TY - CHAP AB - Biosensors that exploit Forster resonance energy transfer (FRET) can be used to visualize biological and physiological processes and are capable of providing detailed information in both spatial and temporal dimensions. In a FRET-based biosensor, substrate binding is associated with a change in the relative positions of two fluorophores, leading to a change in FRET efficiency that may be observed in the fluorescence spectrum. As a result, their design requires a ligand-binding protein that exhibits a conformational change upon binding. However, not all ligand-binding proteins produce responsive sensors upon conjugation to fluorescent proteins or dyes, and identifying the optimum locations for the fluorophores often involves labor-intensive iterative design or high-throughput screening. Combining the genetic fusion of a fluorescent protein to the ligand-binding protein with site-specific covalent attachment of a fluorescent dye can allow fine control over the positions of the two fluorophores, allowing the construction of very sensitive sensors. This relies upon the accurate prediction of the locations of the two fluorophores in bound and unbound states. In this chapter, we describe a method for computational identification of dye-attachment sites that allows the use of cysteine modification to attach synthetic dyes that can be paired with a fluorescent protein for the purposes of creating FRET sensors. AU - Mitchell, Joshua AU - Zhang, William AU - Herde, Michel AU - Henneberger, Christian AU - Janovjak, Harald L AU - O'Mara, Megan AU - Jackson, Colin ED - Stein, Viktor ID - 958 SN - 10643745 T2 - Synthetic Protein Switches TI - Method for developing optical sensors using a synthetic dye fluorescent protein FRET pair and computational modeling and assessment VL - 1596 ER - TY - GEN AB - Branching morphogenesis of the epithelial ureteric bud forms the renal collecting duct system and is critical for normal nephron number, while low nephron number is implicated in hypertension and renal disease. Ureteric bud growth and branching requires GDNF signaling from the surrounding mesenchyme to cells at the ureteric bud tips, via the Ret receptor tyrosine kinase and coreceptor Gfrα1; Ret signaling up-regulates transcription factors Etv4 and Etv5, which are also critical for branching. Despite extensive knowledge of the genetic control of these events, it is not understood, at the cellular level, how renal branching morphogenesis is achieved or how Ret signaling influences epithelial cell behaviors to promote this process. Analysis of chimeric embryos previously suggested a role for Ret signaling in promoting cell rearrangements in the nephric duct, but this method was unsuited to study individual cell behaviors during ureteric bud branching. Here, we use Mosaic Analysis with Double Markers (MADM), combined with organ culture and time-lapse imaging, to trace the movements and divisions of individual ureteric bud tip cells. We first examine wild-type clones and then Ret or Etv4 mutant/wild-type clones in which the mutant and wild-type sister cells are differentially and heritably marked by green and red fluorescent proteins. We find that, in normal kidneys, most individual tip cells behave as self-renewing progenitors, some of whose progeny remain at the tips while others populate the growing UB trunks. In Ret or Etv4 MADM clones, the wild-type cells generated at a UB tip are much more likely to remain at, or move to, the new tips during branching and elongation, while their Ret−/− or Etv4−/− sister cells tend to lag behind and contribute only to the trunks. By tracking successive mitoses in a cell lineage, we find that Ret signaling has little effect on proliferation, in contrast to its effects on cell movement. Our results show that Ret/Etv4 signaling promotes directed cell movements in the ureteric bud tips, and suggest a model in which these cell movements mediate branching morphogenesis. AU - Riccio, Paul AU - Cebrián, Christina AU - Zong, Hui AU - Hippenmeyer, Simon AU - Costantini, Frank ID - 9707 TI - Data from: Ret and Etv4 promote directed movements of progenitor cells during renal branching morphogenesis ER - TY - GEN AU - Nikolic, Nela AU - Schreiber, Frank AU - Dal Co, Alma AU - Kiviet, Daniel AU - Bergmiller, Tobias AU - Littmann, Sten AU - Kuypers, Marcel AU - Ackermann, Martin ID - 9844 TI - Source data for figures and tables ER - TY - GEN AU - Schlögl, Alois AU - Kiss, Janos ID - 12905 T2 - AHPC17 – Austrian HPC Meeting 2017 TI - Scientific Computing at IST Austria ER - TY - CONF AB - Transforming deterministic ω -automata into deterministic parity automata is traditionally done using variants of appearance records. We present a more efficient variant of this approach, tailored to Rabin automata, and several optimizations applicable to all appearance records. We compare the methods experimentally and find out that our method produces smaller automata than previous approaches. Moreover, the experiments demonstrate the potential of our method for LTL synthesis, using LTL-to-Rabin translators. It leads to significantly smaller parity automata when compared to state-of-the-art approaches on complex formulae. AU - Kretinsky, Jan AU - Meggendorfer, Tobias AU - Waldmann, Clara AU - Weininger, Maximilian ID - 13160 SN - 0302-9743 T2 - Tools and Algorithms for the Construction and Analysis of Systems TI - Index appearance record for transforming Rabin automata into parity automata VL - 10205 ER - TY - CONF AB - Two-player games on graphs are widely studied in formal methods as they model the interaction between a system and its environment. The game is played by moving a token throughout a graph to produce an infinite path. There are several common modes to determine how the players move the token through the graph; e.g., in turn-based games the players alternate turns in moving the token. We study the bidding mode of moving the token, which, to the best of our knowledge, has never been studied in infinite-duration games. Both players have separate budgets, which sum up to $1$. In each turn, a bidding takes place. Both players submit bids simultaneously, and a bid is legal if it does not exceed the available budget. The winner of the bidding pays his bid to the other player and moves the token. For reachability objectives, repeated bidding games have been studied and are called Richman games. There, a central question is the existence and computation of threshold budgets; namely, a value t\in [0,1] such that if\PO's budget exceeds $t$, he can win the game, and if\PT's budget exceeds 1-t, he can win the game. We focus on parity games and mean-payoff games. We show the existence of threshold budgets in these games, and reduce the problem of finding them to Richman games. We also determine the strategy-complexity of an optimal strategy. Our most interesting result shows that memoryless strategies suffice for mean-payoff bidding games. AU - Avni, Guy AU - Henzinger, Thomas A AU - Chonev, Ventsislav K ID - 950 SN - 1868-8969 TI - Infinite-duration bidding games VL - 85 ER - TY - CONF AB - Given a triangulation of a point set in the plane, a flip deletes an edge e whose removal leaves a convex quadrilateral, and replaces e by the opposite diagonal of the quadrilateral. It is well known that any triangulation of a point set can be reconfigured to any other triangulation by some sequence of flips. We explore this question in the setting where each edge of a triangulation has a label, and a flip transfers the label of the removed edge to the new edge. It is not true that every labelled triangulation of a point set can be reconfigured to every other labelled triangulation via a sequence of flips, but we characterize when this is possible. There is an obvious necessary condition: for each label l, if edge e has label l in the first triangulation and edge f has label l in the second triangulation, then there must be some sequence of flips that moves label l from e to f, ignoring all other labels. Bose, Lubiw, Pathak and Verdonschot formulated the Orbit Conjecture, which states that this necessary condition is also sufficient, i.e. that all labels can be simultaneously mapped to their destination if and only if each label individually can be mapped to its destination. We prove this conjecture. Furthermore, we give a polynomial-time algorithm to find a sequence of flips to reconfigure one labelled triangulation to another, if such a sequence exists, and we prove an upper bound of O(n7) on the length of the flip sequence. Our proof uses the topological result that the sets of pairwise non-crossing edges on a planar point set form a simplicial complex that is homeomorphic to a high-dimensional ball (this follows from a result of Orden and Santos; we give a different proof based on a shelling argument). The dual cell complex of this simplicial ball, called the flip complex, has the usual flip graph as its 1-skeleton. We use properties of the 2-skeleton of the flip complex to prove the Orbit Conjecture. AU - Lubiw, Anna AU - Masárová, Zuzana AU - Wagner, Uli ID - 683 TI - A proof of the orbit conjecture for flipping edge labelled triangulations VL - 77 ER - TY - THES AB - This dissertation concerns the automatic verification of probabilistic systems and programs with arrays by statistical and logical methods. Although statistical and logical methods are different in nature, we show that they can be successfully combined for system analysis. In the first part of the dissertation we present a new statistical algorithm for the verification of probabilistic systems with respect to unbounded properties, including linear temporal logic. Our algorithm often performs faster than the previous approaches, and at the same time requires less information about the system. In addition, our method can be generalized to unbounded quantitative properties such as mean-payoff bounds. In the second part, we introduce two techniques for comparing probabilistic systems. Probabilistic systems are typically compared using the notion of equivalence, which requires the systems to have the equal probability of all behaviors. However, this notion is often too strict, since probabilities are typically only empirically estimated, and any