--- _id: '555' abstract: - lang: eng text: Conventional wisdom has it that proteins fold and assemble into definite structures, and that this defines their function. Glycosaminoglycans (GAGs) are different. In most cases the structures they form have a low degree of order, even when interacting with proteins. Here, we discuss how physical features common to all GAGs — hydrophilicity, charge, linearity and semi-flexibility — underpin the overall properties of GAG-rich matrices. By integrating soft matter physics concepts (e.g. polymer brushes and phase separation) with our molecular understanding of GAG–protein interactions, we can better comprehend how GAG-rich matrices assemble, what their properties are, and how they function. Taking perineuronal nets (PNNs) — a GAG-rich matrix enveloping neurons — as a relevant example, we propose that microphase separation determines the holey PNN anatomy that is pivotal to PNN functions. acknowledgement: "This work was supported by the European Research Council [Starting Grant 306435 ‘JELLY’; to RPR], the Spanish Ministry of Competitiveness and Innovation [MAT2014-54867-R, to RPR], the EPSRC Centre for Doctoral Training in Tissue Engineering and Regenerative Medicine — Innovation in Medical and Biological Engineering [EP/L014823/1, to JCFK], the Royal Society [RG160410, to JCFK], Wings for Life [WFL-UK-008/15, to JCFK] and the European Union, the Operational Programme Research, Development and Education in the framework of the project ‘Centre of Reconstructive Neuroscience’ [CZ.02.1.01/0.0./0.0/15_003/0000419, to JCFK]. AJD would like to thank Arthritis Research UK [16539, 19489] and the MRC [76445, G0900538] for funding his work on GAG–protein interactions.\r\n" article_processing_charge: No article_type: original author: - first_name: Ralf full_name: Richter, Ralf last_name: Richter - first_name: Natalia full_name: Baranova, Natalia id: 38661662-F248-11E8-B48F-1D18A9856A87 last_name: Baranova orcid: 0000-0002-3086-9124 - first_name: Anthony full_name: Day, Anthony last_name: Day - first_name: Jessica full_name: Kwok, Jessica last_name: Kwok citation: ama: 'Richter R, Baranova NS, Day A, Kwok J. Glycosaminoglycans in extracellular matrix organisation: Are concepts from soft matter physics key to understanding the formation of perineuronal nets? Current Opinion in Structural Biology. 2018;50:65-74. doi:10.1016/j.sbi.2017.12.002' apa: 'Richter, R., Baranova, N. S., Day, A., & Kwok, J. (2018). Glycosaminoglycans in extracellular matrix organisation: Are concepts from soft matter physics key to understanding the formation of perineuronal nets? Current Opinion in Structural Biology. Elsevier. https://doi.org/10.1016/j.sbi.2017.12.002' chicago: 'Richter, Ralf, Natalia S. Baranova, Anthony Day, and Jessica Kwok. “Glycosaminoglycans in Extracellular Matrix Organisation: Are Concepts from Soft Matter Physics Key to Understanding the Formation of Perineuronal Nets?” Current Opinion in Structural Biology. Elsevier, 2018. https://doi.org/10.1016/j.sbi.2017.12.002.' ieee: 'R. Richter, N. S. Baranova, A. Day, and J. Kwok, “Glycosaminoglycans in extracellular matrix organisation: Are concepts from soft matter physics key to understanding the formation of perineuronal nets?,” Current Opinion in Structural Biology, vol. 50. Elsevier, pp. 65–74, 2018.' ista: 'Richter R, Baranova NS, Day A, Kwok J. 2018. Glycosaminoglycans in extracellular matrix organisation: Are concepts from soft matter physics key to understanding the formation of perineuronal nets? Current Opinion in Structural Biology. 50, 65–74.' mla: 'Richter, Ralf, et al. “Glycosaminoglycans in Extracellular Matrix Organisation: Are Concepts from Soft Matter Physics Key to Understanding the Formation of Perineuronal Nets?” Current Opinion in Structural Biology, vol. 50, Elsevier, 2018, pp. 65–74, doi:10.1016/j.sbi.2017.12.002.' short: R. Richter, N.S. Baranova, A. Day, J. Kwok, Current Opinion in Structural Biology 50 (2018) 65–74. date_created: 2018-12-11T11:47:09Z date_published: 2018-06-01T00:00:00Z date_updated: 2023-09-11T14:07:03Z day: '01' department: - _id: MaLo doi: 10.1016/j.sbi.2017.12.002 external_id: isi: - '000443661300011' intvolume: ' 50' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://eprints.whiterose.ac.uk/125524/ month: '06' oa: 1 oa_version: Submitted Version page: 65 - 74 publication: Current Opinion in Structural Biology publication_status: published publisher: Elsevier publist_id: '7259' quality_controlled: '1' scopus_import: '1' status: public title: 'Glycosaminoglycans in extracellular matrix organisation: Are concepts from soft matter physics key to understanding the formation of perineuronal nets?' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 50 year: '2018' ... --- _id: '448' abstract: - lang: eng text: Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity. acknowledgement: We thank O. Niehuis for allowing use of the unpublished E. danica genome, J. Gadau and C. Smith for comments and advice on the manuscript, and J. Schmitz for assistance with analyses and proofreading the manuscript. J.K. thanks Charles Darwin University (Australia), especially S. Garnett and the Horticulture and Aquaculture team, for providing logistic support to collect C. secundus. The Parks and Wildlife Commission, Northern Territory, the Department of the Environment, Water, Heritage and the Arts gave permission to collect (Permit number 36401) and export (Permit WT2010-6997) the termites. USDA is an equal opportunity provider and employer. M.C.H. and E.J. are supported by DFG grant BO2544/11-1 to E.B.-B. J.K. is supported by University of Osnabrück and DFG grant KO1895/16-1. X.B. and M.