--- _id: '1001' abstract: - lang: eng text: We present a computational approach for designing CurveUps, curvy shells that form from an initially flat state. They consist of small rigid tiles that are tightly held together by two pre-stretched elastic sheets attached to them. Our method allows the realization of smooth, doubly curved surfaces that can be fabricated as a flat piece. Once released, the restoring forces of the pre-stretched sheets support the object to take shape in 3D. CurveUps are structurally stable in their target configuration. The design process starts with a target surface. Our method generates a tile layout in 2D and optimizes the distribution, shape, and attachment areas of the tiles to obtain a configuration that is fabricable and in which the curved up state closely matches the target. Our approach is based on an efficient approximate model and a local optimization strategy for an otherwise intractable nonlinear optimization problem. We demonstrate the effectiveness of our approach for a wide range of shapes, all realized as physical prototypes. alternative_title: - ACM Transactions on Graphics article_number: '64' article_processing_charge: No author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 - first_name: Eder full_name: Miguel, Eder last_name: Miguel - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: 'Guseinov R, Miguel E, Bickel B. CurveUps: Shaping objects from flat plates with tension-actuated curvature. In: Vol 36. ACM; 2017. doi:10.1145/3072959.3073709' apa: 'Guseinov, R., Miguel, E., & Bickel, B. (2017). CurveUps: Shaping objects from flat plates with tension-actuated curvature (Vol. 36). Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States: ACM. https://doi.org/10.1145/3072959.3073709' chicago: 'Guseinov, Ruslan, Eder Miguel, and Bernd Bickel. “CurveUps: Shaping Objects from Flat Plates with Tension-Actuated Curvature,” Vol. 36. ACM, 2017. https://doi.org/10.1145/3072959.3073709.' ieee: 'R. Guseinov, E. Miguel, and B. Bickel, “CurveUps: Shaping objects from flat plates with tension-actuated curvature,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States, 2017, vol. 36, no. 4.' ista: 'Guseinov R, Miguel E, Bickel B. 2017. CurveUps: Shaping objects from flat plates with tension-actuated curvature. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, ACM Transactions on Graphics, vol. 36, 64.' mla: 'Guseinov, Ruslan, et al. CurveUps: Shaping Objects from Flat Plates with Tension-Actuated Curvature. Vol. 36, no. 4, 64, ACM, 2017, doi:10.1145/3072959.3073709.' short: R. Guseinov, E. Miguel, B. Bickel, in:, ACM, 2017. conference: end_date: 2017-08-25 location: Los Angeles, CA, United States name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2017-08-19 date_created: 2018-12-11T11:49:38Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-22T09:49:58Z day: '01' ddc: - '003' - '004' department: - _id: BeBi doi: 10.1145/3072959.3073709 ec_funded: 1 external_id: isi: - '000406432100032' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:10:24Z date_updated: 2018-12-12T10:10:24Z file_id: '4811' file_name: IST-2018-1053-v1+1_CurveUp.pdf file_size: 36159696 relation: main_file file_date_updated: 2018-12-12T10:10:24Z has_accepted_license: '1' intvolume: ' 36' isi: 1 issue: '4' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version project: - _id: 25082902-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '645599' name: Soft-bodied intelligence for Manipulation - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication_status: published publisher: ACM publist_id: '6397' pubrep_id: '1053' quality_controlled: '1' related_material: record: - id: '8366' relation: dissertation_contains status: public status: public title: 'CurveUps: Shaping objects from flat plates with tension-actuated curvature' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 36 year: '2017' ... --- _id: '1003' abstract: - lang: eng text: Network games (NGs) are played on directed graphs and are extensively used in network design and analysis. Search problems for NGs include finding special strategy profiles such as a Nash equilibrium and a globally optimal solution. The networks modeled by NGs may be huge. In formal verification, abstraction has proven to be an extremely effective technique for reasoning about systems with big and even infinite state spaces. We describe an abstraction-refinement methodology for reasoning about NGs. Our methodology is based on an abstraction function that maps the state space of an NG to a much smaller state space. We search for a global optimum and a Nash equilibrium by reasoning on an under- and an overapproximation defined on top of this smaller state space. When the approximations are too coarse to find such profiles, we refine the abstraction function. Our