imprecision may break the relation between processes. On the one hand, we propose to replace the Boolean notion of equivalence by a quantitative distance of similarity. For this purpose, we introduce a statistical framework for estimating distances between Markov chains based on their simulation runs, and we investigate which distances can be approximated in our framework. On the other hand, we propose to compare systems with respect to a new qualitative logic, which expresses that behaviors occur with probability one or a positive probability. This qualitative analysis is robust with respect to modeling errors and applicable to many domains. In the last part, we present a new quantifier-free logic for integer arrays, which allows us to express counting. Counting properties are prevalent in array-manipulating programs, however they cannot be expressed in the quantified fragments of the theory of arrays. We present a decision procedure for our logic, and provide several complexity results. AU - Daca, Przemyslaw ID - 1155 SN - 2663-337X TI - Statistical and logical methods for property checking ER - TY - THES AB - Bacteria and their pathogens – phages – are the most abundant living entities on Earth. Throughout their coevolution, bacteria have evolved multiple immune systems to overcome the ubiquitous threat from the phages. Although the molecu- lar details of these immune systems’ functions are relatively well understood, their epidemiological consequences for the phage-bacterial communities have been largely neglected. In this thesis we employed both experimental and theoretical methods to explore whether herd and social immunity may arise in bacterial popu- lations. Using our experimental system consisting of Escherichia coli strains with a CRISPR based immunity to the T7 phage we show that herd immunity arises in phage-bacterial communities and that it is accentuated when the populations are spatially structured. By fitting a mathematical model, we inferred expressions for the herd immunity threshold and the velocity of spread of a phage epidemic in partially resistant bacterial populations, which both depend on the bacterial growth rate, phage burst size and phage latent period. We also investigated the poten- tial for social immunity in Streptococcus thermophilus and its phage 2972 using a bioinformatic analysis of potentially coding short open reading frames with a signalling signature, encoded within the CRISPR associated genes. Subsequently, we tested one identified potentially signalling peptide and found that its addition to a phage-challenged culture increases probability of survival of bacteria two fold, although the results were only marginally significant. Together, these results demonstrate that the ubiquitous arms races between bacteria and phages have further consequences at the level of the population. AU - Payne, Pavel ID - 6291 SN - 2663-337X TI - Bacterial herd and social immunity to phages ER - TY - JOUR AB - Restriction–modification systems are widespread genetic elements that protect bacteria from bacteriophage infections by recognizing and cleaving heterologous DNA at short, well-defined sequences called restriction sites. Bioinformatic evidence shows that restriction sites are significantly underrepresented in bacteriophage genomes, presumably because bacteriophages with fewer restriction sites are more likely to escape cleavage by restriction–modification systems. However, how mutations in restriction sites affect the likelihood of bacteriophage escape is unknown. Using the bacteriophage l and the restriction–modification system EcoRI, we show that while mutation effects at different restriction sites are unequal, they are independent. As a result, the probability of bacteriophage escape increases with each mutated restriction site. Our results experimentally support the role of restriction site avoidance as a response to selection imposed by restriction–modification systems and offer an insight into the events underlying the process of bacteriophage escape. AU - Pleska, Maros AU - Guet, Calin C ID - 561 IS - 12 JF - Biology Letters SN - 1744-9561 TI - Effects of mutations in phage restriction sites during escape from restriction–modification VL - 13 ER - TY - THES AB - Antibiotics have diverse effects on bacteria, including massive changes in bacterial gene expression. Whereas the gene expression changes under many antibiotics have been measured, the temporal organization of these responses and their dependence on the bacterial growth rate are unclear. As described in Chapter 1, we quantified the temporal gene expression changes in the bacterium Escherichia coli in response to the sudden exposure to antibiotics using a fluorescent reporter library and a robotic system. Our data show temporally structured gene expression responses, with response times for individual genes ranging from tens of minutes to several hours. We observed that many stress response genes were activated in response to antibiotics. As certain stress responses cross-protect bacteria from other stressors, we then asked whether cellular responses to antibiotics have a similar protective role in Chapter 2. Indeed, we found that the trimethoprim-induced acid stress response protects bacteria from subsequent acid stress. We combined microfluidics with time-lapse imaging to monitor survival, intracellular pH, and acid stress response in single cells. This approach revealed that the variable expression of the acid resistance operon gadBC strongly correlates with single-cell survival time. Cells with higher gadBC expression following trimethoprim maintain higher intracellular pH and survive the acid stress longer. Overall, we provide a way to identify single-cell cross-protection between antibiotics and environmental stressors from temporal gene expression data, and show how antibiotics can increase bacterial fitness in changing environments. While gene expression changes to antibiotics show a clear temporal structure at the population-level, it is unclear whether this clear temporal order is followed by every single cell. Using dual-reporter strains described in Chapter 3, we measured gene expression dynamics of promoter pairs in the same cells using microfluidics and microscopy. Chapter 4 shows that the oxidative stress response and the DNA stress response showed little timing variability and a clear temporal order under the antibiotic nitrofurantoin. In contrast, the acid stress response under trimethoprim ran independently from all other activated response programs including the DNA stress response, which showed particularly high timing variability in this stress condition. In summary, this approach provides insight into the temporal organization of gene expression programs at the single-cell level and suggests dependencies between response programs and the underlying variability-introducing mechanisms. Altogether, this work advances our understanding of the diverse effects that antibiotics have on bacteria. These results were obtained by taking into account gene expression dynamics, which allowed us to identify general principles, molecular mechanisms, and dependencies between genes. Our findings may have implications for infectious disease treatments, and microbial communities in the human body and in nature. AU - Mitosch, Karin ID - 818 SN - 2663-337X TI - Timing, variability and cross-protection in bacteria – insights from dynamic gene expression responses to antibiotics ER - TY - JOUR AB - Antibiotics elicit drastic changes in microbial gene expression, including the induction of stress response genes. While certain stress responses are known to “cross-protect” bacteria from other stressors, it is unclear whether cellular responses to antibiotics have a similar protective role. By measuring the genome-wide transcriptional response dynamics of Escherichia coli to four antibiotics, we found that trimethoprim induces a rapid acid stress response that protects bacteria from subsequent exposure to acid. Combining microfluidics with time-lapse imaging to monitor survival and acid stress response in single cells revealed that the noisy expression of the acid resistance operon gadBC correlates with single-cell survival. Cells with higher gadBC expression following trimethoprim maintain higher intracellular pH and survive the acid stress longer. The seemingly random single-cell survival under acid stress can therefore be predicted from gadBC expression and rationalized in terms of GadB/C molecular function. Overall, we provide a roadmap for identifying the molecular mechanisms of single-cell cross-protection between antibiotics and other stressors. AU - Mitosch, Karin AU - Rieckh, Georg AU - Bollenbach, Tobias ID - 666 IS - 4 JF - Cell Systems SN - 24054712 TI - Noisy response to antibiotic stress predicts subsequent single cell survival in an acidic environment VL - 4 ER - TY - THES AB - This dissertation focuses on algorithmic aspects of program verification, and presents modeling and complexity advances on several problems related to the static analysis of programs, the stateless model checking of concurrent programs, and the competitive analysis of real-time scheduling algorithms. Our contributions can be broadly grouped into five categories. Our first contribution is a set of new algorithms and data structures for the quantitative and data-flow analysis of programs, based on the graph-theoretic notion of treewidth. It has been observed that the control-flow graphs of typical programs have special structure, and are characterized as graphs of small treewidth. We utilize this structural property to provide faster algorithms for the quantitative and data-flow analysis of recursive and concurrent programs. In most cases we make an algebraic treatment of the considered problem, where several interesting analyses, such as the reachability, shortest path, and certain kind of data-flow analysis problems follow as special cases. We exploit the constant-treewidth property to obtain algorithmic improvements for on-demand versions of the problems, and provide data structures with various tradeoffs between the resources spent in the preprocessing and querying phase. We also improve on the algorithmic complexity of quantitative