-D.P. are supported by Spanish Ministerio de Economía y Competitividad (CGL2012-36251 and CGL2015-64727-P to X.B., and CGL2016-76011-R to M.-D.P.), including FEDER funds, and by Catalan Government (2014 SGR 619). C.S. is supported by grants from the US Department of Housing and Urban Development (NCHHU-0017-13), the National Science Foundation (IOS-1557864), the Alfred P. Sloan Foundation (2013-5-35 MBE), the National Institute of Environmental Health Sciences (P30ES025128) to the Center for Human Health and the Environment, and the Blanton J. Whitmire Endowment. M.P. is supported by a Villum Kann Rasmussen Young Investigator Fellowship (VKR10101). article_processing_charge: No author: - first_name: Mark full_name: Harrison, Mark last_name: Harrison - first_name: Evelien full_name: Jongepier, Evelien last_name: Jongepier - first_name: Hugh full_name: Robertson, Hugh last_name: Robertson - first_name: Nicolas full_name: Arning, Nicolas last_name: Arning - first_name: Tristan full_name: Bitard Feildel, Tristan last_name: Bitard Feildel - first_name: Hsu full_name: Chao, Hsu last_name: Chao - first_name: Christopher full_name: Childers, Christopher last_name: Childers - first_name: Huyen full_name: Dinh, Huyen last_name: Dinh - first_name: Harshavardhan full_name: Doddapaneni, Harshavardhan last_name: Doddapaneni - first_name: Shannon full_name: Dugan, Shannon last_name: Dugan - first_name: Johannes full_name: Gowin, Johannes last_name: Gowin - first_name: Carolin full_name: Greiner, Carolin last_name: Greiner - first_name: Yi full_name: Han, Yi last_name: Han - first_name: Haofu full_name: Hu, Haofu last_name: Hu - first_name: Daniel full_name: Hughes, Daniel last_name: Hughes - first_name: Ann K full_name: Huylmans, Ann K id: 4C0A3874-F248-11E8-B48F-1D18A9856A87 last_name: Huylmans orcid: 0000-0001-8871-4961 - first_name: Karsten full_name: Kemena, Karsten last_name: Kemena - first_name: Lukas full_name: Kremer, Lukas last_name: Kremer - first_name: Sandra full_name: Lee, Sandra last_name: Lee - first_name: Alberto full_name: López Ezquerra, Alberto last_name: López Ezquerra - first_name: Ludovic full_name: Mallet, Ludovic last_name: Mallet - first_name: Jose full_name: Monroy Kuhn, Jose last_name: Monroy Kuhn - first_name: Annabell full_name: Moser, Annabell last_name: Moser - first_name: Shwetha full_name: Murali, Shwetha last_name: Murali - first_name: Donna full_name: Muzny, Donna last_name: Muzny - first_name: Saria full_name: Otani, Saria last_name: Otani - first_name: Maria full_name: Piulachs, Maria last_name: Piulachs - first_name: Monica full_name: Poelchau, Monica last_name: Poelchau - first_name: Jiaxin full_name: Qu, Jiaxin last_name: Qu - first_name: Florentine full_name: Schaub, Florentine last_name: Schaub - first_name: Ayako full_name: Wada Katsumata, Ayako last_name: Wada Katsumata - first_name: Kim full_name: Worley, Kim last_name: Worley - first_name: Qiaolin full_name: Xie, Qiaolin last_name: Xie - first_name: Guillem full_name: Ylla, Guillem last_name: Ylla - first_name: Michael full_name: Poulsen, Michael last_name: Poulsen - first_name: Richard full_name: Gibbs, Richard last_name: Gibbs - first_name: Coby full_name: Schal, Coby last_name: Schal - first_name: Stephen full_name: Richards, Stephen last_name: Richards - first_name: Xavier full_name: Belles, Xavier last_name: Belles - first_name: Judith full_name: Korb, Judith last_name: Korb - first_name: Erich full_name: Bornberg Bauer, Erich last_name: Bornberg Bauer citation: ama: Harrison M, Jongepier E, Robertson H, et al. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology and Evolution. 2018;2(3):557-566. doi:10.1038/s41559-017-0459-1 apa: Harrison, M., Jongepier, E., Robertson, H., Arning, N., Bitard Feildel, T., Chao, H., … Bornberg Bauer, E. (2018). Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology and Evolution. Springer Nature. https://doi.org/10.1038/s41559-017-0459-1 chicago: Harrison, Mark, Evelien Jongepier, Hugh Robertson, Nicolas Arning, Tristan Bitard Feildel, Hsu Chao, Christopher Childers, et al. “Hemimetabolous Genomes Reveal Molecular Basis of Termite Eusociality.” Nature Ecology and Evolution. Springer Nature, 2018. https://doi.org/10.1038/s41559-017-0459-1. ieee: M. Harrison et al., “Hemimetabolous genomes reveal molecular basis of termite eusociality,” Nature Ecology and Evolution, vol. 2, no. 3. Springer Nature, pp. 557–566, 2018. ista: Harrison M, Jongepier E, Robertson H, Arning N, Bitard Feildel T, Chao H, Childers C, Dinh H, Doddapaneni H, Dugan S, Gowin J, Greiner C, Han Y, Hu H, Hughes D, Huylmans AK, Kemena K, Kremer L, Lee S, López Ezquerra A, Mallet L, Monroy Kuhn J, Moser A, Murali S, Muzny D, Otani S, Piulachs M, Poelchau M, Qu J, Schaub F, Wada Katsumata A, Worley K, Xie Q, Ylla G, Poulsen M, Gibbs R, Schal C, Richards S, Belles X, Korb J, Bornberg Bauer E. 2018. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology and Evolution. 