experimental results demonstrate the efficiency of the methodology. article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Shibashis full_name: Guha, Shibashis last_name: Guha - first_name: Orna full_name: Kupferman, Orna last_name: Kupferman citation: ama: 'Avni G, Guha S, Kupferman O. An abstraction-refinement methodology for reasoning about network games. In: AAAI Press; 2017:70-76. doi:10.24963/ijcai.2017/11' apa: 'Avni, G., Guha, S., & Kupferman, O. (2017). An abstraction-refinement methodology for reasoning about network games (pp. 70–76). Presented at the IJCAI: International Joint Conference on Artificial Intelligence , Melbourne, Australia: AAAI Press. https://doi.org/10.24963/ijcai.2017/11' chicago: Avni, Guy, Shibashis Guha, and Orna Kupferman. “An Abstraction-Refinement Methodology for Reasoning about Network Games,” 70–76. AAAI Press, 2017. https://doi.org/10.24963/ijcai.2017/11. ieee: 'G. Avni, S. Guha, and O. Kupferman, “An abstraction-refinement methodology for reasoning about network games,” presented at the IJCAI: International Joint Conference on Artificial Intelligence , Melbourne, Australia, 2017, pp. 70–76.' ista: 'Avni G, Guha S, Kupferman O. 2017. An abstraction-refinement methodology for reasoning about network games. IJCAI: International Joint Conference on Artificial Intelligence , 70–76.' mla: Avni, Guy, et al. An Abstraction-Refinement Methodology for Reasoning about Network Games. AAAI Press, 2017, pp. 70–76, doi:10.24963/ijcai.2017/11. short: G. Avni, S. Guha, O. Kupferman, in:, AAAI Press, 2017, pp. 70–76. conference: end_date: 2017-08-25 location: Melbourne, Australia name: 'IJCAI: International Joint Conference on Artificial Intelligence ' start_date: 2017-08-19 date_created: 2018-12-11T11:49:38Z date_published: 2017-05-30T00:00:00Z date_updated: 2023-09-22T09:49:00Z day: '30' ddc: - '004' department: - _id: ToHe doi: 10.24963/ijcai.2017/11 external_id: isi: - '000764137500011' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:16:58Z date_updated: 2018-12-12T10:16:58Z file_id: '5249' file_name: IST-2017-818-v1+1_allIJCAI_CR.pdf file_size: 365172 relation: main_file file_date_updated: 2018-12-12T10:16:58Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 70 - 76 project: - _id: 25F5A88A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Moderne Concurrency Paradigms - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication_identifier: issn: - '10450823' publication_status: published publisher: AAAI Press publist_id: '6395' pubrep_id: '818' quality_controlled: '1' related_material: record: - id: '6006' relation: later_version status: public scopus_import: '1' status: public title: An abstraction-refinement methodology for reasoning about network games type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '1000' abstract: - lang: eng text: 'We study probabilistic models of natural images and extend the autoregressive family of PixelCNN models by incorporating latent variables. Subsequently, we describe two new generative image models that exploit different image transformations as latent variables: a quantized grayscale view of the image or a multi-resolution image pyramid. The proposed models tackle two known shortcomings of existing PixelCNN models: 1) their tendency to focus on low-level image details, while largely ignoring high-level image information, such as object shapes, and 2) their computationally costly procedure for image sampling. We experimentally demonstrate benefits of our LatentPixelCNN models, in particular showing that they produce much more realistically looking image samples than previous state-of-the-art probabilistic models. ' acknowledgement: We thank Tim Salimans for spotting a mistake in our preliminary arXiv manuscript. This work was funded by the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 308036. article_processing_charge: No author: - first_name: Alexander full_name: Kolesnikov, Alexander id: 2D157DB6-F248-11E8-B48F-1D18A9856A87 last_name: Kolesnikov - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 citation: ama: 'Kolesnikov A, Lampert C. PixelCNN models with auxiliary variables for natural image modeling. In: 34th International Conference on Machine Learning. Vol 70. JMLR; 2017:1905-1914.' apa: 'Kolesnikov, A., & Lampert, C. (2017). PixelCNN models with auxiliary variables for natural image modeling. In 34th International Conference on Machine Learning (Vol. 70, pp. 1905–1914). Sydney, Australia: JMLR.' chicago: Kolesnikov, Alexander, and Christoph Lampert. “PixelCNN Models with Auxiliary Variables for Natural Image Modeling.” In 34th International Conference on Machine Learning, 70:1905–14. JMLR, 2017. ieee: A. Kolesnikov and C. Lampert, “PixelCNN models with auxiliary variables for natural image modeling,” in 34th International Conference on Machine Learning, Sydney, Australia, 2017, vol. 70, pp. 1905–1914. ista: 'Kolesnikov A, Lampert C. 2017. PixelCNN models with auxiliary variables for natural image modeling. 