstätter, Tom last_name: Brandstätter - first_name: David full_name: Brückner, David id: e1e86031-6537-11eb-953a-f7ab92be508d last_name: Brückner orcid: 0000-0001-7205-2975 - first_name: Yu Long full_name: Han, Yu Long last_name: Han - first_name: Ricard full_name: Alert, Ricard last_name: Alert - first_name: Ming full_name: Guo, Ming last_name: Guo - first_name: Chase P. full_name: Broedersz, Chase P. last_name: Broedersz citation: ama: Brandstätter T, Brückner D, Han YL, Alert R, Guo M, Broedersz CP. Curvature induces active velocity waves in rotating spherical tissues. Nature Communications. 2023;14. doi:10.1038/s41467-023-37054-2 apa: Brandstätter, T., Brückner, D., Han, Y. L., Alert, R., Guo, M., & Broedersz, C. P. (2023). Curvature induces active velocity waves in rotating spherical tissues. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-37054-2 chicago: Brandstätter, Tom, David Brückner, Yu Long Han, Ricard Alert, Ming Guo, and Chase P. Broedersz. “Curvature Induces Active Velocity Waves in Rotating Spherical Tissues.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-37054-2. ieee: T. Brandstätter, D. Brückner, Y. L. Han, R. Alert, M. Guo, and C. P. Broedersz, “Curvature induces active velocity waves in rotating spherical tissues,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Brandstätter T, Brückner D, Han YL, Alert R, Guo M, Broedersz CP. 2023. Curvature induces active velocity waves in rotating spherical tissues. Nature Communications. 14, 1643. mla: Brandstätter, Tom, et al. “Curvature Induces Active Velocity Waves in Rotating Spherical Tissues.” Nature Communications, vol. 14, 1643, Springer Nature, 2023, doi:10.1038/s41467-023-37054-2. short: T. Brandstätter, D. Brückner, Y.L. Han, R. Alert, M. Guo, C.P. Broedersz, Nature Communications 14 (2023). date_created: 2023-04-09T22:01:00Z date_published: 2023-03-24T00:00:00Z date_updated: 2023-08-01T14:05:30Z day: '24' ddc: - '570' department: - _id: EdHa doi: 10.1038/s41467-023-37054-2 external_id: isi: - '000959887700008' pmid: - '36964141' file: - access_level: open_access checksum: 54f06f9eee11d43bab253f3492c983ba content_type: application/pdf creator: dernst date_created: 2023-04-11T06:27:00Z date_updated: 2023-04-11T06:27:00Z file_id: '12821' file_name: 2023_NatureComm_Brandstaetter.pdf file_size: 4146777 relation: main_file success: 1 file_date_updated: 2023-04-11T06:27:00Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Curvature induces active velocity waves in rotating spherical tissues tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2023' ... --- _id: '12819' abstract: - lang: eng text: 'Reaching a high cavity population with a coherent pump in the strong-coupling regime of a single-atom laser is impossible due to the photon blockade effect. In this Letter, we experimentally demonstrate that in a single-atom maser based on a transmon strongly coupled to two resonators, it is possible to pump over a dozen photons into the system. The first high-quality resonator plays the role of a usual lasing cavity, and the second one presents a controlled dissipation channel, bolstering population inversion, and modifies the energy-level structure to lift the blockade. As confirmation of the lasing action, we observe conventional laser features such as a narrowing of the emission linewidth and external signal amplification. Additionally, we report unique single-atom features: self-quenching and several lasing thresholds.' acknowledgement: We thank N.N. Abramov for assistance with the experimental setup. The sample was fabricated using equipment of MIPT Shared Facilities Center. This research was supported by Russian Science Foundation, grant no. 21-72-30026. article_number: L031701 article_processing_charge: No article_type: letter_note author: - first_name: Alesya full_name: Sokolova, Alesya id: 2d0a0600-edfb-11eb-afb5-c0f5fa7f4f3a last_name: Sokolova orcid: 0000-0002-8308-4144 - first_name: D. A. full_name: Kalacheva, D. A. last_name: Kalacheva - first_name: G. P. full_name: Fedorov, G. P. last_name: Fedorov - first_name: O. V. full_name: Astafiev, O. V. last_name: Astafiev citation: ama: Sokolova A, Kalacheva DA, Fedorov GP, Astafiev OV. Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling. Physical Review A. 2023;107(3). doi:10.1103/PhysRevA.107.L031701 apa: Sokolova, A., Kalacheva, D. A., Fedorov, G. P., & Astafiev, O. V. (2023). Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.107.L031701 chicago: Sokolova, Alesya, D. A. Kalacheva, G. P. Fedorov, and O. V. Astafiev. “Overcoming Photon Blockade in a Circuit-QED Single-Atom Maser with Engineered Metastability and Strong Coupling.” Physical Review A. American Physical Society, 2023. https://doi.org/10.1103/PhysRevA.107.L031701. ieee: A. Sokolova, D. A. Kalacheva, G. P. Fedorov, and O. V. Astafiev, “Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling,” Physical Review A, vol. 107, no. 3. American Physical Society, 2023. ista: Sokolova A, Kalacheva DA, Fedorov GP, Astafiev OV. 2023. Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling. Physical Review A. 107(3), L031701. mla: Sokolova, Alesya, et al. “Overcoming Photon Blockade in a Circuit-QED Single-Atom Maser with Engineered Metastability and Strong Coupling.” Physical Review A, vol. 107, no. 3, L031701, American Physical Society, 2023, doi:10.1103/PhysRevA.107.L031701. short: A. Sokolova, D.A. Kalacheva, G.P. Fedorov, O.V. Astafiev, Physical Review A 107 (2023). date_created: 2023-04-09T22:01:00Z date_published: 2023-03-22T00:00:00Z date_updated: 2023-08-01T14:06:05Z day: '22' department: - _id: JoFi doi: 10.1103/PhysRevA.107.L031701 external_id: arxiv: - '2209.05165' isi: - '000957799000006' intvolume: ' 107' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2209.05165 month: '03' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '12861' abstract: - lang: eng text: The field of indirect reciprocity investigates how social norms can foster cooperation when individuals continuously monitor and assess each other’s social interactions. By adhering to certain social norms, cooperating individuals can improve their reputation and, in turn, receive benefits from others. Eight social norms, known as the “leading eight," have been shown to effectively promote the evolution of cooperation as long as information is public and reliable. These norms categorize group members as either ’good’ or ’bad’. In this study, we examine a scenario where individuals instead assign nuanced reputation scores to each other, and only cooperate with those whose reputation exceeds a certain threshold. We find both analytically and through simulations that such quantitative assessments are error-correcting, thus facilitating cooperation in situations where information is private and unreliable. Moreover, our results identify four specific norms that are robust to such conditions, and may be relevant for helping to sustain cooperation in natural populations. acknowledgement: 'This work was supported by the European Research Council CoG 863818 (ForM-SMArt) (to K.C.) and the European Research Council Starting Grant 850529: E-DIRECT (to C.H.). L.S. received additional partial support by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award), and also thanks the support by the Stochastic Analysis and Application Research Center (SAARC) under National Research Foundation of Korea grant NRF-2019R1A5A1028324. The authors additionally thank Stefan Schmid for providing access to his lab infrastructure at the University of Vienna for the purpose of collecting simulation data.' article_number: '2086' article_processing_charge: No article_type: original author: - first_name: Laura full_name: Schmid, Laura id: 38B437DE-F248-11E8-B48F-1D18A9856A87 last_name: Schmid orcid: 0000-0002-6978-7329 - first_name: Farbod full_name: Ekbatani, Farbod last_name: Ekbatani - first_name: Christian full_name: Hilbe, Christian id: 2FDF8F3C-F248-11E8-B48F-1D18A9856A87 last_name: Hilbe orcid: 0000-0001-5116-955X - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: Schmid L, Ekbatani F, Hilbe C, Chatterjee K. Quantitative assessment can stabilize indirect reciprocity under imperfect information. Nature Communications. 