2(3), 557–566. mla: Harrison, Mark, et al. “Hemimetabolous Genomes Reveal Molecular Basis of Termite Eusociality.” Nature Ecology and Evolution, vol. 2, no. 3, Springer Nature, 2018, pp. 557–66, doi:10.1038/s41559-017-0459-1. short: M. Harrison, E. Jongepier, H. Robertson, N. Arning, T. Bitard Feildel, H. Chao, C. Childers, H. Dinh, H. Doddapaneni, S. Dugan, J. Gowin, C. Greiner, Y. Han, H. Hu, D. Hughes, A.K. Huylmans, K. Kemena, L. Kremer, S. Lee, A. López Ezquerra, L. Mallet, J. Monroy Kuhn, A. Moser, S. Murali, D. Muzny, S. Otani, M. Piulachs, M. Poelchau, J. Qu, F. Schaub, A. Wada Katsumata, K. Worley, Q. Xie, G. Ylla, M. Poulsen, R. Gibbs, C. Schal, S. Richards, X. Belles, J. Korb, E. Bornberg Bauer, Nature Ecology and Evolution 2 (2018) 557–566. date_created: 2018-12-11T11:46:32Z date_published: 2018-02-05T00:00:00Z date_updated: 2023-09-11T14:10:57Z day: '05' ddc: - '576' department: - _id: BeVi doi: 10.1038/s41559-017-0459-1 external_id: isi: - '000426559600026' file: - access_level: open_access checksum: 874953136ac125e65f37971d3cabc5b7 content_type: application/pdf creator: system date_created: 2018-12-12T10:09:08Z date_updated: 2020-07-14T12:46:30Z file_id: '4731' file_name: IST-2018-969-v1+1_2018_Huylmans_Hemimetabolous_genomes.pdf file_size: 3730583 relation: main_file file_date_updated: 2020-07-14T12:46:30Z has_accepted_license: '1' intvolume: ' 2' isi: 1 issue: '3' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 557-566 publication: Nature Ecology and Evolution publication_status: published publisher: Springer Nature publist_id: '7375' pubrep_id: '969' quality_controlled: '1' related_material: record: - id: '9841' relation: research_data status: public scopus_import: '1' status: public title: Hemimetabolous genomes reveal molecular basis of termite eusociality tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 2 year: '2018' ... --- _id: '723' abstract: - lang: eng text: Escaping local optima is one of the major obstacles to function optimisation. Using the metaphor of a fitness landscape, local optima correspond to hills separated by fitness valleys that have to be overcome. We define a class of fitness valleys of tunable difficulty by considering their length, representing the Hamming path between the two optima and their depth, the drop in fitness. For this function class we present a runtime comparison between stochastic search algorithms using different search strategies. The (1+1) EA is a simple and well-studied evolutionary algorithm that has to jump across the valley to a point of higher fitness because it does not accept worsening moves (elitism). In contrast, the Metropolis algorithm and the Strong Selection Weak Mutation (SSWM) algorithm, a famous process in population genetics, are both able to cross the fitness valley by accepting worsening moves. We show that the runtime of the (1+1) EA depends critically on the length of the valley while the runtimes of the non-elitist algorithms depend crucially on the depth of the valley. Moreover, we show that both SSWM and Metropolis can also efficiently optimise a rugged function consisting of consecutive valleys. article_processing_charge: No author: - first_name: Pietro full_name: Oliveto, Pietro last_name: Oliveto - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Jorge full_name: Pérez Heredia, Jorge last_name: Pérez Heredia - first_name: Dirk full_name: Sudholt, Dirk last_name: Sudholt - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 citation: ama: Oliveto P, Paixao T, Pérez Heredia J, Sudholt D, Trubenova B. How to escape local optima in black box optimisation when non elitism outperforms elitism. Algorithmica. 2018;80(5):1604-1633. doi:10.1007/s00453-017-0369-2 apa: Oliveto, P., Paixao, T., Pérez Heredia, J., Sudholt, D., & Trubenova, B. (2018). How to escape local optima in black box optimisation when non elitism outperforms elitism. Algorithmica. Springer. https://doi.org/10.1007/s00453-017-0369-2 chicago: Oliveto, Pietro, Tiago Paixao, Jorge Pérez Heredia, Dirk Sudholt, and Barbora Trubenova. “How to Escape Local Optima in Black Box Optimisation When Non Elitism Outperforms Elitism.” Algorithmica. Springer, 2018. https://doi.org/10.1007/s00453-017-0369-2. ieee: P. Oliveto, T. Paixao, J. Pérez Heredia, D. Sudholt, and B. Trubenova, “How to escape local optima in black box optimisation when non elitism outperforms elitism,” Algorithmica, vol. 80, no. 5. Springer, pp. 1604–1633, 2018. ista: Oliveto P, Paixao T, Pérez Heredia J, Sudholt D, Trubenova B. 2018. How to escape local optima in black box optimisation when non elitism outperforms elitism. Algorithmica. 80(5), 1604–1633. mla: Oliveto, Pietro, et al. “How to Escape Local Optima in Black Box Optimisation When Non Elitism Outperforms Elitism.” Algorithmica, vol. 80, no. 5, Springer, 2018, pp. 1604–33, doi:10.1007/s00453-017-0369-2. short: P. Oliveto, T. Paixao, J. Pérez Heredia, D. Sudholt, B. Trubenova, Algorithmica 80 (2018) 1604–1633. date_created: 2018-12-11T11:48:09Z date_published: 2018-05-01T00:00:00Z date_updated: 2023-09-11T14:11:35Z day: '01' ddc: - '576' department: - _id: NiBa - _id: CaGu doi: 10.1007/s00453-017-0369-2 ec_funded: 1 external_id: isi: - '000428239300010' file: - access_level: open_access checksum: 7d92f5d7be81e387edeec4f06442791c content_type: application/pdf creator: system date_created: 2018-12-12T10:08:14Z date_updated: 2020-07-14T12:47:54Z file_id: '4674' file_name: IST-2018-1014-v1+1_2018_Paixao_Escape.pdf file_size: 691245 relation: main_file file_date_updated: 2020-07-14T12:47:54Z has_accepted_license: '1' intvolume: ' 80' isi: 1 issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 1604 - 1633 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation publication: Algorithmica publication_status: published publisher: Springer publist_id: '6957' pubrep_id: '1014' quality_controlled: '1' scopus_import: '1' status: public title: How to escape local optima in black box optimisation when non elitism outperforms elitism tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 80 year: '2018' ... --- _id: '321' abstract: - lang: eng text: The twelve papers in this special section focus on learning systems with shared information for computer vision and multimedia communication analysis. In the real world, a realistic setting for computer vision or multimedia recognition problems