problems outside the algebraic path framework, namely of the minimum mean-payoff, minimum ratio, and minimum initial credit for energy problems. Our second contribution is a set of algorithms for Dyck reachability with applications to data-dependence analysis and alias analysis. In particular, we develop an optimal algorithm for Dyck reachability on bidirected graphs, which are ubiquitous in context-insensitive, field-sensitive points-to analysis. Additionally, we develop an efficient algorithm for context-sensitive data-dependence analysis via Dyck reachability, where the task is to obtain analysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almost linear time, after which the contribution of the library in the complexity of the client analysis is (i)~linear in the number of call sites and (ii)~only logarithmic in the size of the whole library, as opposed to linear in the size of the whole library. Finally, we prove that Dyck reachability is Boolean Matrix Multiplication-hard in general, and the hardness also holds for graphs of constant treewidth. This hardness result strongly indicates that there exist no combinatorial algorithms for Dyck reachability with truly subcubic complexity. Our third contribution is the formalization and algorithmic treatment of the Quantitative Interprocedural Analysis framework. In this framework, the transitions of a recursive program are annotated as good, bad or neutral, and receive a weight which measures the magnitude of their respective effect. The Quantitative Interprocedural Analysis problem asks to determine whether there exists an infinite run of the program where the long-run ratio of the bad weights over the good weights is above a given threshold. We illustrate how several quantitative problems related to static analysis of recursive programs can be instantiated in this framework, and present some case studies to this direction. Our fourth contribution is a new dynamic partial-order reduction for the stateless model checking of concurrent programs. Traditional approaches rely on the standard Mazurkiewicz equivalence between traces, by means of partitioning the trace space into equivalence classes, and attempting to explore a few representatives from each class. We present a new dynamic partial-order reduction method called the Data-centric Partial Order Reduction (DC-DPOR). Our algorithm is based on a new equivalence between traces, called the observation equivalence. DC-DPOR explores a coarser partitioning of the trace space than any exploration method based on the standard Mazurkiewicz equivalence. Depending on the program, the new partitioning can be even exponentially coarser. Additionally, DC-DPOR spends only polynomial time in each explored class. Our fifth contribution is the use of automata and game-theoretic verification techniques in the competitive analysis and synthesis of real-time scheduling algorithms for firm-deadline tasks. On the analysis side, we leverage automata on infinite words to compute the competitive ratio of real-time schedulers subject to various environmental constraints. On the synthesis side, we introduce a new instance of two-player mean-payoff partial-information games, and show how the synthesis of an optimal real-time scheduler can be reduced to computing winning strategies in this new type of games. AU - Pavlogiannis, Andreas ID - 821 SN - 2663-337X TI - Algorithmic advances in program analysis and their applications ER - TY - THES AB - The lac operon is a classic model system for bacterial gene regulation, and has been studied extensively in E. coli, a classic model organism. However, not much is known about E. coli’s ecology and life outside the laboratory, in particular in soil and water environments. The natural diversity of the lac operon outside the laboratory, its role in the ecology of E. coli and the selection pressures it is exposed to, are similarly unknown. In Chapter Two of this thesis, I explore the genetic diversity, phylogenetic history and signatures of selection of the lac operon across 20 natural isolates of E. coli and divergent clades of Escherichia. I found that complete lac operons were present in all isolates examined, which in all but one case were functional. The lac operon phylogeny conformed to the whole-genome phylogeny of the divergent Escherichia clades, which excludes horizontal gene transfer as an explanation for the presence of functional lac operons in these clades. All lac operon genes showed a signature of purifying selection; this signature was strongest for the lacY gene. Lac operon genes of human and environmental isolates showed similar signatures of selection, except the lacZ gene, which showed a stronger signature of selection in environmental isolates. In Chapter Three, I try to identify the natural genetic variation relevant for phenotype and fitness in the lac operon, comparing growth rate on lactose and LacZ activity of the lac operons of these wild isolates in a common genetic background. Sequence variation in the lac promoter region, upstream of the -10 and -35 RNA polymerase binding motif, predicted variation in LacZ activity at full induction, using a thermodynamic model of polymerase binding (Tugrul, 2016). However, neither variation in LacZ activity, nor RNA polymerase binding predicted by the model correlated with variation in growth rate. Lac operons of human and environmental isolates did not differ systematically in either growth rate on lactose or LacZ protein activity, suggesting that these lac operons have been exposed to similar selection pressures. We thus have no evidence that the phenotypic variation we measured is relevant for fitness. To start assessing the effect of genomic background on the growth phenotype conferred by the lac operon, I compared growth on minimal medium with lactose between lac operon constructs and the corresponding original isolates, I found that maximal growth rate was determined by genomic background, with almost all backgrounds conferring higher growth rates than lab strain K12 MG1655. However, I found no evidence that the lactose concentration at which growth was half maximal depended on genomic background. AU - Jesse, Fabienne ID - 820 SN - 2663-337X TI - The lac operon in the wild ER - TY - THES AB - In this thesis we discuss the exact security of message authentications codes HMAC , NMAC , and PMAC . NMAC is a mode of operation which turns a fixed input-length keyed hash function f into a variable input-length function. A practical single-key variant of NMAC called HMAC is a very popular and widely deployed message authentication code (MAC). PMAC is a block-cipher based mode of operation, which also happens to be the most famous fully parallel MAC. NMAC was introduced by Bellare, Canetti and Krawczyk Crypto’96, who proved it to be a secure pseudorandom function (PRF), and thus also a MAC, under two assumptions. Unfortunately, for many instantiations of HMAC one of them has been found to be wrong. To restore the provable guarantees for NMAC , Bellare [Crypto’06] showed its security without this assumption. PMAC was introduced by Black and Rogaway at Eurocrypt 2002. If instantiated with a pseudorandom permutation over n -bit strings, PMAC constitutes a provably secure variable input-length PRF. For adversaries making q queries, each of length at most ` (in n -bit blocks), and of total length σ ≤ q` , the original paper proves an upper bound on the distinguishing advantage of O ( σ 2 / 2 n ), while the currently best bound is O ( qσ/ 2 n ). In this work we show that this bound is tight by giving an attack with advantage Ω( q 2 `/ 2 n ). In the PMAC construction one initially XORs a mask to every message block, where the mask for the i th block is computed as τ i := γ i · L , where L is a (secret) random value, and γ i is the i -th codeword of the Gray code. Our attack applies more generally to any sequence of γ i ’s which contains a large coset of a subgroup of GF (2 n ). As for NMAC , our first contribution is a simpler and uniform proof: If f is an ε -secure PRF (against q queries) and a δ - non-adaptively secure PRF (against q queries), then NMAC f is an ( ε + `qδ )-secure PRF against q queries of length at most ` blocks each. We also show that this ε + `qδ bound is basically tight by constructing an f for which an attack with advantage `qδ exists. Moreover, we analyze the PRF-security of a modification of NMAC called NI by An and Bellare that avoids the constant rekeying on multi-block messages in NMAC and allows for an information-theoretic analysis. We carry out such an analysis, obtaining a tight `q 2 / 2 c bound for this step, improving over the trivial bound of ` 2 q 2 / 2 c . Finally, we investigate, if the security of PMAC can be further improved by using τ i ’s that are k -wise independent, for k > 1 (the original has k = 1). We observe that the security of PMAC will not increase in general if k = 2, and then prove that the security increases to O ( q 2 / 2 n ), if the k = 4. Due to simple extension attacks, this is the best bound one can hope for, using any distribution on the masks. Whether k = 3 is already sufficient to get this level of security is left as an open problem. Keywords: Message authentication codes, Pseudorandom functions, HMAC, PMAC. AU - Rybar, Michal ID - 838 SN - 2663-337X TI - (The exact security of) Message authentication codes ER - TY - JOUR AB - PMAC is a simple and parallel block-cipher mode of operation, which was introduced by Black and Rogaway at Eurocrypt 2002. If instantiated with a (pseudo)random permutation over n-bit strings, PMAC constitutes a provably secure variable input-length (pseudo)random function. For adversaries making q queries, each of length at most l (in n-bit blocks), and of total length σ ≤ ql, the original paper proves an upper bound on the distinguishing advantage of Ο(σ2/2n), while the currently best bound is Ο (qσ/2n).In this work we show that this bound is tight by giving an attack with advantage Ω (q2l/2n). In the PMAC construction one initially XORs a mask to every message block, where the mask for the ith block is computed as τi := γi·L, where L is a (secret) random value, and γi is the i-th codeword of the Gray code. Our attack applies more generally to any