2023;14. doi:10.1038/s41467-023-37817-x apa: Schmid, L., Ekbatani, F., Hilbe, C., & Chatterjee, K. (2023). Quantitative assessment can stabilize indirect reciprocity under imperfect information. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-37817-x chicago: Schmid, Laura, Farbod Ekbatani, Christian Hilbe, and Krishnendu Chatterjee. “Quantitative Assessment Can Stabilize Indirect Reciprocity under Imperfect Information.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-37817-x. ieee: L. Schmid, F. Ekbatani, C. Hilbe, and K. Chatterjee, “Quantitative assessment can stabilize indirect reciprocity under imperfect information,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Schmid L, Ekbatani F, Hilbe C, Chatterjee K. 2023. Quantitative assessment can stabilize indirect reciprocity under imperfect information. Nature Communications. 14, 2086. mla: Schmid, Laura, et al. “Quantitative Assessment Can Stabilize Indirect Reciprocity under Imperfect Information.” Nature Communications, vol. 14, 2086, Springer Nature, 2023, doi:10.1038/s41467-023-37817-x. short: L. Schmid, F. Ekbatani, C. Hilbe, K. Chatterjee, Nature Communications 14 (2023). date_created: 2023-04-23T22:01:03Z date_published: 2023-04-12T00:00:00Z date_updated: 2023-08-01T14:15:57Z day: '12' ddc: - '000' department: - _id: KrCh doi: 10.1038/s41467-023-37817-x ec_funded: 1 external_id: isi: - '001003644100020' pmid: - '37045828' file: - access_level: open_access checksum: a4b3b7b36fbef068cabf4fb99501fef6 content_type: application/pdf creator: dernst date_created: 2023-04-25T09:13:53Z date_updated: 2023-04-25T09:13:53Z file_id: '12868' file_name: 2023_NatureComm_Schmid.pdf file_size: 1786475 relation: main_file success: 1 file_date_updated: 2023-04-25T09:13:53Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Quantitative assessment can stabilize indirect reciprocity under imperfect information tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2023' ... --- _id: '12862' abstract: - lang: eng text: Despite the considerable progress of in vivo neural recording techniques, inferring the biophysical mechanisms underlying large scale coordination of brain activity from neural data remains challenging. One obstacle is the difficulty to link high dimensional functional connectivity measures to mechanistic models of network activity. We address this issue by investigating spike-field coupling (SFC) measurements, which quantify the synchronization between, on the one hand, the action potentials produced by neurons, and on the other hand mesoscopic “field” signals, reflecting subthreshold activities at possibly multiple recording sites. As the number of recording sites gets large, the amount of pairwise SFC measurements becomes overwhelmingly challenging to interpret. We develop Generalized Phase Locking Analysis (GPLA) as an interpretable dimensionality reduction of this multivariate SFC. GPLA describes the dominant coupling between field activity and neural ensembles across space and frequencies. We show that GPLA features are biophysically interpretable when used in conjunction with appropriate network models, such that we can identify the influence of underlying circuit properties on these features. We demonstrate the statistical benefits and interpretability of this approach in various computational models and Utah array recordings. The results suggest that GPLA, used jointly with biophysical modeling, can help uncover the contribution of recurrent microcircuits to the spatio-temporal dynamics observed in multi-channel experimental recordings. acknowledgement: "We thank Britni Crocker for help with preprocessing of the data and spike sorting; Joachim Werner and Michael Schnabel for their excellent IT support; Andreas Tolias for help with the initial implantation’s of the Utah arrays.\r\nAll authors were supported by the Max Planck Society. M.B. was supported by the German\r\nFederal Ministry of Education and Research (BMBF) through the funding scheme received by\r\nthe Tübingen AI Center, FKZ: 01IS18039B. N.K.L. and V.K. acknowledge the support from the\r\nShanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX02). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. " article_number: e1010983 article_processing_charge: No article_type: original author: - first_name: Shervin full_name: Safavi, Shervin last_name: Safavi - first_name: Theofanis I. full_name: Panagiotaropoulos, Theofanis I. last_name: Panagiotaropoulos - first_name: Vishal full_name: Kapoor, Vishal last_name: Kapoor - first_name: Juan F full_name: Ramirez Villegas, Juan F id: 44B06F76-F248-11E8-B48F-1D18A9856A87 last_name: Ramirez Villegas - first_name: Nikos K. full_name: Logothetis, Nikos K. last_name: Logothetis - first_name: Michel full_name: Besserve, Michel last_name: Besserve citation: ama: Safavi S, Panagiotaropoulos TI, Kapoor V, Ramirez Villegas JF, Logothetis NK, Besserve M. Uncovering the organization of neural circuits with Generalized Phase Locking Analysis. PLoS Computational Biology. 2023;19(4). doi:10.1371/journal.pcbi.1010983 apa: Safavi, S., Panagiotaropoulos, T. I., Kapoor, V., Ramirez Villegas, J. F., Logothetis, N. K., & Besserve, M. (2023). Uncovering the organization of neural circuits with Generalized Phase Locking Analysis. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1010983 chicago: Safavi, Shervin, Theofanis I. Panagiotaropoulos, Vishal Kapoor, Juan F Ramirez Villegas, Nikos K. Logothetis, and Michel Besserve. “Uncovering the Organization of Neural Circuits with Generalized Phase Locking Analysis.” PLoS Computational Biology. Public Library of Science, 2023. https://doi.org/10.1371/journal.pcbi.1010983. ieee: S. Safavi, T. I. Panagiotaropoulos, V. Kapoor, J. F. Ramirez Villegas, N. K. Logothetis, and M. Besserve, “Uncovering the organization of neural circuits with Generalized Phase Locking Analysis,” PLoS Computational Biology, vol. 19, no. 4. Public Library of Science, 2023. ista: Safavi S, Panagiotaropoulos TI, Kapoor V, Ramirez Villegas JF, Logothetis NK, Besserve M. 2023. Uncovering the organization of neural circuits with Generalized Phase Locking Analysis. PLoS Computational Biology. 19(4), e1010983. mla: Safavi, Shervin, et al. “Uncovering the Organization of Neural Circuits with Generalized Phase Locking Analysis.” PLoS Computational Biology, vol. 19, no. 4, e1010983, Public Library of Science, 2023, doi:10.1371/journal.pcbi.1010983. short: S. Safavi, T.I. Panagiotaropoulos, V. Kapoor, J.F. Ramirez Villegas, N.K. Logothetis, M. Besserve, PLoS Computational Biology 19 (2023). date_created: 2023-04-23T22:01:03Z date_published: 2023-04-01T00:00:00Z date_updated: 2023-08-01T14:15:16Z day: '01' ddc: - '570' department: - _id: JoCs doi: 10.1371/journal.pcbi.1010983 external_id: isi: - '000962668700002' file: - access_level: open_access checksum: edeb9d09f3e41ba7c0251308b9e372e7 content_type: application/pdf creator: dernst date_created: 2023-04-25T08:59:18Z date_updated: 2023-04-25T08:59:18Z file_id: '12867' file_name: 2023_PLoSCompBio_Safavi.pdf file_size: 4737671 relation: main_file success: 1 file_date_updated: 2023-04-25T08:59:18Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version publication: PLoS Computational Biology publication_identifier: eissn: - 1553-7358 publication_status: published publisher: Public Library of Science quality_controlled: '1' related_material: link: - relation: software url: https://github.com/shervinsafavi/gpla.git scopus_import: '1' status: public title: Uncovering the organization of neural circuits with Generalized Phase Locking Analysis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2023' ... --- _id: '12879' abstract: - lang: eng text: Machine learning (ML) has been widely applied to chemical property prediction, most prominently for the energies and forces in molecules and materials. The strong interest in predicting energies in particular has led to a ‘local energy’-based paradigm for modern atomistic ML models, which ensures size-extensivity and a linear scaling of computational cost with system size. However, many electronic properties (such as excitation energies or ionization energies) do not necessarily scale linearly with system size and may even be spatially localized. Using size-extensive models in these cases can lead to large errors. In this work, we explore different strategies for