34th International Conference on Machine Learning. ICML: International Conference on Machine Learning vol. 70, 1905–1914.' mla: Kolesnikov, Alexander, and Christoph Lampert. “PixelCNN Models with Auxiliary Variables for Natural Image Modeling.” 34th International Conference on Machine Learning, vol. 70, JMLR, 2017, pp. 1905–14. short: A. Kolesnikov, C. Lampert, in:, 34th International Conference on Machine Learning, JMLR, 2017, pp. 1905–1914. conference: end_date: 2017-08-11 location: Sydney, Australia name: 'ICML: International Conference on Machine Learning' start_date: 2017-08-06 date_created: 2018-12-11T11:49:37Z date_published: 2017-08-01T00:00:00Z date_updated: 2023-09-22T09:50:41Z day: '01' department: - _id: ChLa ec_funded: 1 external_id: arxiv: - '1612.08185' isi: - '000683309501102' has_accepted_license: '1' intvolume: ' 70' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1612.08185 month: '08' oa: 1 oa_version: Submitted Version page: 1905 - 1914 project: - _id: 2532554C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '308036' name: Lifelong Learning of Visual Scene Understanding publication: 34th International Conference on Machine Learning publication_identifier: isbn: - 978-151085514-4 publication_status: published publisher: JMLR publist_id: '6398' quality_controlled: '1' scopus_import: '1' status: public title: PixelCNN models with auxiliary variables for natural image modeling type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 70 year: '2017' ... --- _id: '998' abstract: - lang: eng text: 'A major open problem on the road to artificial intelligence is the development of incrementally learning systems that learn about more and more concepts over time from a stream of data. In this work, we introduce a new training strategy, iCaRL, that allows learning in such a class-incremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively. iCaRL learns strong classifiers and a data representation simultaneously. This distinguishes it from earlier works that were fundamentally limited to fixed data representations and therefore incompatible with deep learning architectures. We show by experiments on CIFAR-100 and ImageNet ILSVRC 2012 data that iCaRL can learn many classes incrementally over a long period of time where other strategies quickly fail. ' article_processing_charge: No author: - first_name: Sylvestre Alvise full_name: Rebuffi, Sylvestre Alvise last_name: Rebuffi - first_name: Alexander full_name: Kolesnikov, Alexander id: 2D157DB6-F248-11E8-B48F-1D18A9856A87 last_name: Kolesnikov - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 citation: ama: 'Rebuffi SA, Kolesnikov A, Sperl G, Lampert C. iCaRL: Incremental classifier and representation learning. In: Vol 2017. IEEE; 2017:5533-5542. doi:10.1109/CVPR.2017.587' apa: 'Rebuffi, S. A., Kolesnikov, A., Sperl, G., & Lampert, C. (2017). iCaRL: Incremental classifier and representation learning (Vol. 2017, pp. 5533–5542). Presented at the CVPR: Computer Vision and Pattern Recognition, Honolulu, HA, United States: IEEE. https://doi.org/10.1109/CVPR.2017.587' chicago: 'Rebuffi, Sylvestre Alvise, Alexander Kolesnikov, Georg Sperl, and Christoph Lampert. “ICaRL: Incremental Classifier and Representation Learning,” 2017:5533–42. IEEE, 2017. https://doi.org/10.1109/CVPR.2017.587.' ieee: 'S. A. Rebuffi, A. Kolesnikov, G. Sperl, and C. Lampert, “iCaRL: Incremental classifier and representation learning,” presented at the CVPR: Computer Vision and Pattern Recognition, Honolulu, HA, United States, 2017, vol. 2017, pp. 5533–5542.' ista: 'Rebuffi SA, Kolesnikov A, Sperl G, Lampert C. 2017. iCaRL: Incremental classifier and representation learning. CVPR: Computer Vision and Pattern Recognition vol. 2017, 5533–5542.' mla: 'Rebuffi, Sylvestre Alvise, et al. ICaRL: Incremental Classifier and Representation Learning. Vol. 2017, IEEE, 2017, pp. 5533–42, doi:10.1109/CVPR.2017.587.' short: S.A. Rebuffi, A. Kolesnikov, G. Sperl, C. Lampert, in:, IEEE, 2017, pp. 5533–5542. conference: end_date: 2017-07-26 location: Honolulu, HA, United States name: 'CVPR: Computer Vision and Pattern Recognition' start_date: 2017-07-21 date_created: 2018-12-11T11:49:37Z date_published: 2017-04-14T00:00:00Z date_updated: 2023-09-22T09:51:58Z day: '14' department: - _id: ChLa - _id: ChWo doi: 10.1109/CVPR.2017.587 ec_funded: 1 external_id: isi: - '000418371405066' intvolume: ' 2017' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1611.07725 month: '04' oa: 1 oa_version: Submitted Version page: 5533 - 5542 project: - _id: 2532554C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '308036' name: Lifelong Learning of