sequence of γi’s which contains a large coset of a subgroup of GF(2n). We then investigate if the security of PMAC can be further improved by using τi’s that are k-wise independent, for k > 1 (the original distribution is only 1-wise independent). We observe that the security of PMAC will not increase in general, even if the masks are chosen from a 2-wise independent distribution, and then prove that the security increases to O(q<2/2n), if the τi are 4-wise independent. Due to simple extension attacks, this is the best bound one can hope for, using any distribution on the masks. Whether 3-wise independence is already sufficient to get this level of security is left as an open problem. AU - Gazi, Peter AU - Pietrzak, Krzysztof Z AU - Rybar, Michal ID - 6196 IS - 2 JF - IACR Transactions on Symmetric Cryptology TI - The exact security of PMAC VL - 2016 ER - TY - THES AB - The hippocampus is a key brain region for memory and notably for spatial memory, and is needed for both spatial working and reference memories. Hippocampal place cells selectively discharge in specific locations of the environment to form mnemonic represen tations of space. Several behavioral protocols have been designed to test spatial memory which requires the experimental subject to utilize working memory and reference memory. However, less is known about how these memory traces are presented in the hippo campus, especially considering tasks that require both spatial working and long -term reference memory demand. The aim of my thesis was to elucidate how spatial working memory, reference memory, and the combination of both are represented in the hippocampus. In this thesis, using a radial eight -arm maze, I examined how the combined demand on these memories influenced place cell assemblies while reference memories were partially updated by changing some of the reward- arms. This was contrasted with task varian ts requiring working or reference memories only. Reference memory update led to gradual place field shifts towards the rewards on the switched arms. Cells developed enhanced firing in passes between newly -rewarded arms as compared to those containing an unchanged reward. The working memory task did not show such gradual changes. Place assemblies on occasions replayed trajectories of the maze; at decision points the next arm choice was preferentially replayed in tasks needing reference memory while in the pure working memory task the previously visited arm was replayed. Hence trajectory replay only reflected the decision of the animal in tasks needing reference memory update. At the reward locations, in all three tasks outbound trajectories of the current arm were preferentially replayed, showing the animals’ next path to the center. At reward locations trajectories were replayed preferentially in reverse temporal order. Moreover, in the center reverse replay was seen in the working memory task but in the other tasks forward replay was seen. Hence, the direction of reactivation was determined by the goal locations so that part of the trajectory which was closer to the goal was reactivated later in an HSE while places further away from the goal were reactivated earlier. Altogether my work demonstrated that reference memory update triggers several levels of reorganization of the hippocampal cognitive map which are not seen in simpler working memory demand s. Moreover, hippocampus is likely to be involved in spatial decisions through reactivating planned trajectories when reference memory recall is required for such a decision. AU - Xu, Haibing ID - 837 SN - 2663-337X TI - Reactivation of the hippocampal cognitive map in goal-directed spatial tasks ER - TY - THES AB - The thesis encompasses several topics of plant cell biology which were studied in the model plant Arabidopsis thaliana. Chapter 1 concerns the plant hormone auxin and its polar transport through cells and tissues. The highly controlled, directional transport of auxin is facilitated by plasma membrane-localized transporters. Transporters from the PIN family direct auxin transport due to their polarized localizations at cell membranes. Substantial effort has been put into research on cellular trafficking of PIN proteins, which is thought to underlie their polar distribution. I participated in a forward genetic screen aimed at identifying novel regulators of PIN polarity. The screen yielded several genes which may be involved in PIN polarity regulation or participate in polar auxin transport by other means. Chapter 2 focuses on the endomembrane system, with particular attention to clathrin-mediated endocytosis. The project started with identification of several proteins that interact with clathrin light chains. Among them, I focused on two putative homologues of auxilin, which in non-plant systems is an endocytotic factor known for uncoating clathrin-coated vesicles in the final step of endocytosis. The body of my work consisted of an in-depth characterization of transgenic A. thaliana lines overexpressing these putative auxilins in an inducible manner. Overexpression of these proteins leads to an inhibition of endocytosis, as documented by imaging of cargoes and clathrin-related endocytic machinery. An extension of this work is an investigation into a concept of homeostatic regulation acting between distinct transport processes in the endomembrane system. With auxilin overexpressing lines, where endocytosis is blocked specifically, I made observations on the mutual relationship between two opposite trafficking processes of secretion and endocytosis. In Chapter 3, I analyze cortical microtubule arrays and their relationship to auxin signaling and polarized growth in elongating cells. In plants, microtubules are organized into arrays just below the plasma membrane, and it is thought that their function is to guide membrane-docked cellulose synthase complexes. These, in turn, influence cell wall structure and cell shape by directed deposition of cellulose fibres. In elongating cells, cortical microtubule arrays are able to reorient in relation to long cell axis, and these reorientations have been linked to cell growth and to signaling of growth-regulating factors such as auxin or light. In this chapter, I am addressing the causal relationship between microtubule array reorientation, growth, and auxin signaling. I arrive at a model where array reorientation is not guided by auxin directly, but instead is only controlled by growth, which, in turn, is regulated by auxin. AU - Adamowski, Maciek ID - 938 SN - 2663-337X TI - Investigations into cell polarity and trafficking in the plant model Arabidopsis thaliana ER - TY - THES AB - An instance of the Constraint Satisfaction Problem (CSP) is given by a finite set of variables, a finite domain of labels, and a set of constraints, each constraint acting on a subset of the variables. The goal is to find an assignment of labels to its variables that satisfies all constraints (or decide whether one exists). If we allow more general “soft” constraints, which come with (possibly infinite) costs of particular assignments, we obtain instances from a richer class called Valued Constraint Satisfaction Problem (VCSP). There the goal is to find an assignment with minimum total cost. In this thesis, we focus (assuming that P 6 = NP) on classifying computational com- plexity of CSPs and VCSPs under certain restricting conditions. Two results are the core content of the work. In one of them, we consider VCSPs parametrized by a constraint language, that is the set of “soft” constraints allowed to form the instances, and finish the complexity classification modulo (missing pieces of) complexity classification for analogously parametrized CSP. The other result is a generalization of Edmonds’ perfect matching algorithm. This generalization contributes to complexity classfications in two ways. First, it gives a new (largest known) polynomial-time solvable class of Boolean CSPs in which every variable may appear in at most two constraints and second, it settles full classification of Boolean CSPs with planar drawing (again parametrized by a constraint language). AU - Rolinek, Michal ID - 992 SN - 2663-337X TI - Complexity of constraint satisfaction ER - TY - JOUR AB - Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from a Poisson point process in ℝ n , we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and nonsingular intervals in the corresponding generalized discrete gradient. Observing connections with other probabilistic models, we obtain precise expressions for the expected numbers in low dimensions. In particular, we obtain the expected numbers of simplices in the Poisson–Delaunay mosaic in dimensions n ≤ 4. AU - Edelsbrunner, Herbert AU - Nikitenko, Anton AU - Reitzner, Matthias ID - 718 IS - 3 JF - Advances in Applied Probability SN - 00018678 TI - Expected sizes of poisson Delaunay mosaics and their discrete Morse functions VL - 49 ER - TY - CONF AB - Proofs of space (PoS) were suggested as more ecological and economical alternative to proofs of work, which are currently used in blockchain designs like Bitcoin. The existing PoS are based on rather sophisticated graph pebbling lower bounds. Much simpler and in several aspects more efficient schemes based on inverting random functions have been suggested, but they don’t give meaningful security guarantees due to existing time-memory trade-offs. In particular, Hellman showed that any permutation over a domain of size N can be inverted in time T by an algorithm that is given S bits of auxiliary information whenever (Formula presented). For functions Hellman gives a weaker attack with S2· T≈ N2 (e.g., S= T≈ N2/3). To prove lower bounds, one considers an adversary who has access to an oracle f: [ N] → [N] and can make T oracle queries. The best known lower bound is S· T∈ Ω(N) and holds for random functions and permutations. We construct functions that provably require more time and/or space to invert. Specifically, for any constant k we construct a function [N] → [N] that cannot be inverted unless Sk· T∈ Ω(Nk) (in particular, S= T≈ (Formula presented). Our construction does not contradict Hellman’s time-memory trade-off, because it cannot be efficiently evaluated in forward direction. However, its