learning intensive and localized properties, using HOMO energies in organic molecules as a representative test case. In particular, we analyze the pooling functions that atomistic neural networks use to predict molecular properties, and suggest an orbital weighted average (OWA) approach that enables the accurate prediction of orbital energies and locations. acknowledgement: KC acknowledges funding from the China Scholarship Council. KC is grateful for the TUM graduate school finance support to visit Bingqing Cheng's group in IST for two months. We also thankfully acknowledge computational resources provided by the MPCDF Supercomputing Centre. article_processing_charge: No article_type: original author: - first_name: Ke full_name: Chen, Ke id: c636c5ca-e8b8-11ed-b2d4-cc2c37613a8d last_name: Chen - first_name: Christian full_name: Kunkel, Christian last_name: Kunkel - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 - first_name: Karsten full_name: Reuter, Karsten last_name: Reuter - first_name: Johannes T. full_name: Margraf, Johannes T. last_name: Margraf citation: ama: Chen K, Kunkel C, Cheng B, Reuter K, Margraf JT. Physics-inspired machine learning of localized intensive properties. Chemical Science. 2023. doi:10.1039/d3sc00841j apa: Chen, K., Kunkel, C., Cheng, B., Reuter, K., & Margraf, J. T. (2023). Physics-inspired machine learning of localized intensive properties. Chemical Science. Royal Society of Chemistry. https://doi.org/10.1039/d3sc00841j chicago: Chen, Ke, Christian Kunkel, Bingqing Cheng, Karsten Reuter, and Johannes T. Margraf. “Physics-Inspired Machine Learning of Localized Intensive Properties.” Chemical Science. Royal Society of Chemistry, 2023. https://doi.org/10.1039/d3sc00841j. ieee: K. Chen, C. Kunkel, B. Cheng, K. Reuter, and J. T. Margraf, “Physics-inspired machine learning of localized intensive properties,” Chemical Science. Royal Society of Chemistry, 2023. ista: Chen K, Kunkel C, Cheng B, Reuter K, Margraf JT. 2023. Physics-inspired machine learning of localized intensive properties. Chemical Science. mla: Chen, Ke, et al. “Physics-Inspired Machine Learning of Localized Intensive Properties.” Chemical Science, Royal Society of Chemistry, 2023, doi:10.1039/d3sc00841j. short: K. Chen, C. Kunkel, B. Cheng, K. Reuter, J.T. Margraf, Chemical Science (2023). date_created: 2023-04-30T22:01:06Z date_published: 2023-04-10T00:00:00Z date_updated: 2023-08-01T14:18:10Z day: '10' ddc: - '000' - '540' department: - _id: BiCh doi: 10.1039/d3sc00841j external_id: isi: - '000971508100001' file: - access_level: open_access checksum: 5eeec69a51e192dcd94b955d84423836 content_type: application/pdf creator: dernst date_created: 2023-05-02T07:17:05Z date_updated: 2023-05-02T07:17:05Z file_id: '12883' file_name: 2023_ChemialScience_Chen.pdf file_size: 1515446 relation: main_file success: 1 file_date_updated: 2023-05-02T07:17:05Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version publication: Chemical Science publication_identifier: eissn: - 2041-6539 issn: - 2041-6520 publication_status: published publisher: Royal Society of Chemistry quality_controlled: '1' scopus_import: '1' status: public title: Physics-inspired machine learning of localized intensive properties tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2023' ... --- _id: '12878' abstract: - lang: eng text: Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components. acknowledgement: The authors thank Professor Jianqiang Wu (Kunming Institute of Botany, Chinese Academy of Sciences) for support with phytohormone measurement. Thanks also go to Professor Pieter. B. F. Ouwerkerk (Leiden University) and Professor Jean-Benoit Morel (Plant Health Institute of Montpellier) for provision of the rice lines NB-7B-70 and NB-7B-76 and wild-type NB-61-WT, Professor Zuhua He (Chinese Academy of Sciences) for provision of the rice OsNPR1-RNAi mutant, and Professor Yinong Yang (The Pennsylvania State University) for provision of the rice line NahG. This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 32260085, 31460453, 31660501, 31860064, 31970609, 31801792 and 31960554), the Key Projects of the