Visual Scene Understanding publication_identifier: isbn: - 978-153860457-1 publication_status: published publisher: IEEE publist_id: '6400' quality_controlled: '1' scopus_import: '1' status: public title: 'iCaRL: Incremental classifier and representation learning' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 2017 year: '2017' ... --- _id: '990' abstract: - lang: eng text: Assortative mating is an important driver of speciation in populations with gene flow and is predicted to evolve under certain conditions in few-locus models. However, the evolution of assortment is less understood for mating based on quantitative traits, which are often characterized by high genetic variability and extensive linkage disequilibrium between trait loci. We explore this scenario for a two-deme model with migration, by considering a single polygenic trait subject to divergent viability selection across demes, as well as assortative mating and sexual selection within demes, and investigate how trait divergence is shaped by various evolutionary forces. Our analysis reveals the existence of sharp thresholds of assortment strength, at which divergence increases dramatically. We also study the evolution of assortment via invasion of modifiers of mate discrimination and show that the ES assortment strength has an intermediate value under a range of migration-selection parameters, even in diverged populations, due to subtle effects which depend sensitively on the extent of phenotypic variation within these populations. The evolutionary dynamics of the polygenic trait is studied using the hypergeometric and infinitesimal models. We further investigate the sensitivity of our results to the assumptions of the hypergeometric model, using individual-based simulations. article_processing_charge: No author: - first_name: Himani full_name: Sachdeva, Himani id: 42377A0A-F248-11E8-B48F-1D18A9856A87 last_name: Sachdeva - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Sachdeva H, Barton NH. Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow. Evolution; International Journal of Organic Evolution. 2017;71(6):1478-1493. doi:10.1111/evo.13252 apa: Sachdeva, H., & Barton, N. H. (2017). Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow. Evolution; International Journal of Organic Evolution. Wiley-Blackwell. https://doi.org/10.1111/evo.13252 chicago: Sachdeva, Himani, and Nicholas H Barton. “Divergence and Evolution of Assortative Mating in a Polygenic Trait Model of Speciation with Gene Flow.” Evolution; International Journal of Organic Evolution. Wiley-Blackwell, 2017. https://doi.org/10.1111/evo.13252. ieee: H. Sachdeva and N. H. Barton, “Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow,” Evolution; International Journal of Organic Evolution, vol. 71, no. 6. Wiley-Blackwell, pp. 1478–1493, 2017. ista: Sachdeva H, Barton NH. 2017. Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow. Evolution; International Journal of Organic Evolution. 71(6), 1478–1493. mla: Sachdeva, Himani, and Nicholas H. Barton. “Divergence and Evolution of Assortative Mating in a Polygenic Trait Model of Speciation with Gene Flow.” Evolution; International Journal of Organic Evolution, vol. 71, no. 6, Wiley-Blackwell, 2017, pp. 1478–93, doi:10.1111/evo.13252. short: H. Sachdeva, N.H. Barton, Evolution; International Journal of Organic Evolution 71 (2017) 1478–1493. date_created: 2018-12-11T11:49:34Z date_published: 2017-06-01T00:00:00Z date_updated: 2023-09-22T09:55:13Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1111/evo.13252 ec_funded: 1 external_id: isi: - '000403014800005' pmid: - '28419447' file: - access_level: open_access checksum: 6d4c38cb1347fd43620d1736c6df5c79 content_type: application/pdf creator: dernst date_created: 2019-04-17T07:37:04Z date_updated: 2020-07-14T12:48:18Z file_id: '6329' file_name: 2017_Evolution_Sachdeva_supplement.pdf file_size: 625260 relation: main_file - access_level: open_access checksum: f1d90dd8831b44baf49b4dd176f263af content_type: application/pdf creator: dernst date_created: 2019-04-17T07:37:04Z date_updated: 2020-07-14T12:48:18Z file_id: '6330' file_name: 2017_Evolution_Sachdeva_article.pdf file_size: 520110 relation: main_file file_date_updated: 2020-07-14T12:48:18Z has_accepted_license: '1' intvolume: ' 71' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version page: '1478 - 1493 ' pmid: 1 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Evolution; International Journal of Organic Evolution publication_identifier: issn: - '00143820' publication_status: published publisher: Wiley-Blackwell publist_id: '6409' pubrep_id: '977' quality_controlled: '1' scopus_import: '1' status: public title: Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 71 year: '2017' ... --- _id: '988' abstract: - lang: eng text: The