entire function table can be computed in time quasilinear in N, which is sufficient for the PoS application. Our simplest construction is built from a random function oracle g: [N] × [N] → [ N] and a random permutation oracle f: [N] → N] and is defined as h(x) = g(x, x′) where f(x) = π(f(x′)) with π being any involution without a fixed point, e.g. flipping all the bits. For this function we prove that any adversary who gets S bits of auxiliary information, makes at most T oracle queries, and inverts h on an ϵ fraction of outputs must satisfy S2· T∈ Ω(ϵ2N2). AU - Abusalah, Hamza M AU - Alwen, Joel F AU - Cohen, Bram AU - Khilko, Danylo AU - Pietrzak, Krzysztof Z AU - Reyzin, Leonid ID - 559 SN - 978-331970696-2 TI - Beyond Hellman’s time-memory trade-offs with applications to proofs of space VL - 10625 ER - TY - JOUR AB - For large random matrices X with independent, centered entries but not necessarily identical variances, the eigenvalue density of XX* is well-approximated by a deterministic measure on ℝ. We show that the density of this measure has only square and cubic-root singularities away from zero. We also extend the bulk local law in [5] to the vicinity of these singularities. AU - Alt, Johannes ID - 550 JF - Electronic Communications in Probability SN - 1083589X TI - Singularities of the density of states of random Gram matrices VL - 22 ER - TY - CONF AB - Despite researchers’ efforts in the last couple of decades, reachability analysis is still a challenging problem even for linear hybrid systems. Among the existing approaches, the most practical ones are mainly based on bounded-time reachable set over-approximations. For the purpose of unbounded-time analysis, one important strategy is to abstract the original system and find an invariant for the abstraction. In this paper, we propose an approach to constructing a new kind of abstraction called conic abstraction for affine hybrid systems, and to computing reachable sets based on this abstraction. The essential feature of a conic abstraction is that it partitions the state space of a system into a set of convex polyhedral cones which is derived from a uniform conic partition of the derivative space. Such a set of polyhedral cones is able to cut all trajectories of the system into almost straight segments so that every segment of a reach pipe in a polyhedral cone tends to be straight as well, and hence can be over-approximated tightly by polyhedra using similar techniques as HyTech or PHAVer. In particular, for diagonalizable affine systems, our approach can guarantee to find an invariant for unbounded reachable sets, which is beyond the capability of bounded-time reachability analysis tools. We implemented the approach in a tool and experiments on benchmarks show that our approach is more powerful than SpaceEx and PHAVer in dealing with diagonalizable systems. AU - Bogomolov, Sergiy AU - Giacobbe, Mirco AU - Henzinger, Thomas A AU - Kong, Hui ID - 647 SN - 978-331965764-6 TI - Conic abstractions for hybrid systems VL - 10419 ER - TY - CONF AB - Template polyhedra generalize intervals and octagons to polyhedra whose facets are orthogonal to a given set of arbitrary directions. They have been employed in the abstract interpretation of programs and, with particular success, in the reachability analysis of hybrid automata. While previously, the choice of directions has been left to the user or a heuristic, we present a method for the automatic discovery of directions that generalize and eliminate spurious counterexamples. We show that for the class of convex hybrid automata, i.e., hybrid automata with (possibly nonlinear) convex constraints on derivatives, such directions always exist and can be found using convex optimization. We embed our method inside a CEGAR loop, thus enabling the time-unbounded reachability analysis of an important and richer class of hybrid automata than was previously possible. We evaluate our method on several benchmarks, demonstrating also its superior efficiency for the special case of linear hybrid automata. AU - Bogomolov, Sergiy AU - Frehse, Goran AU - Giacobbe, Mirco AU - Henzinger, Thomas A ID - 631 SN - 978-366254576-8 TI - Counterexample guided refinement of template polyhedra VL - 10205 ER - TY - JOUR AB - We show that matrix elements of functions of N × N Wigner matrices fluctuate on a scale of order N−1/2 and we identify the limiting fluctuation. Our result holds for any function f of the matrix that has bounded variation thus considerably relaxing the regularity requirement imposed in [7, 11]. AU - Erdös, László AU - Schröder, Dominik J ID - 1144 JF - Electronic Communications in Probability TI - Fluctuations of functions of Wigner matrices VL - 21 ER - TY - JOUR AB - Color texture reproduction in 3D printing commonly ignores volumetric light transport (cross-talk) between surface points on a 3D print. Such light diffusion leads to significant blur of details and color bleeding, and is particularly severe for highly translucent resin-based print materials. Given their widely varying scattering properties, this cross-talk between surface points strongly depends on the internal structure of the volume surrounding each surface point. Existing scattering-aware methods use simplified models for light diffusion, and often accept the visual blur as an immutable property of the print medium. In contrast, our work counteracts heterogeneous scattering to obtain the impression of a crisp albedo texture on top of the 3D print, by optimizing for a fully volumetric material distribution that preserves the target appearance. Our method employs an efficient numerical optimizer on top of a general Monte-Carlo simulation of heterogeneous scattering, supported by a practical calibration procedure to obtain scattering parameters from a given set of printer materials. Despite the inherent translucency of the medium, we reproduce detailed surface textures on 3D prints. We evaluate our system using a commercial, five-tone 3D print process and compare against the printer’s native color texturing mode, demonstrating that our method preserves high-frequency features well without having to compromise on color gamut. AU - Elek, Oskar AU - Sumin, Denis AU - Zhang, Ran AU - Weyrich, Tim AU - Myszkowski, Karol AU - Bickel, Bernd AU - Wilkie, Alexander AU - Krivanek, Jaroslav ID - 486 IS - 6 JF - ACM Transactions on Graphics SN - 07300301 TI - Scattering-aware texture reproduction for 3D printing VL - 36 ER - TY - CONF AB - For many cryptographic primitives, it is relatively easy to achieve selective security (where the adversary commits a-priori to some of the choices to be made later in the attack) but appears difficult to achieve the more natural notion of adaptive security (where the adversary can make all choices on the go as the attack progresses). A series of several recent works shows how to cleverly achieve adaptive security in several such scenarios including generalized selective decryption (Panjwani, TCC ’07 and Fuchsbauer et al., CRYPTO ’15), constrained PRFs (Fuchsbauer et al., ASIACRYPT ’14), and Yao garbled circuits (Jafargholi and Wichs, TCC ’16b). Although the above works expressed vague intuition that they share a common technique, the connection was never made precise. In this work we present a new framework that connects all of these works and allows us to present them in a unified and simplified fashion. Moreover, we use the framework to derive a new result for adaptively secure secret sharing over access structures defined via monotone circuits. We envision that further applications will follow in the future. Underlying our framework is the following simple idea. It is well known that selective security, where the adversary commits to n-bits of information about his future choices, automatically implies adaptive security at the cost of amplifying the adversary’s advantage by a factor of up to 2n. However, in some cases the proof of selective security proceeds via a sequence of hybrids, where each pair of adjacent hybrids locally only requires some smaller partial information consisting of m ≪ n bits. The partial information needed might be completely different between different pairs of hybrids, and if we look across all the hybrids we might rely on the entire n-bit commitment. Nevertheless, the above is sufficient to prove adaptive security, at the cost of amplifying the adversary’s advantage by a factor of only 2m ≪ 2n. In all of our examples using the above framework, the different hybrids are captured by some sort of a graph pebbling game and the amount of information that the adversary needs to commit to in each pair of hybrids is bounded by the maximum number of pebbles in play at any point in time. Therefore, coming up with better strategies for proving adaptive security translates to various pebbling strategies for different types of graphs. AU - Jafargholi, Zahra AU - Kamath Hosdurg, Chethan AU - Klein, Karen AU - Komargodski, Ilan AU - Pietrzak, Krzysztof Z AU - Wichs, Daniel ED - Katz, Jonathan ED - Shacham, Hovav ID - 637 SN - 978-331963687-0 TI - Be adaptive avoid overcommitting VL - 10401 ER - TY - GEN AB - Mathematica notebooks used to generate figures. AU - Etheridge, Alison AU - Barton, Nicholas H ID - 9842 TI - Data for: Establishment in a new habitat by polygenic adaptation ER - TY - THES AB - Restriction-modification (RM) represents the simplest and possibly the most widespread mechanism of self/non-self discrimination in nature. In order to provide bacteria with immunity against bacteriophages and other parasitic genetic elements, RM systems rely on a balance between two enzymes: the restriction enzyme, which cleaves non-self DNA at specific restriction sites, and the modification enzyme, which tags the host’s DNA as self and thus protects it from cleavage. In this thesis, I use population and single-cell level experiments in combination with mathematical modeling to study different aspects of the interplay between RM systems, bacteria and bacteriophages. First, I analyze how mutations in phage restriction sites affect the probability of phage escape – an inherently stochastic process, during which phages accidently get modified instead of restricted. Next, I use single-cell experiments