Applied Basic Research Plan of Yunnan Province (202301AS070082), the Major Special Program for Scientific Research, Education Department of Yunnan Province (Grant No. ZD2015005), the Start-up fund from Xishuangbanna Tropical Botanical Garden, and ‘Top Talents Program in Science and Technology’ from Yunnan Province, the SRF for ROCS, SEM (Grant No. [2013] 1792), and the Major Science and Technology Project in Yunnan Province (202102AE090042 and 202202AE090036); and the young and middle-aged academic and technical leaders reserve talent program in Yunnan Province (202205AC160076). article_processing_charge: No article_type: original author: - first_name: Lihui full_name: Jiang, Lihui last_name: Jiang - first_name: Baolin full_name: Yao, Baolin last_name: Yao - first_name: Xiaoyan full_name: Zhang, Xiaoyan last_name: Zhang - first_name: Lixia full_name: Wu, Lixia last_name: Wu - first_name: Qijing full_name: Fu, Qijing last_name: Fu - first_name: Yiting full_name: Zhao, Yiting last_name: Zhao - first_name: Yuxin full_name: Cao, Yuxin last_name: Cao - first_name: Ruomeng full_name: Zhu, Ruomeng last_name: Zhu - first_name: Xinqi full_name: Lu, Xinqi last_name: Lu - first_name: Wuying full_name: Huang, Wuying last_name: Huang - first_name: Jianping full_name: Zhao, Jianping last_name: Zhao - first_name: Kuixiu full_name: Li, Kuixiu last_name: Li - first_name: Shuanglu full_name: Zhao, Shuanglu last_name: Zhao - first_name: Li full_name: Han, Li last_name: Han - first_name: Xuan full_name: Zhou, Xuan last_name: Zhou - first_name: Chongyu full_name: Luo, Chongyu last_name: Luo - first_name: Haiyan full_name: Zhu, Haiyan last_name: Zhu - first_name: Jing full_name: Yang, Jing last_name: Yang - first_name: Huichuan full_name: Huang, Huichuan last_name: Huang - first_name: Zhengge full_name: Zhu, Zhengge last_name: Zhu - first_name: Xiahong full_name: He, Xiahong last_name: He - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Zhongkai full_name: Zhang, Zhongkai last_name: Zhang - first_name: Changning full_name: Liu, Changning last_name: Liu - first_name: Yunlong full_name: Du, Yunlong last_name: Du citation: ama: Jiang L, Yao B, Zhang X, et al. Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. Plant Journal. 2023;115(1):155-174. doi:10.1111/tpj.16218 apa: Jiang, L., Yao, B., Zhang, X., Wu, L., Fu, Q., Zhao, Y., … Du, Y. (2023). Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. Plant Journal. Wiley. https://doi.org/10.1111/tpj.16218 chicago: Jiang, Lihui, Baolin Yao, Xiaoyan Zhang, Lixia Wu, Qijing Fu, Yiting Zhao, Yuxin Cao, et al. “Salicylic Acid Inhibits Rice Endocytic Protein Trafficking Mediated by OsPIN3t and Clathrin to Affect Root Growth.” Plant Journal. Wiley, 2023. https://doi.org/10.1111/tpj.16218. ieee: L. Jiang et al., “Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth,” Plant Journal, vol. 115, no. 1. Wiley, pp. 155–174, 2023. ista: Jiang L, Yao B, Zhang X, Wu L, Fu Q, Zhao Y, Cao Y, Zhu R, Lu X, Huang W, Zhao J, Li K, Zhao S, Han L, Zhou X, Luo C, Zhu H, Yang J, Huang H, Zhu Z, He X, Friml J, Zhang Z, Liu C, Du Y. 2023. Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. Plant Journal. 115(1), 155–174. mla: Jiang, Lihui, et al. “Salicylic Acid Inhibits Rice Endocytic Protein Trafficking Mediated by OsPIN3t and Clathrin to Affect Root Growth.” Plant Journal, vol. 115, no. 1, Wiley, 2023, pp. 155–74, doi:10.1111/tpj.16218. short: L. Jiang, B. Yao, X. Zhang, L. Wu, Q. Fu, Y. Zhao, Y. Cao, R. Zhu, X. Lu, W. Huang, J. Zhao, K. Li, S. Zhao, L. Han, X. Zhou, C. Luo, H. Zhu, J. Yang, H. Huang, Z. Zhu, X. He, J. Friml, Z. Zhang, C. Liu, Y. Du, Plant Journal 115 (2023) 155–174. date_created: 2023-04-30T22:01:06Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-08-01T14:16:33Z day: '01' department: - _id: JiFr doi: 10.1111/tpj.16218 external_id: isi: - '000971861400001' pmid: - '37025008 ' intvolume: ' 115' isi: 1 issue: '1' language: - iso: eng month: '07' oa_version: None page: 155-174 pmid: 1 publication: Plant Journal publication_identifier: eissn: - 1365-313X issn: - 0960-7412 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 115 year: '2023' ...