current-phase relation (CPR) of a Josephson junction (JJ) determines how the supercurrent evolves with the superconducting phase difference across the junction. Knowledge of the CPR is essential in order to understand the response of a JJ to various external parameters. Despite the rising interest in ultraclean encapsulated graphene JJs, the CPR of such junctions remains unknown. Here, we use a fully gate-tunable graphene superconducting quantum intereference device (SQUID) to determine the CPR of ballistic graphene JJs. Each of the two JJs in the SQUID is made with graphene encapsulated in hexagonal boron nitride. By independently controlling the critical current of the JJs, we can operate the SQUID either in a symmetric or asymmetric configuration. The highly asymmetric SQUID allows us to phase-bias one of the JJs and thereby directly obtain its CPR. The CPR is found to be skewed, deviating significantly from a sinusoidal form. The skewness can be tuned with the gate voltage and oscillates in antiphase with Fabry-Pérot resistance oscillations of the ballistic graphene cavity. We compare our experiments with tight-binding calculations that include realistic graphene-superconductor interfaces and find a good qualitative agreement. article_processing_charge: No author: - first_name: Gaurav full_name: Nanda, Gaurav last_name: Nanda - first_name: Juan L full_name: Aguilera Servin, Juan L id: 2A67C376-F248-11E8-B48F-1D18A9856A87 last_name: Aguilera Servin orcid: 0000-0002-2862-8372 - first_name: Péter full_name: Rakyta, Péter last_name: Rakyta - first_name: Andor full_name: Kormányos, Andor last_name: Kormányos - first_name: Reinhold full_name: Kleiner, Reinhold last_name: Kleiner - first_name: Dieter full_name: Koelle, Dieter last_name: Koelle - first_name: Kazuo full_name: Watanabe, Kazuo last_name: Watanabe - first_name: Takashi full_name: Taniguchi, Takashi last_name: Taniguchi - first_name: Lieven full_name: Vandersypen, Lieven last_name: Vandersypen - first_name: Srijit full_name: Goswami, Srijit last_name: Goswami citation: ama: Nanda G, Aguilera Servin JL, Rakyta P, et al. Current-phase relation of ballistic graphene Josephson junctions. Nano Letters. 2017;17(6):3396-3401. doi:10.1021/acs.nanolett.7b00097 apa: Nanda, G., Aguilera Servin, J. L., Rakyta, P., Kormányos, A., Kleiner, R., Koelle, D., … Goswami, S. (2017). Current-phase relation of ballistic graphene Josephson junctions. Nano Letters. American Chemical Society. https://doi.org/10.1021/acs.nanolett.7b00097 chicago: Nanda, Gaurav, Juan L Aguilera Servin, Péter Rakyta, Andor Kormányos, Reinhold Kleiner, Dieter Koelle, Kazuo Watanabe, Takashi Taniguchi, Lieven Vandersypen, and Srijit Goswami. “Current-Phase Relation of Ballistic Graphene Josephson Junctions.” Nano Letters. American Chemical Society, 2017. https://doi.org/10.1021/acs.nanolett.7b00097. ieee: G. Nanda et al., “Current-phase relation of ballistic graphene Josephson junctions,” Nano Letters, vol. 17, no. 6. American Chemical Society, pp. 3396–3401, 2017. ista: Nanda G, Aguilera Servin JL, Rakyta P, Kormányos A, Kleiner R, Koelle D, Watanabe K, Taniguchi T, Vandersypen L, Goswami S. 2017. Current-phase relation of ballistic graphene Josephson junctions. Nano Letters. 17(6), 3396–3401. mla: Nanda, Gaurav, et al. “Current-Phase Relation of Ballistic Graphene Josephson Junctions.” Nano Letters, vol. 17, no. 6, American Chemical Society, 2017, pp. 3396–401, doi:10.1021/acs.nanolett.7b00097. short: G. Nanda, J.L. Aguilera Servin, P. Rakyta, A. Kormányos, R. Kleiner, D. Koelle, K. Watanabe, T. Taniguchi, L. Vandersypen, S. Goswami, Nano Letters 17 (2017) 3396–3401. date_created: 2018-12-11T11:49:33Z date_published: 2017-05-05T00:00:00Z date_updated: 2023-09-22T09:56:21Z day: '05' ddc: - '621' department: - _id: NanoFab doi: 10.1021/acs.nanolett.7b00097 external_id: isi: - '000403631600011' file: - access_level: open_access checksum: 22021daa90cf13b01becd776838acb7b content_type: application/pdf creator: system date_created: 2018-12-12T10:13:50Z date_updated: 2020-07-14T12:48:18Z file_id: '5037' file_name: IST-2017-826-v1+1_2017_Aguilera-Servin_Current.pdf file_size: 508638 relation: main_file file_date_updated: 2020-07-14T12:48:18Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '6' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '05' oa: 1 oa_version: Published Version page: 3396 - 3401 publication: Nano Letters publication_identifier: issn: - '15306984' publication_status: published publisher: American Chemical Society publist_id: '6412' pubrep_id: '826' quality_controlled: '1' scopus_import: '1' status: public title: Current-phase relation of ballistic graphene Josephson junctions tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 17 year: '2017' ... --- _id: '993' abstract: - lang: eng text: In real-world