to show that RM systems can, with a low probability, attack the genome of their bacterial host and that this primitive form of autoimmunity leads to a tradeoff between the evolutionary cost and benefit of RM systems. Finally, I investigate the nature of interactions between bacteria, RM systems and temperate bacteriophages to find that, as a consequence of phage escape and its impact on population dynamics, RM systems can promote acquisition of symbiotic bacteriophages, rather than limit it. The results presented here uncover new fundamental biological properties of RM systems and highlight their importance in the ecology and evolution of bacteria, bacteriophages and their interactions. AU - Pleska, Maros ID - 202 SN - 2663-337X TI - Biology of restriction-modification systems at the single-cell and population level ER - TY - THES AB - The main objects considered in the present work are simplicial and CW-complexes with vertices forming a random point cloud. In particular, we consider a Poisson point process in R^n and study Delaunay and Voronoi complexes of the first and higher orders and weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the Čech complex. Further, we examine theDelaunay complex of a Poisson point process on the sphere S^n, as well as of a uniform point cloud, which is equivalent to the convex hull, providing a connection to the theory of random polytopes. Each of the complexes in question can be endowed with a radius function, which maps its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Applying and developing discrete Morse theory for these functions, joining it together with probabilistic and sometimes analytic machinery, and developing several integral geometric tools, we aim at getting the distributions of circumradii of typical cells. For all considered complexes, we are able to generalize and obtain up to constants the distribution of radii of typical intervals of all types. In low dimensions the constants can be computed explicitly, thus providing the explicit expressions for the expected numbers of cells. In particular, it allows to find the expected density of simplices of every dimension for a Poisson point process in R^4, whereas the result for R^3 was known already in 1970's. AU - Nikitenko, Anton ID - 6287 SN - 2663-337X TI - Discrete Morse theory for random complexes ER - TY - THES AB - Plant hormone auxin and its transport between cells belong to the most important mechanisms controlling plant development. Auxin itself could change localization of PINs and thereby control direction of its own flow. We performed an expression profiling experiment in Arabidopsis roots to identify potential regulators of PIN polarity which are transcriptionally regulated by auxin signalling. We identified several novel regulators and performed a detailed characterization of the transcription factor WRKY23 (At2g47260) and its role in auxin feedback on PIN polarity. Gain-of-function and dominant-negative mutants revealed that WRKY23 plays a crucial role in mediating the auxin effect on PIN polarity. In concordance, typical polar auxin transport processes such as gravitropism and leaf vascular pattern formation were disturbed by interfering with WRKY23 function. In order to identify direct targets of WRKY23, we performed consequential expression profiling experiments using a WRKY23 inducible gain-of-function line and dominant-negative WRKY23 line that is defunct in PIN re-arrangement. Among several genes mostly related to the groups of cell wall and defense process regulators, we identified LYSINE-HISTIDINE TRANSPORTER 1 (LHT1; At5g40780), a small amino acid permease gene from the amino acid/auxin permease family (AAAP), we present its detailed characterisation in auxin feedback on PIN repolarization, identified its transcriptional regulation, we propose a potential mechanism of its action. Moreover, we identified also a member of receptor-like protein kinase LRR-RLK (LEUCINE-RICH REPEAT TRANSMEMBRANE PROTEIN KINASE PROTEIN 1; LRRK1; At1g05700), which also affects auxin-dependent PIN re-arrangement. We described its transcriptional behaviour, subcellular localization. Based on global expression data, we tried to identify ligand responsible for mechanism of signalling and suggest signalling partner and interactors. Additionally, we described role of novel phytohormone group, strigolactone, in auxin-dependent PIN re-arrangement, that could be a fundament for future studies in this field. Our results provide first insights into an auxin transcriptional network targeting PIN localization and thus regulating plant development. We highlighted WRKY23 transcriptional network and characterised its mediatory role in plant development. We identified direct effectors of this network, LHT1 and LRRK1, and describe their roles in PIN re-arrangement and PIN-dependent auxin transport processes. AU - Prat, Tomas ID - 1127 SN - 2663-337X TI - Identification of novel regulators of PIN polarity and development of novel auxin sensor ER - TY - JOUR AB - The Ising model is one of the simplest and most famous models of interacting systems. It was originally proposed to model ferromagnetic interactions in statistical physics and is now widely used to model spatial processes in many areas such as ecology, sociology, and genetics, usually without testing its goodness-of-fit. Here, we propose an exact goodness-of-fit test for the finite-lattice Ising model. The theory of Markov bases has been developed in algebraic statistics for exact goodness-of-fit testing using a Monte Carlo approach. However, this beautiful theory has fallen short of its promise for applications, because finding a Markov basis is usually computationally intractable. We develop a Monte Carlo method for exact goodness-of-fit testing for the Ising model which avoids computing a Markov basis and also leads to a better connectivity of the Markov chain and hence to a faster convergence. We show how this method can be applied to analyze the spatial organization of receptors on the cell membrane. AU - Martin Del Campo Sanchez, Abraham AU - Cepeda Humerez, Sarah A AU - Uhler, Caroline ID - 2016 IS - 2 JF - Scandinavian Journal of Statistics SN - 03036898 TI - Exact goodness-of-fit testing for the Ising model VL - 44 ER - TY - JOUR AB - We consider N×N Hermitian random matrices H consisting of blocks of size M≥N6/7. The matrix elements are i.i.d. within the blocks, close to a Gaussian in the four moment matching sense, but their distribution varies from block to block to form a block-band structure, with an essential band width M. We show that the entries of the Green’s function G(z)=(H−z)−1 satisfy the local semicircle law with spectral parameter z=E+iη down to the real axis for any η≫N−1, using a combination of the supersymmetry method inspired by Shcherbina (J Stat Phys 155(3): 466–499, 2014) and the Green’s function comparison strategy. Previous estimates were valid only for η≫M−1. The new estimate also implies that the eigenvectors in the middle of the spectrum are fully delocalized. AU - Bao, Zhigang AU - Erdös, László ID - 1528 IS - 3-4 JF - Probability Theory and Related Fields SN - 01788051 TI - Delocalization for a class of random block band matrices VL - 167 ER - TY - JOUR AB - Phat is an open-source C. ++ library for the computation of persistent homology by matrix reduction, targeted towards developers of software for topological data analysis. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. We provide numerous different reduction strategies as well as data types to store and manipulate the boundary matrix. We compare the different combinations through extensive experimental evaluation and identify optimization techniques that work well in practical situations. We also compare our software with various other publicly available libraries for persistent homology. AU - Bauer, Ulrich AU - Kerber, Michael AU - Reininghaus, Jan AU - Wagner, Hubert ID - 1433 JF - Journal of Symbolic Computation SN - 07477171 TI - Phat - Persistent homology algorithms toolbox VL - 78 ER - TY - JOUR AB - We consider the problem of computing the set of initial states of a dynamical system such that there exists a control strategy to ensure that the trajectories satisfy a temporal logic specification with probability 1 (almost-surely). We focus on discrete-time, stochastic linear dynamics and specifications given as formulas of the Generalized Reactivity(1) fragment of Linear Temporal Logic over linear predicates in the states of the system. We propose a solution based on iterative abstraction-refinement, and turn-based 2-player probabilistic games. While the theoretical guarantee of our algorithm after any finite number of iterations is only a partial solution, we show that if our algorithm terminates, then the result is the set of all satisfying initial states. Moreover, for any (partial) solution our algorithm synthesizes witness control strategies to ensure almost-sure satisfaction of the temporal logic specification. While the proposed algorithm guarantees progress and soundness in every iteration, it is computationally demanding. We offer an alternative, more efficient solution for the reachability properties that decomposes the problem into a series of smaller problems of the same type. All algorithms are demonstrated on an illustrative case study. AU - Svoreňová, Mária AU - Kretinsky, Jan AU - Chmelik, Martin AU - Chatterjee, Krishnendu AU - Cěrná, Ivana AU - Belta, Cǎlin ID - 1407 IS - 2 JF - Nonlinear Analysis: Hybrid Systems TI - Temporal logic control for stochastic linear systems using abstraction refinement of probabilistic games VL - 23 ER - TY - JOUR AB - One of the major challenges in physically based modelling is making simulations efficient. Adaptive models provide an essential solution to these efficiency goals. These models are able to self-adapt in space and time, attempting to provide the best possible compromise between accuracy and speed. This survey reviews the adaptive solutions proposed so far in computer graphics. Models are classified according to the strategy they use for adaptation, from time-stepping and freezing techniques to geometric adaptivity in the form of structured grids, meshes and particles. Applications range from