is that we have some classes containing lots of training data and many classes containing a small amount of training data. Therefore, how to use frequent classes to help learning rare classes for which it is harder to collect the training data is an open question. Learning with shared information is an emerging topic in machine learning, computer vision and multimedia analysis. There are different levels of components that can be shared during concept modeling and machine learning stages, such as sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, etc. Regarding the specific methods, multi-task learning, transfer learning and deep learning can be seen as using different strategies to share information. These learning with shared information methods are very effective in solving real-world large-scale problems. article_processing_charge: No article_type: original author: - first_name: Trevor full_name: Darrell, Trevor last_name: Darrell - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 - first_name: Nico full_name: Sebe, Nico last_name: Sebe - first_name: Ying full_name: Wu, Ying last_name: Wu - first_name: Yan full_name: Yan, Yan last_name: Yan citation: ama: Darrell T, Lampert C, Sebe N, Wu Y, Yan Y. Guest editors’ introduction to the special section on learning with Shared information for computer vision and multimedia analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018;40(5):1029-1031. doi:10.1109/TPAMI.2018.2804998 apa: Darrell, T., Lampert, C., Sebe, N., Wu, Y., & Yan, Y. (2018). Guest editors’ introduction to the special section on learning with Shared information for computer vision and multimedia analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. https://doi.org/10.1109/TPAMI.2018.2804998 chicago: Darrell, Trevor, Christoph Lampert, Nico Sebe, Ying Wu, and Yan Yan. “Guest Editors’ Introduction to the Special Section on Learning with Shared Information for Computer Vision and Multimedia Analysis.” IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE, 2018. https://doi.org/10.1109/TPAMI.2018.2804998. ieee: T. Darrell, C. Lampert, N. Sebe, Y. Wu, and Y. Yan, “Guest editors’ introduction to the special section on learning with Shared information for computer vision and multimedia analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 5. IEEE, pp. 1029–1031, 2018. ista: Darrell T, Lampert C, Sebe N, Wu Y, Yan Y. 2018. Guest editors’ introduction to the special section on learning with Shared information for computer vision and multimedia analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence. 40(5), 1029–1031. mla: Darrell, Trevor, et al. “Guest Editors’ Introduction to the Special Section on Learning with Shared Information for Computer Vision and Multimedia Analysis.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 5, IEEE, 2018, pp. 1029–31, doi:10.1109/TPAMI.2018.2804998. short: T. Darrell, C. Lampert, N. Sebe, Y. Wu, Y. Yan, IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (2018) 1029–1031. date_created: 2018-12-11T11:45:48Z date_published: 2018-05-01T00:00:00Z date_updated: 2023-09-11T14:07:54Z day: '01' ddc: - '000' department: - _id: ChLa doi: 10.1109/TPAMI.2018.2804998 external_id: isi: - '000428901200001' file: - access_level: open_access checksum: b19c75da06faf3291a3ca47dfa50ef63 content_type: application/pdf creator: dernst date_created: 2020-05-14T12:50:48Z date_updated: 2020-07-14T12:46:03Z file_id: '7835' file_name: 2018_IEEE_Darrell.pdf file_size: 141724 relation: main_file file_date_updated: 2020-07-14T12:46:03Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 1029 - 1031 publication: IEEE Transactions on Pattern Analysis and Machine Intelligence publication_status: published publisher: IEEE publist_id: '7544' quality_controlled: '1' scopus_import: '1' status: public title: Guest editors' introduction to the special section on learning with Shared information for computer vision and multimedia analysis type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 40 year: '2018' ... --- _id: '9841' abstract: - lang: eng text: Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity. article_processing_charge: No author: - first_name: Mark C. full_name: Harrison, Mark C. last_name: Harrison - first_name: Evelien full_name: Jongepier, Evelien last_name: Jongepier - first_name: Hugh M. full_name: Robertson, Hugh M. last_name: Robertson - first_name: Nicolas full_name: Arning, Nicolas last_name: Arning - first_name: Tristan full_name: Bitard-Feildel, Tristan last_name: Bitard-Feildel - first_name: Hsu full_name: Chao, Hsu last_name: Chao - first_name: Christopher P. full_name: Childers, Christopher P. last_name: Childers - first_name: Huyen full_name: Dinh, Huyen last_name: Dinh - first_name: Harshavardhan full_name: Doddapaneni, Harshavardhan last_name: Doddapaneni - first_name: Shannon full_name: Dugan, Shannon last_name: Dugan - first_name: Johannes full_name: Gowin, Johannes last_name: Gowin - first_name: Carolin full_name: Greiner, Carolin last_name: Greiner - first_name: Yi full_name: Han, Yi last_name: Han - first_name: Haofu full_name: Hu, Haofu last_name: Hu - first_name: Daniel S. T. full_name: Hughes, Daniel S. T. last_name: Hughes - first_name: Ann K full_name: Huylmans, Ann K id: 4C0A3874-F248-11E8-B48F-1D18A9856A87 last_name: Huylmans orcid: 0000-0001-8871-4961 - first_name: Carsten full_name: Kemena, Carsten last_name: Kemena - first_name: Lukas P. M. full_name: Kremer, Lukas P. M. last_name: Kremer - first_name: Sandra L. full_name: Lee, Sandra L. last_name: Lee - first_name: Alberto full_name: Lopez-Ezquerra, Alberto last_name: Lopez-Ezquerra - first_name: Ludovic full_name: Mallet, Ludovic