applications, observations are often constrained to a small fraction of a system. Such spatial subsampling can be caused by the inaccessibility or the sheer size of the system, and cannot be overcome by longer sampling. Spatial subsampling can strongly bias inferences about a system’s aggregated properties. To overcome the bias, we derive analytically a subsampling scaling framework that is applicable to different observables, including distributions of neuronal avalanches, of number of people infected during an epidemic outbreak, and of node degrees. We demonstrate how to infer the correct distributions of the underlying full system, how to apply it to distinguish critical from subcritical systems, and how to disentangle subsampling and finite size effects. Lastly, we apply subsampling scaling to neuronal avalanche models and to recordings from developing neural networks. We show that only mature, but not young networks follow power-law scaling, indicating self-organization to criticality during development. article_number: '15140' article_processing_charge: Yes (in subscription journal) author: - first_name: Anna full_name: Levina (Martius), Anna id: 35AF8020-F248-11E8-B48F-1D18A9856A87 last_name: Levina (Martius) - first_name: Viola full_name: Priesemann, Viola last_name: Priesemann citation: ama: Levina (Martius) A, Priesemann V. Subsampling scaling. Nature Communications. 2017;8. doi:10.1038/ncomms15140 apa: Levina (Martius), A., & Priesemann, V. (2017). Subsampling scaling. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms15140 chicago: Levina (Martius), Anna, and Viola Priesemann. “Subsampling Scaling.” Nature Communications. Nature Publishing Group, 2017. https://doi.org/10.1038/ncomms15140. ieee: A. Levina (Martius) and V. Priesemann, “Subsampling scaling,” Nature Communications, vol. 8. Nature Publishing Group, 2017. ista: Levina (Martius) A, Priesemann V. 2017. Subsampling scaling. Nature Communications. 8, 15140. mla: Levina (Martius), Anna, and Viola Priesemann. “Subsampling Scaling.” Nature Communications, vol. 8, 15140, Nature Publishing Group, 2017, doi:10.1038/ncomms15140. short: A. Levina (Martius), V. Priesemann, Nature Communications 8 (2017). date_created: 2018-12-11T11:49:35Z date_published: 2017-05-04T00:00:00Z date_updated: 2023-09-22T09:54:07Z day: '04' ddc: - '005' - '571' department: - _id: GaTk - _id: JoCs doi: 10.1038/ncomms15140 ec_funded: 1 external_id: isi: - '000400560700001' file: - access_level: open_access checksum: 9880212f8c4c53404c7c6fbf9023c53a content_type: application/pdf creator: system date_created: 2018-12-12T10:15:05Z date_updated: 2020-07-14T12:48:19Z file_id: '5122' file_name: IST-2017-819-v1+1_2017_Levina_SubsamplingScaling.pdf file_size: 746224 relation: main_file file_date_updated: 2020-07-14T12:48:19Z has_accepted_license: '1' intvolume: ' 8' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '05' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Nature Communications publication_identifier: issn: - '20411723' publication_status: published publisher: Nature Publishing Group publist_id: '6406' pubrep_id: '819' quality_controlled: '1' scopus_import: '1' status: public title: Subsampling scaling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2017' ... --- _id: '995' abstract: - lang: eng text: Recently it was shown that an impurity exchanging orbital angular momentum with a surrounding bath can be described in terms of the angulon quasiparticle [Phys. Rev. Lett. 118, 095301 (2017)]. The angulon consists of a quantum rotor dressed by a many-particle field of boson excitations, and can be formed out of, for example, a molecule or a nonspherical atom in superfluid helium, or out of an electron coupled to lattice phonons or a Bose condensate. Here we develop an approach to the angulon based on the path-integral formalism, which sets the ground for a systematic, perturbative treatment of the angulon problem. The resulting perturbation series can be interpreted in terms of Feynman diagrams, from which, in turn, one can derive a set of diagrammatic rules. These rules extend the machinery of the graphical theory of angular momentum - well known from theoretical atomic spectroscopy - to the case where an environment with an infinite number of degrees of freedom is present. In particular, we show that each diagram can be interpreted as a 'skeleton', which enforces angular momentum conservation, dressed by an additional many-body contribution. This connection between the angulon theory and the graphical theory of angular momentum is particularly important as it allows to systematically and substantially simplify the analytical representation of each diagram. In order to exemplify the technique, we calculate the 1- and 2-loop contributions to the angulon self-energy, the spectral function, and the quasiparticle weight. The diagrammatic theory we develop paves the way to investigate next-to-leading order quantities in a more compact way compared to the variational approaches. article_number: '085410' article_processing_charge: No author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Bighin G, Lemeshko M. Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment. Physical Review B - Condensed Matter and Materials Physics. 2017;96(8). doi:10.1103/PhysRevB.96.085410 apa: Bighin, G., & Lemeshko, M. (2017). Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment. Physical Review B - Condensed Matter and Materials Physics. American Physical Society. https://doi.org/10.1103/PhysRevB.96.085410 chicago: Bighin, Giacomo, and Mikhail Lemeshko. “Diagrammatic Approach to Orbital Quantum Impurities Interacting with a Many-Particle Environment.” Physical Review B - Condensed Matter and Materials Physics. American Physical Society, 2017. https://doi.org/10.1103/PhysRevB.96.085410. ieee: G. Bighin and M. Lemeshko, “Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment,” Physical Review B - Condensed Matter and Materials Physics, vol. 96, no. 8. American Physical Society, 2017. ista: Bighin G, Lemeshko M. 2017. Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment. Physical Review B - Condensed Matter and Materials Physics. 96(8), 085410. mla: Bighin, Giacomo, and Mikhail Lemeshko. “Diagrammatic Approach to Orbital Quantum Impurities Interacting with a Many-Particle Environment.” Physical Review B - Condensed Matter and Materials Physics, vol. 96, no. 8, 085410, American Physical Society, 2017, doi:10.1103/PhysRevB.96.085410. short: G. Bighin, M. Lemeshko, Physical Review B - Condensed Matter and Materials Physics 96 (2017). date_created: 2018-12-11T11:49:36Z date_published: 2017-08-07T00:00:00Z date_updated: 2023-09-22T09:53:17Z day: '07' department: - _id: MiLe doi: 10.1103/PhysRevB.96.085410 external_id: isi: - '000407017100009' intvolume: ' 96' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1704.02616 month: '08' oa: 1 oa_version: Submitted Version project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review B - Condensed Matter and Materials Physics publication_identifier: issn: - '24699950' publication_status: published publisher: American Physical Society publist_id: '6404' quality_controlled: '1' scopus_import: '1' status: public title: Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 96 year: '2017' ... --- _id: '989' abstract: - lang: eng text: We present a generalized optimal transport model in which the mass-preserving constraint for the L2-Wasserstein distance is relaxed by introducing a source term in the continuity equation. The source term is also incorporated in the path energy by means of its squared L2-norm in time of a functional with linear growth in space. This extension of the original transport model enables local density modulations, which is a desirable feature in applications such as image warping and blending. A key advantage of the use of a functional with linear growth in space is that it allows for singular sources and sinks, which can be supported on points or lines. On a technical level, the L2-norm in time ensures a disintegration of the source in time, which we use to obtain the well-posedness of the model and the existence of geodesic paths. The numerical discretization is based on the proximal splitting approach [18] and selected numerical test cases show the potential of the proposed approach. Furthermore, the approach is applied to the warping and blending of textures. alternative_title: - LNCS article_processing_charge: No author: - first_name: Jan full_name: Maas, Jan id: 4C5696CE-F248-11E8-B48F-1D18A9856A87 last_name: Maas orcid: 0000-0002-0845-1338 - first_name: Martin full_name: Rumpf, Martin last_name: Rumpf - first_name: Stefan full_name: Simon, Stefan last_name: Simon citation: ama: 'Maas J, Rumpf M, Simon S. Transport based image morphing with intensity modulation. In: Lauze F, Dong Y, Bjorholm Dahl A, eds. Vol 10302. Springer; 2017:563-577. doi:10.1007/978-3-319-58771-4_45' apa: 'Maas, J., Rumpf, M., & Simon, S. (2017). Transport based image morphing with intensity modulation. In F. Lauze, Y. Dong, & A. Bjorholm Dahl (Eds.) (Vol. 10302, pp. 563–577). Presented at the SSVM:  Scale Space and Variational Methods in Computer Vision, Kolding, Denmark: Springer. https://doi.org/10.1007/978-3-319-58771-4_45' chicago: Maas, Jan, Martin Rumpf, and Stefan Simon. “Transport Based Image Morphing with Intensity Modulation.” edited by François Lauze, Yiqiu Dong, and Anders Bjorholm Dahl, 10302:563–77. Springer, 2017. https://doi.org/10.1007/978-3-319-58771-4_45. ieee: J. Maas, M. Rumpf, and S. Simon, “Transport based image morphing with intensity modulation,” presented