fluids, through deformable bodies, to articulated solids. AU - Manteaux, Pierre AU - Wojtan, Christopher J AU - Narain, Rahul AU - Redon, Stéphane AU - Faure, François AU - Cani, Marie ID - 1367 IS - 6 JF - Computer Graphics Forum SN - 01677055 TI - Adaptive physically based models in computer graphics VL - 36 ER - TY - JOUR AB - We present a computer-aided programming approach to concurrency. The approach allows programmers to program assuming a friendly, non-preemptive scheduler, and our synthesis procedure inserts synchronization to ensure that the final program works even with a preemptive scheduler. The correctness specification is implicit, inferred from the non-preemptive behavior. Let us consider sequences of calls that the program makes to an external interface. The specification requires that any such sequence produced under a preemptive scheduler should be included in the set of sequences produced under a non-preemptive scheduler. We guarantee that our synthesis does not introduce deadlocks and that the synchronization inserted is optimal w.r.t. a given objective function. The solution is based on a finitary abstraction, an algorithm for bounded language inclusion modulo an independence relation, and generation of a set of global constraints over synchronization placements. Each model of the global constraints set corresponds to a correctness-ensuring synchronization placement. The placement that is optimal w.r.t. the given objective function is chosen as the synchronization solution. We apply the approach to device-driver programming, where the driver threads call the software interface of the device and the API provided by the operating system. Our experiments demonstrate that our synthesis method is precise and efficient. The implicit specification helped us find one concurrency bug previously missed when model-checking using an explicit, user-provided specification. We implemented objective functions for coarse-grained and fine-grained locking and observed that different synchronization placements are produced for our experiments, favoring a minimal number of synchronization operations or maximum concurrency, respectively. AU - Cerny, Pavol AU - Clarke, Edmund AU - Henzinger, Thomas A AU - Radhakrishna, Arjun AU - Ryzhyk, Leonid AU - Samanta, Roopsha AU - Tarrach, Thorsten ID - 1338 IS - 2-3 JF - Formal Methods in System Design TI - From non-preemptive to preemptive scheduling using synchronization synthesis VL - 50 ER - TY - JOUR AB - The behaviour of gene regulatory networks (GRNs) is typically analysed using simulation-based statistical testing-like methods. In this paper, we demonstrate that we can replace this approach by a formal verification-like method that gives higher assurance and scalability. We focus on Wagner’s weighted GRN model with varying weights, which is used in evolutionary biology. In the model, weight parameters represent the gene interaction strength that may change due to genetic mutations. For a property of interest, we synthesise the constraints over the parameter space that represent the set of GRNs satisfying the property. We experimentally show that our parameter synthesis procedure computes the mutational robustness of GRNs—an important problem of interest in evolutionary biology—more efficiently than the classical simulation method. We specify the property in linear temporal logic. We employ symbolic bounded model checking and SMT solving to compute the space of GRNs that satisfy the property, which amounts to synthesizing a set of linear constraints on the weights. AU - Giacobbe, Mirco AU - Guet, Calin C AU - Gupta, Ashutosh AU - Henzinger, Thomas A AU - Paixao, Tiago AU - Petrov, Tatjana ID - 1351 IS - 8 JF - Acta Informatica SN - 00015903 TI - Model checking the evolution of gene regulatory networks VL - 54 ER - TY - JOUR AB - Evolutionary algorithms (EAs) form a popular optimisation paradigm inspired by natural evolution. In recent years the field of evolutionary computation has developed a rigorous analytical theory to analyse the runtimes of EAs on many illustrative problems. Here we apply this theory to a simple model of natural evolution. In the Strong Selection Weak Mutation (SSWM) evolutionary regime the time between occurrences of new mutations is much longer than the time it takes for a mutated genotype to take over the population. In this situation, the population only contains copies of one genotype and evolution can be modelled as a stochastic process evolving one genotype by means of mutation and selection between the resident and the mutated genotype. The probability of accepting the mutated genotype then depends on the change in fitness. We study this process, SSWM, from an algorithmic perspective, quantifying its expected optimisation time for various parameters and investigating differences to a similar evolutionary algorithm, the well-known (1+1) EA. We show that SSWM can have a moderate advantage over the (1+1) EA at crossing fitness valleys and study an example where SSWM outperforms the (1+1) EA by taking advantage of information on the fitness gradient. AU - Paixao, Tiago AU - Pérez Heredia, Jorge AU - Sudholt, Dirk AU - Trubenova, Barbora ID - 1336 IS - 2 JF - Algorithmica SN - 01784617 TI - Towards a runtime comparison of natural and artificial evolution VL - 78 ER - TY - JOUR AB - We consider the local eigenvalue distribution of large self-adjoint N×N random matrices H=H∗ with centered independent entries. In contrast to previous works the matrix of variances sij=\mathbbmE|hij|2 is not assumed to be stochastic. Hence the density of states is not the Wigner semicircle law. Its possible shapes are described in the companion paper (Ajanki et al. in Quadratic Vector Equations on the Complex Upper Half Plane. arXiv:1506.05095). We show that as N grows, the resolvent, G(z)=(H−z)−1, converges to a diagonal matrix, diag(m(z)), where m(z)=(m1(z),…,mN(z)) solves the vector equation −1/mi(z)=z+∑jsijmj(z) that has been analyzed in Ajanki et al. (Quadratic Vector Equations on the Complex Upper Half Plane. arXiv:1506.05095). We prove a local law down to the smallest spectral resolution scale, and bulk universality for both real symmetric and complex hermitian symmetry classes. AU - Ajanki, Oskari H AU - Erdös, László AU - Krüger, Torben H ID - 1337 IS - 3-4 JF - Probability Theory and Related Fields SN - 01788051 TI - Universality for general Wigner-type matrices VL - 169 ER - TY - JOUR AB - We study controller synthesis problems for finite-state Markov decision processes, where the objective is to optimize the expected mean-payoff performance and stability (also known as variability in the literature). We argue that the basic notion of expressing the stability using the statistical variance of the mean payoff is sometimes insufficient, and propose an alternative definition. We show that a strategy ensuring both the expected mean payoff and the variance below given bounds requires randomization and memory, under both the above definitions. We then show that the problem of finding such a strategy can be expressed as a set of constraints. AU - Brázdil, Tomáš AU - Chatterjee, Krishnendu AU - Forejt, Vojtěch AU - Kučera, Antonín ID - 1294 JF - Journal of Computer and System Sciences TI - Trading performance for stability in Markov decision processes VL - 84 ER - TY - JOUR AB - Since 2006, reprogrammed cells have increasingly been used as a biomedical research technique in addition to neuro-psychiatric methods. These rapidly evolving techniques allow for the generation of neuronal sub-populations, and have sparked interest not only in monogenetic neuro-psychiatric diseases, but also in poly-genetic and poly-aetiological disorders such as schizophrenia (SCZ) and bipolar disorder (BPD). This review provides a summary of 19 publications on reprogrammed adult somatic cells derived from patients with SCZ, and five publications using this technique in patients with BPD. As both disorders are complex and heterogeneous, there is a plurality of hypotheses to be tested in vitro. In SCZ, data on alterations of dopaminergic transmission in vitro are sparse, despite the great explanatory power of the so-called DA hypothesis of SCZ. Some findings correspond to perturbations of cell energy metabolism, and observations in reprogrammed cells suggest neuro-developmental alterations. Some studies also report on the efficacy of medicinal compounds to revert alterations observed in cellular models. However, due to the paucity of replication studies, no comprehensive conclusions can be drawn from studies using reprogrammed cells at the present time. In the future, findings from cell culture methods need to be integrated with clinical, epidemiological, pharmacological and imaging data in order to generate a more comprehensive picture of SCZ and BPD. AU - Sauerzopf, Ulrich AU - Sacco, Roberto AU - Novarino, Gaia AU - Niello, Marco AU - Weidenauer, Ana AU - Praschak Rieder, Nicole AU - Sitte, Harald AU - Willeit, Matthaeus ID - 1228 IS - 1 JF - European Journal of Neuroscience TI - Are reprogrammed cells a useful tool for studying dopamine dysfunction in psychotic disorders? A review of the current evidence VL - 45 ER - TY - CHAP AB - Bacterial cytokinesis is commonly initiated by the Z-ring, a dynamic cytoskeletal structure that assembles at the site of division. Its primary component is FtsZ, a tubulin-like GTPase, that like its eukaryotic relative forms protein filaments in the presence of GTP. Since the discovery of the Z-ring 25 years ago, various models for the role of FtsZ have been suggested. However, important information about the architecture and dynamics of FtsZ filaments during cytokinesis is still missing. One reason for this lack of knowledge has been the small size of bacteria, which has made it difficult to resolve the orientation and dynamics of individual FtsZ filaments in the Z-ring. While superresolution microscopy experiments have helped to gain more information about the organization of the Z-ring in the dividing cell, they were not yet able to elucidate a mechanism of how FtsZ filaments reorganize during assembly and disassembly of the Z-ring. In this chapter, we explain how to use an in vitro reconstitution approach to investigate the self-organization