last_name: Mallet - first_name: Jose M. full_name: Monroy-Kuhn, Jose M. last_name: Monroy-Kuhn - first_name: Annabell full_name: Moser, Annabell last_name: Moser - first_name: Shwetha C. full_name: Murali, Shwetha C. last_name: Murali - first_name: Donna M. full_name: Muzny, Donna M. last_name: Muzny - first_name: Saria full_name: Otani, Saria last_name: Otani - first_name: Maria-Dolors full_name: Piulachs, Maria-Dolors last_name: Piulachs - first_name: Monica full_name: Poelchau, Monica last_name: Poelchau - first_name: Jiaxin full_name: Qu, Jiaxin last_name: Qu - first_name: Florentine full_name: Schaub, Florentine last_name: Schaub - first_name: Ayako full_name: Wada-Katsumata, Ayako last_name: Wada-Katsumata - first_name: Kim C. full_name: Worley, Kim C. last_name: Worley - first_name: Qiaolin full_name: Xie, Qiaolin last_name: Xie - first_name: Guillem full_name: Ylla, Guillem last_name: Ylla - first_name: Michael full_name: Poulsen, Michael last_name: Poulsen - first_name: Richard A. full_name: Gibbs, Richard A. last_name: Gibbs - first_name: Coby full_name: Schal, Coby last_name: Schal - first_name: Stephen full_name: Richards, Stephen last_name: Richards - first_name: Xavier full_name: Belles, Xavier last_name: Belles - first_name: Judith full_name: Korb, Judith last_name: Korb - first_name: Erich full_name: Bornberg-Bauer, Erich last_name: Bornberg-Bauer citation: ama: 'Harrison MC, Jongepier E, Robertson HM, et al. Data from: Hemimetabolous genomes reveal molecular basis of termite eusociality. 2018. doi:10.5061/dryad.51d4r' apa: 'Harrison, M. C., Jongepier, E., Robertson, H. M., Arning, N., Bitard-Feildel, T., Chao, H., … Bornberg-Bauer, E. (2018). Data from: Hemimetabolous genomes reveal molecular basis of termite eusociality. Dryad. https://doi.org/10.5061/dryad.51d4r' chicago: 'Harrison, Mark C., Evelien Jongepier, Hugh M. Robertson, Nicolas Arning, Tristan Bitard-Feildel, Hsu Chao, Christopher P. Childers, et al. “Data from: Hemimetabolous Genomes Reveal Molecular Basis of Termite Eusociality.” Dryad, 2018. https://doi.org/10.5061/dryad.51d4r.' ieee: 'M. C. Harrison et al., “Data from: Hemimetabolous genomes reveal molecular basis of termite eusociality.” Dryad, 2018.' ista: 'Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, Childers CP, Dinh H, Doddapaneni H, Dugan S, Gowin J, Greiner C, Han Y, Hu H, Hughes DST, Huylmans AK, Kemena C, Kremer LPM, Lee SL, Lopez-Ezquerra A, Mallet L, Monroy-Kuhn JM, Moser A, Murali SC, Muzny DM, Otani S, Piulachs M-D, Poelchau M, Qu J, Schaub F, Wada-Katsumata A, Worley KC, Xie Q, Ylla G, Poulsen M, Gibbs RA, Schal C, Richards S, Belles X, Korb J, Bornberg-Bauer E. 2018. Data from: Hemimetabolous genomes reveal molecular basis of termite eusociality, Dryad, 10.5061/dryad.51d4r.' mla: 'Harrison, Mark C., et al. Data from: Hemimetabolous Genomes Reveal Molecular Basis of Termite Eusociality. Dryad, 2018, doi:10.5061/dryad.51d4r.' short: M.C. Harrison, E. Jongepier, H.M. Robertson, N. Arning, T. Bitard-Feildel, H. Chao, C.P. Childers, H. Dinh, H. Doddapaneni, S. Dugan, J. Gowin, C. Greiner, Y. Han, H. Hu, D.S.T. Hughes, A.K. Huylmans, C. Kemena, L.P.M. Kremer, S.L. Lee, A. Lopez-Ezquerra, L. Mallet, J.M. Monroy-Kuhn, A. Moser, S.C. Murali, D.M. Muzny, S. Otani, M.-D. Piulachs, M. Poelchau, J. Qu, F. Schaub, A. Wada-Katsumata, K.C. Worley, Q. Xie, G. Ylla, M. Poulsen, R.A. Gibbs, C. Schal, S. Richards, X. Belles, J. Korb, E. Bornberg-Bauer, (2018). date_created: 2021-08-09T13:13:48Z date_published: 2018-12-12T00:00:00Z date_updated: 2023-09-11T14:10:56Z day: '12' department: - _id: BeVi doi: 10.5061/dryad.51d4r main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.51d4r month: '12' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '448' relation: used_in_publication status: public status: public title: 'Data from: Hemimetabolous genomes reveal molecular basis of termite eusociality' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2018' ... --- _id: '397' abstract: - lang: eng text: 'Concurrent sets with range query operations are highly desirable in applications such as in-memory databases. However, few set implementations offer range queries. Known techniques for augmenting data structures with range queries (or operations that can be used to build range queries) have numerous problems that limit their usefulness. For example, they impose high overhead or rely heavily on garbage collection. In this work, we show how to augment data structures with highly efficient range queries, without relying on garbage collection. We identify a property of epoch-based memory reclamation algorithms that makes them ideal for implementing range queries, and produce three algorithms, which use locks, transactional memory and lock-free techniques, respectively. Our algorithms are applicable to more data structures than previous work, and are shown to be highly efficient on a large scale Intel system. ' alternative_title: - PPoPP article_processing_charge: No author: - first_name: Maya full_name: Arbel Raviv, Maya last_name: Arbel Raviv - first_name: Trevor A full_name: Brown, Trevor A id: 3569F0A0-F248-11E8-B48F-1D18A9856A87 last_name: Brown citation: ama: 'Arbel Raviv M, Brown TA. Harnessing epoch-based reclamation for efficient range queries. In: Vol 53. ACM; 2018:14-27. doi:10.1145/3178487.3178489' apa: 'Arbel Raviv, M., & Brown, T. A. (2018). Harnessing epoch-based reclamation for efficient range queries (Vol. 53, pp. 14–27). Presented at the PPoPP: Principles and Practice of Parallel Programming, Vienna, Austria: ACM. https://doi.org/10.1145/3178487.3178489' chicago: Arbel Raviv, Maya, and Trevor A Brown. “Harnessing