at the SSVM:  Scale Space and Variational Methods in Computer Vision, Kolding, Denmark, 2017, vol. 10302, pp. 563–577. ista: Maas J, Rumpf M, Simon S. 2017. Transport based image morphing with intensity modulation. SSVM:  Scale Space and Variational Methods in Computer Vision, LNCS, vol. 10302, 563–577. mla: Maas, Jan, et al. Transport Based Image Morphing with Intensity Modulation. Edited by François Lauze et al., vol. 10302, Springer, 2017, pp. 563–77, doi:10.1007/978-3-319-58771-4_45. short: J. Maas, M. Rumpf, S. Simon, in:, F. Lauze, Y. Dong, A. Bjorholm Dahl (Eds.), Springer, 2017, pp. 563–577. conference: end_date: 2017-06-08 location: Kolding, Denmark name: 'SSVM: Scale Space and Variational Methods in Computer Vision' start_date: 2017-06-04 date_created: 2018-12-11T11:49:34Z date_published: 2017-05-18T00:00:00Z date_updated: 2023-09-22T09:55:50Z day: '18' department: - _id: JaMa doi: 10.1007/978-3-319-58771-4_45 editor: - first_name: François full_name: Lauze, François last_name: Lauze - first_name: Yiqiu full_name: Dong, Yiqiu last_name: Dong - first_name: Anders full_name: Bjorholm Dahl, Anders last_name: Bjorholm Dahl external_id: isi: - '000432210900045' intvolume: ' 10302' isi: 1 language: - iso: eng month: '05' oa_version: None page: 563 - 577 publication_identifier: issn: - '03029743' publication_status: published publisher: Springer publist_id: '6410' quality_controlled: '1' scopus_import: '1' status: public title: Transport based image morphing with intensity modulation type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10302 year: '2017' ... --- _id: '994' abstract: - lang: eng text: The formation of vortices is usually considered to be the main mechanism of angular momentum disposal in superfluids. Recently, it was predicted that a superfluid can acquire angular momentum via an alternative, microscopic route -- namely, through interaction with rotating impurities, forming so-called `angulon quasiparticles' [Phys. Rev. Lett. 114, 203001 (2015)]. The angulon instabilities correspond to transfer of a small number of angular momentum quanta from the impurity to the superfluid, as opposed to vortex instabilities, where angular momentum is quantized in units of ℏ per atom. Furthermore, since conventional impurities (such as molecules) represent three-dimensional (3D) rotors, the angular momentum transferred is intrinsically 3D as well, as opposed to a merely planar rotation which is inherent to vortices. Herein we show that the angulon theory can explain the anomalous broadening of the spectroscopic lines observed for CH 3 and NH 3 molecules in superfluid helium nanodroplets, thereby providing a fingerprint of the emerging angulon instabilities in experiment. article_processing_charge: No author: - first_name: Igor full_name: Cherepanov, Igor id: 339C7E5A-F248-11E8-B48F-1D18A9856A87 last_name: Cherepanov - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Cherepanov I, Lemeshko M. Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules. Physical Review Materials. 2017;1(3). doi:10.1103/PhysRevMaterials.1.035602 apa: Cherepanov, I., & Lemeshko, M. (2017). Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules. Physical Review Materials. American Physical Society. https://doi.org/10.1103/PhysRevMaterials.1.035602 chicago: Cherepanov, Igor, and Mikhail Lemeshko. “Fingerprints of Angulon Instabilities in the Spectra of Matrix-Isolated Molecules.” Physical Review Materials. American Physical Society, 2017. https://doi.org/10.1103/PhysRevMaterials.1.035602. ieee: I. Cherepanov and M. Lemeshko, “Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules,” Physical Review Materials, vol. 1, no. 3. American Physical Society, 2017. ista: Cherepanov I, Lemeshko M. 2017. Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules. Physical Review Materials. 1(3). mla: Cherepanov, Igor, and Mikhail Lemeshko. “Fingerprints of Angulon Instabilities in the Spectra of Matrix-Isolated Molecules.” Physical Review Materials, vol. 1, no. 3, American Physical Society, 2017, doi:10.1103/PhysRevMaterials.1.035602. short: I. Cherepanov, M. Lemeshko, Physical Review Materials 1 (2017). date_created: 2018-12-11T11:49:35Z date_published: 2017-08-08T00:00:00Z date_updated: 2023-09-22T09:53:42Z day: '08' department: - _id: MiLe doi: 10.1103/PhysRevMaterials.1.035602 ec_funded: 1 external_id: isi: - '000416564000004' intvolume: ' 1' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.09220 month: '08' oa: 1 oa_version: Submitted Version project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Physical Review Materials publication_status: published publisher: American Physical Society publist_id: '6405' quality_controlled: '1' scopus_import: '1' status: public title: Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 1 year: '2017' ...