Epoch-Based Reclamation for Efficient Range Queries,” 53:14–27. ACM, 2018. https://doi.org/10.1145/3178487.3178489. ieee: 'M. Arbel Raviv and T. A. Brown, “Harnessing epoch-based reclamation for efficient range queries,” presented at the PPoPP: Principles and Practice of Parallel Programming, Vienna, Austria, 2018, vol. 53, no. 1, pp. 14–27.' ista: 'Arbel Raviv M, Brown TA. 2018. Harnessing epoch-based reclamation for efficient range queries. PPoPP: Principles and Practice of Parallel Programming, PPoPP, vol. 53, 14–27.' mla: Arbel Raviv, Maya, and Trevor A. Brown. Harnessing Epoch-Based Reclamation for Efficient Range Queries. Vol. 53, no. 1, ACM, 2018, pp. 14–27, doi:10.1145/3178487.3178489. short: M. Arbel Raviv, T.A. Brown, in:, ACM, 2018, pp. 14–27. conference: end_date: 2018-02-28 location: Vienna, Austria name: 'PPoPP: Principles and Practice of Parallel Programming' start_date: 2018-02-24 date_created: 2018-12-11T11:46:14Z date_published: 2018-02-10T00:00:00Z date_updated: 2023-09-11T14:10:25Z day: '10' department: - _id: DaAl doi: 10.1145/3178487.3178489 external_id: isi: - '000446161100002' intvolume: ' 53' isi: 1 issue: '1' language: - iso: eng month: '02' oa_version: None page: 14 - 27 publication_identifier: isbn: - 978-1-4503-4982-6 publication_status: published publisher: ACM publist_id: '7430' quality_controlled: '1' scopus_import: '1' status: public title: Harnessing epoch-based reclamation for efficient range queries type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 53 year: '2018' ... --- _id: '32' abstract: - lang: eng text: The functional role of AMPA receptor (AMPAR)-mediated synaptic signaling between neurons and oligodendrocyte precursor cells (OPCs) remains enigmatic. We modified the properties of AMPARs at axon-OPC synapses in the mouse corpus callosum in vivo during the peak of myelination by targeting the GluA2 subunit. Expression of the unedited (Ca2+ permeable) or the pore-dead GluA2 subunit of AMPARs triggered proliferation of OPCs and reduced their differentiation into oligodendrocytes. Expression of the cytoplasmic C-terminal (GluA2(813-862)) of the GluA2 subunit (C-tail), a modification designed to affect the interaction between GluA2 and AMPAR-binding proteins and to perturb trafficking of GluA2-containing AMPARs, decreased the differentiation of OPCs without affecting their proliferation. These findings suggest that ionotropic and non-ionotropic properties of AMPARs in OPCs, as well as specific aspects of AMPAR-mediated signaling at axon-OPC synapses in the mouse corpus callosum, are important for balancing the response of OPCs to proliferation and differentiation cues. In the brain, oligodendrocyte precursor cells (OPCs) receive glutamatergic AMPA-receptor-mediated synaptic input from neurons. Chen et al. show that modifying AMPA-receptor properties at axon-OPC synapses alters proliferation and differentiation of OPCs. This expands the traditional view of synaptic transmission by suggesting neurons also use synapses to modulate behavior of glia. acknowledgement: This work was supported by Deutsche Forschungsgemeinschaft (DFG) grant KU2569/1-1 (to M.K.); DFG project EXC307Centre for Integrative Neuroscience (CIN), including grant Pool Project 2011-12 (jointly to M.K. and I.E.); and the Charitable Hertie Foundation (to I.E.). CIN is an Excellence Cluster funded by the DFG within the framework of the Excellence Initiative for 2008–2018. M.K. is supported by the Tistou & Charlotte Kerstan Foundation. article_processing_charge: No author: - first_name: Ting full_name: Chen, Ting last_name: Chen - first_name: Bartosz full_name: Kula, Bartosz last_name: Kula - first_name: Balint full_name: Nagy, Balint id: 30F830CE-02D1-11E9-9BAA-DAF4881429F2 last_name: Nagy orcid: 0000-0002-4002-4686 - first_name: Ruxandra full_name: Barzan, Ruxandra last_name: Barzan - first_name: Andrea full_name: Gall, Andrea last_name: Gall - first_name: Ingrid full_name: Ehrlich, Ingrid last_name: Ehrlich - first_name: Maria full_name: Kukley, Maria last_name: Kukley citation: ama: Chen T, Kula B, Nagy B, et al. In Vivo regulation of Oligodendrocyte processor cell proliferation and differentiation by the AMPA-receptor Subunit GluA2. Cell Reports. 2018;25(4):852-861.e7. doi:10.1016/j.celrep.2018.09.066 apa: Chen, T., Kula, B., Nagy, B., Barzan, R., Gall, A., Ehrlich, I., & Kukley, M. (2018). In Vivo regulation of Oligodendrocyte processor cell proliferation and differentiation by the AMPA-receptor Subunit GluA2. Cell Reports. Elsevier. https://doi.org/10.1016/j.celrep.2018.09.066 chicago: Chen, Ting, Bartosz Kula, Balint Nagy, Ruxandra Barzan, Andrea Gall, Ingrid Ehrlich, and Maria Kukley. “In Vivo Regulation of Oligodendrocyte Processor Cell Proliferation and Differentiation by the AMPA-Receptor Subunit GluA2.” Cell Reports. Elsevier, 2018. https://doi.org/10.1016/j.celrep.2018.09.066. ieee: T. Chen et al., “In Vivo regulation of Oligodendrocyte processor cell proliferation and differentiation by the AMPA-receptor Subunit GluA2,” Cell Reports, vol. 25, no. 4. Elsevier, p. 852–861.e7, 2018. ista: Chen T, Kula B, Nagy B, Barzan R, Gall A, Ehrlich I, Kukley M. 2018. In Vivo regulation of Oligodendrocyte processor cell proliferation and differentiation by the AMPA-receptor Subunit GluA2. Cell Reports. 25(4), 852–861.e7. mla: Chen, Ting, et al. “In Vivo Regulation of Oligodendrocyte Processor Cell Proliferation and Differentiation by the AMPA-Receptor Subunit GluA2.” Cell Reports, vol. 25, no. 4, Elsevier, 2018, p. 852–861.e7, doi:10.1016/j.celrep.2018.09.066. short: T. Chen, B. Kula, B. Nagy, R. Barzan, A. Gall, I. Ehrlich, M. Kukley, Cell Reports 25 (2018) 852–861.e7. date_created: 2018-12-11T11:44:16Z date_published: 2018-10-23T00:00:00Z date_updated: 2023-09-11T14:13:32Z day: '23' ddc: - '570' department: - _id: SaSi doi: 10.1016/j.celrep.2018.09.066 external_id: isi: - '000448219500005' file: - access_level: open_access checksum: d9f74277fd57176e04732707d575cf08 content_type: application/pdf creator: dernst date_created: 2018-12-17T12:42:57Z date_updated: 2020-07-14T12:46:03Z file_id: '5703' file_name: 2018_CellReports_Chen.pdf file_size: 4461997 relation: main_file file_date_updated: 2020-07-14T12:46:03Z has_accepted_license: '1' intvolume: ' 25' isi: 1 issue: '4' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '10' oa: 1 oa_version: Published Version page: 852 - 861.e7 publication: Cell Reports publication_status: published publisher: Elsevier publist_id: '8023' quality_controlled: '1' scopus_import: '1' status: public title: In Vivo regulation of Oligodendrocyte processor cell proliferation and differentiation by the AMPA-receptor Subunit GluA2 tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 25 year: '2018' ... --- _id: '5672' abstract: - lang: eng text: The release of IgM is the first line of an antibody response and precedes the generation of high affinity IgG in germinal centers. Once secreted by freshly activated plasmablasts, IgM is released into the efferent lymph of reactive lymph nodes as early as 3 d after immunization. As pentameric IgM has an enormous size of 1,000 kD, its diffusibility is low, and one might wonder how it can pass through the densely lymphocyte-packed environment of a lymph node parenchyma in order to reach its exit. In this issue of JEM, Thierry et al. show that, in order to reach the blood stream, IgM molecules take a specific micro-anatomical route via lymph node conduits. article_processing_charge: No author: - first_name: Anne full_name: Reversat, Anne id: 35B76592-F248-11E8-B48F-1D18A9856A87 last_name: Reversat orcid: 0000-0003-0666-8928 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: Reversat A, Sixt MK. IgM’s exit route. Journal of Experimental Medicine. 2018;215(12):2959-2961. doi:10.1084/jem.20181934 apa: Reversat, A., & Sixt, M. K. (2018). IgM’s exit route. Journal of Experimental Medicine. Rockefeller University Press. https://doi.org/10.1084/jem.20181934 chicago: Reversat, Anne, and Michael K Sixt. “IgM’s Exit Route.” Journal of Experimental Medicine. Rockefeller University Press, 2018. https://doi.org/10.1084/jem.20181934. ieee: A. Reversat and M. K. Sixt, “IgM’s exit route,” Journal of Experimental Medicine, vol. 215, no. 12. Rockefeller University Press, pp. 2959–2961, 2018. ista: Reversat A, Sixt MK. 2018. IgM’s exit route. Journal of Experimental Medicine. 215(12), 2959–2961. mla: Reversat, Anne, and Michael K. Sixt. “IgM’s Exit Route.” Journal of Experimental Medicine, vol. 215, no. 12, Rockefeller University Press, 2018, pp. 2959–61, doi:10.1084/jem.20181934. short: A. Reversat, M.K. Sixt, Journal of Experimental Medicine 215 (2018) 2959–2961. date_created: 2018-12-16T22:59:18Z date_published: 2018-11-20T00:00:00Z date_updated: 2023-09-11T14:12:06Z day: '20' ddc: - '570' department: - _id: MiSi doi: 10.1084/jem.20181934 external_id: isi: - '000451920600002' file: - access_level: open_access checksum: 687beea1d64c213f4cb9e3c29ec11a14 content_type: application/pdf creator: dernst date_created: 2019-02-06T08:49:52Z date_updated: 2020-07-14T12:47:09Z file_id: '5931' file_name: 2018_JournalExperMed_Reversat.pdf file_size: 1216437 relation: main_file file_date_updated: 2020-07-14T12:47:09Z has_accepted_license: '1' intvolume: ' 215' isi: 1 issue: '12' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '11' oa: 1 oa_version: Published Version page: 2959-2961 publication: Journal of Experimental Medicine publication_identifier: issn: - '00221007' publication_status: published publisher: Rockefeller University Press quality_controlled: '1' scopus_import: '1' status: public title: IgM's exit route tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 215 year: '2018' ... --- _id: '398' abstract: - lang: eng text: 'Objective: To report long-term results after Pipeline Embolization Device (PED) implantation, characterize complex and standard aneurysms comprehensively, and introduce a modified flow disruption scale. Methods: We retrospectively reviewed a consecutive series of 40 patients harboring 59 aneurysms treated with 54 PEDs. Aneurysm complexity was assessed using our proposed classification. Immediate angiographic results were analyzed using previously published grading scales and our novel flow disruption scale. Results: According to our new definition, 46 (78%) aneurysms were classified as complex. Most PED interventions were performed in the paraophthalmic and cavernous internal carotid artery segments. Excellent neurologic outcome (modified Rankin Scale 0 and 1) was observed in 94% of patients. Our data showed low permanent procedure-related mortality (0%) and morbidity (3%) rates. Long-term angiographic follow-up showed complete occlusion in 81% and near-total obliteration in a further 14%. Complete obliteration after deployment of a single PED was achieved in all standard aneurysms with 1-year follow-up. Our new scale was an independent predictor of aneurysm occlusion in a multivariable analysis. All aneurysms with a high flow disruption grade showed complete occlusion at follow-up regardless of PED number or aneurysm complexity. Conclusions: Treatment with the PED should be recognized as a primary management strategy for a highly selected cohort with predominantly complex intracranial aneurysms. We further show that a priori assessment of aneurysm complexity and our new postinterventional angiographic flow disruption scale predict occlusion probability and may help to determine the adequate number of per-aneurysm devices.' article_processing_charge: No author: - first_name: Philippe full_name: Dodier, Philippe last_name: Dodier - first_name: Josa full_name: Frischer, Josa last_name: Frischer - first_name: Wei full_name: Wang, Wei last_name: Wang - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Ammar full_name: Mallouhi, Ammar last_name: Mallouhi - first_name: Wolfgang full_name: Serles, Wolfgang last_name: Serles - first_name: Andreas full_name: Gruber, Andreas last_name: Gruber - first_name: Engelbert full_name: Knosp, Engelbert last_name: Knosp - first_name: Gerhard full_name: Bavinzski, Gerhard last_name: Bavinzski citation: ama: Dodier P, Frischer J, Wang W, et al. Immediate flow disruption as a prognostic factor after flow diverter treatment long term experience with the pipeline embolization device. World Neurosurgery. 2018;13:e568-e578. doi:10.1016/j.wneu.2018.02.096 apa: Dodier, P., Frischer, J., Wang, W., Auzinger, T., Mallouhi, A., Serles, W., … Bavinzski, G. (2018). Immediate flow disruption as a prognostic factor after flow diverter treatment long term experience with the pipeline embolization device. World Neurosurgery. Elsevier. https://doi.org/10.1016/j.wneu.2018.02.096 chicago: Dodier, Philippe, Josa Frischer, Wei Wang, Thomas Auzinger, Ammar Mallouhi, Wolfgang Serles, Andreas Gruber, Engelbert Knosp, and Gerhard Bavinzski. “Immediate Flow Disruption as a Prognostic Factor after Flow Diverter Treatment Long Term Experience with the Pipeline Embolization Device.” World Neurosurgery. Elsevier, 2018. https://doi.org/10.1016/j.wneu.2018.02.096. ieee: P. Dodier et al., “Immediate flow disruption as a prognostic factor after flow diverter treatment long term experience with the pipeline embolization device,” World Neurosurgery, vol. 13. Elsevier, pp. e568–e578, 2018. ista: Dodier P, Frischer J, Wang W, Auzinger T, Mallouhi A, Serles W, Gruber A, Knosp E, Bavinzski G. 2018. Immediate flow disruption as a prognostic factor after flow diverter treatment long term experience with the pipeline embolization device. World Neurosurgery. 13, e568–e578. mla: Dodier, Philippe, et al. “Immediate Flow Disruption as a Prognostic Factor after Flow Diverter Treatment Long Term Experience with the Pipeline Embolization Device.” World Neurosurgery, vol. 13, Elsevier, 2018, pp. e568–78, doi:10.1016/j.wneu.2018.02.096. short: P. Dodier, J. Frischer, W. Wang, T. Auzinger, A. Mallouhi, W. Serles, A. Gruber, E. Knosp, G. Bavinzski, World Neurosurgery 13 (2018) e568–e578. date_created: 2018-12-11T11:46:15Z date_published: 2018-05-01T00:00:00Z date_updated: 2023-09-11T14:12:33Z day: '01' department: - _id: BeBi doi: 10.1016/j.wneu.2018.02.096 external_id: isi: - '000432942700070' intvolume: ' 13' isi: 1 language: - iso: eng month: '05' oa_version: None page: e568-e578 publication: World Neurosurgery publication_status: published publisher: Elsevier publist_id: '7431' quality_controlled: '1' scopus_import: '1' status: public title: Immediate flow disruption as a prognostic factor after flow diverter treatment long term experience with the pipeline embolization device type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 13 year: '2018' ... --- _id: '458' abstract: - lang: eng text: We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem. acknowledgement: DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”; People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) REA grant agreement n◦[291734] article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexander full_name: Bobenko, Alexander last_name: Bobenko citation: ama: Akopyan A, Bobenko A. Incircular nets and confocal conics. Transactions of the American Mathematical Society. 2018;370(4):2825-2854. doi:10.1090/tran/7292 apa: Akopyan, A., & Bobenko, A. (2018). Incircular nets and confocal conics. Transactions of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/tran/7292 chicago: Akopyan, Arseniy, and Alexander Bobenko. “Incircular Nets and Confocal Conics.” Transactions of the American Mathematical Society. American Mathematical Society, 2018. https://doi.org/10.1090/tran/7292. ieee: A. Akopyan and A. Bobenko, “Incircular nets and confocal conics,” Transactions of the American Mathematical Society, vol. 370, no. 4. American Mathematical Society, pp. 2825–2854, 2018. ista: Akopyan A, Bobenko A. 2018. Incircular nets and confocal conics. Transactions of the American Mathematical Society. 370(4), 2825–2854. mla: Akopyan, Arseniy, and Alexander Bobenko. “Incircular Nets and Confocal Conics.” Transactions of the American Mathematical Society, vol. 370, no. 4, American Mathematical Society, 2018, pp. 2825–54, doi:10.1090/tran/7292. short: A. Akopyan, A. Bobenko, Transactions of the American Mathematical Society 370 (2018) 2825–2854. date_created: 2018-12-11T11:46:35Z date_published: 2018-04-01T00:00:00Z date_updated: 2023-09-11T14:19:12Z day: '01' department: - _id: HeEd doi: 10.1090/tran/7292 ec_funded: 1 external_id: isi: - '000423197800019' intvolume: ' 370' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1602.04637 month: '04' oa: 1 oa_version: Preprint page: 2825 - 2854 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Transactions of the American Mathematical Society publication_status: published publisher: American Mathematical Society publist_id: '7363' quality_controlled: '1' scopus_import: '1' status: public title: Incircular nets and confocal conics type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 370 year: '2018' ...