of FtsZ filaments recruited to a biomimetic lipid bilayer by its membrane anchor FtsA. We show how to perform single-molecule experiments to study the behavior of individual FtsZ monomers during the constant reorganization of the FtsZ-FtsA filament network. We describe how to analyze the dynamics of single molecules and explain why this information can help to shed light onto possible mechanism of Z-ring constriction. We believe that similar experimental approaches will be useful to study the mechanism of membrane-based polymerization of other cytoskeletal systems, not only from prokaryotic but also eukaryotic origin. AU - Baranova, Natalia AU - Loose, Martin ED - Echard, Arnaud ID - 1213 SN - 0091679X T2 - Cytokinesis TI - Single-molecule measurements to study polymerization dynamics of FtsZ-FtsA copolymers VL - 137 ER - TY - JOUR AB - We consider a model of fermions interacting via point interactions, defined via a certain weighted Dirichlet form. While for two particles the interaction corresponds to infinite scattering length, the presence of further particles effectively decreases the interaction strength. We show that the model becomes trivial in the thermodynamic limit, in the sense that the free energy density at any given particle density and temperature agrees with the corresponding expression for non-interacting particles. AU - Moser, Thomas AU - Seiringer, Robert ID - 1198 IS - 3 JF - Letters in Mathematical Physics SN - 03779017 TI - Triviality of a model of particles with point interactions in the thermodynamic limit VL - 107 ER - TY - JOUR AB - The eigenvalue distribution of the sum of two large Hermitian matrices, when one of them is conjugated by a Haar distributed unitary matrix, is asymptotically given by the free convolution of their spectral distributions. We prove that this convergence also holds locally in the bulk of the spectrum, down to the optimal scales larger than the eigenvalue spacing. The corresponding eigenvectors are fully delocalized. Similar results hold for the sum of two real symmetric matrices, when one is conjugated by Haar orthogonal matrix. AU - Bao, Zhigang AU - Erdös, László AU - Schnelli, Kevin ID - 1207 IS - 3 JF - Communications in Mathematical Physics SN - 00103616 TI - Local law of addition of random matrices on optimal scale VL - 349 ER - TY - JOUR AB - We define the . model-measuring problem: given a model . M and specification . ϕ, what is the maximal distance . ρ such that all models . M' within distance . ρ from . M satisfy (or violate) . ϕ. The model-measuring problem presupposes a distance function on models. We concentrate on . automatic distance functions, which are defined by weighted automata. The model-measuring problem subsumes several generalizations of the classical model-checking problem, in particular, quantitative model-checking problems that measure the degree of satisfaction of a specification; robustness problems that measure how much a model can be perturbed without violating the specification; and parameter synthesis for hybrid systems. We show that for automatic distance functions, and (a) . ω-regular linear-time, (b) . ω-regular branching-time, and (c) hybrid specifications, the model-measuring problem can be solved.We use automata-theoretic model-checking methods for model measuring, replacing the emptiness question for word, tree, and hybrid automata by the . optimal-value question for the weighted versions of these automata. For automata over words and trees, we consider weighted automata that accumulate weights by maximizing, summing, discounting, and limit averaging. For hybrid automata, we consider monotonic (parametric) hybrid automata, a hybrid counterpart of (discrete) weighted automata.We give several examples of using the model-measuring problem to compute various notions of robustness and quantitative satisfaction for temporal specifications. Further, we propose the modeling framework for model measuring to ease the specification and reduce the likelihood of errors in modeling.Finally, we present a variant of the model-measuring problem, called the . model-repair problem. The model-repair problem applies to models that do not satisfy the specification; it can be used to derive restrictions, under which the model satisfies the specification, i.e., to repair the model. AU - Henzinger, Thomas A AU - Otop, Jan ID - 1196 JF - Nonlinear Analysis: Hybrid Systems TI - Model measuring for discrete and hybrid systems VL - 23 ER - TY - JOUR AB - Much of quantitative genetics is based on the ‘infinitesimal model’, under which selection has a negligible effect on the genetic variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift. In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to ~4Ne by the ‘drift load’, and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large Nes, substantial amounts of adaptation may be because of alleles in the infinitesimal regime, in which epistasis has modest effects. AU - Barton, Nicholas H ID - 1199 JF - Heredity TI - How does epistasis influence the response to selection? VL - 118 ER - TY - JOUR AB - We study parameter estimation in linear Gaussian covariance models, which are p-dimensional Gaussian models with linear constraints on the covariance matrix. Maximum likelihood estimation for this class of models leads to a non-convex optimization problem which typically has many local maxima. Using recent results on the asymptotic distribution of extreme eigenvalues of the Wishart distribution, we provide sufficient conditions for any hill climbing method to converge to the global maximum. Although we are primarily interested in the case in which n≫p, the proofs of our results utilize large sample asymptotic theory under the scheme n/p→γ>1. Remarkably, our numerical simulations indicate that our results remain valid for p as small as 2. An important consequence of this analysis is that, for sample sizes n≃14p, maximum likelihood estimation for linear Gaussian covariance models behaves as if it were a convex optimization problem. © 2016 The Royal Statistical Society and Blackwell Publishing Ltd. AU - Zwiernik, Piotr AU - Uhler, Caroline AU - Richards, Donald ID - 1208 IS - 4 JF - Journal of the Royal Statistical Society. Series B: Statistical Methodology SN - 13697412 TI - Maximum likelihood estimation for linear Gaussian covariance models VL - 79 ER - TY - CONF AB - Security of cryptographic applications is typically defined by security games. The adversary, within certain resources, cannot win with probability much better than 0 (for unpredictability applications, like one-way functions) or much better than 1/2 (indistinguishability applications for instance encryption schemes). In so called squared-friendly applications the winning probability of the adversary, for different values of the application secret randomness, is not only close to 0 or 1/2 on average, but also concentrated in the sense that its second central moment is small. The class of squared-friendly applications, which contains all unpredictability applications and many indistinguishability applications, is particularly important for key derivation. Barak et al. observed that for square-friendly applications one can beat the "RT-bound", extracting secure keys with significantly smaller entropy loss. In turn Dodis and Yu showed that in squared-friendly applications one can directly use a "weak" key, which has only high entropy, as a secure key. In this paper we give sharp lower bounds on square security assuming security for "weak" keys. We show that any application which is either (a) secure with weak keys or (b) allows for entropy savings for keys derived by universal hashing, must be square-friendly. Quantitatively, our lower bounds match the positive results of Dodis and Yu and Barak et al. (TCC\'13, CRYPTO\'11) Hence, they can be understood as a general characterization of squared-friendly applications. While the positive results on squared-friendly applications where derived by one clever application of the Cauchy-Schwarz Inequality, for tight lower bounds we need more machinery. In our approach we use convex optimization techniques and some theory of circular matrices. AU - Skórski, Maciej ID - 1174 SN - 18688969 TI - Lower bounds on key derivation for square-friendly applications VL - 66 ER - TY - CONF AB - The algorithm Argon2i-B of Biryukov, Dinu and Khovratovich is currently being considered by the IRTF (Internet Research Task Force) as a new de-facto standard for password hashing. An older version (Argon2i-A) of the same algorithm was chosen as the winner of the recent Password Hashing Competition. An important competitor to Argon2i-B is the recently introduced Balloon Hashing (BH) algorithm of Corrigan-Gibs, Boneh and Schechter. A key security desiderata for any such algorithm is that evaluating it (even using a custom device) requires a large amount of memory amortized across multiple instances. Alwen and Blocki (CRYPTO 2016) introduced a class of theoretical attacks against Argon2i-A and BH. While these attacks yield large asymptotic reductions in the amount of memory, it was not, a priori, clear if (1) they can be extended to the newer Argon2i-B, (2) the attacks are effective on any algorithm for practical parameter ranges (e.g., 1GB of memory) and (3) if they can be effectively instantiated against any algorithm under realistic hardware constrains. In this work we answer all three of these questions in the affirmative for all three algorithms. This is also the first work to analyze the security of Argon2i-B. In more detail, we extend the theoretical attacks of Alwen and Blocki (CRYPTO 2016) to the recent Argon2i-B proposal demonstrating severe asymptotic deficiencies in its security. Next we introduce several novel heuristics for improving the attack's concrete memory efficiency even when on-chip memory bandwidth is bounded. We then simulate our attacks on randomly sampled Argon2i-A, Argon2i-B and BH instances and measure the resulting memory consumption for various practical parameter ranges and for a variety of upperbounds on the amount of parallelism available to the attacker. Finally we describe, implement, and test a new heuristic for applying the Alwen-Blocki attack to functions employing a technique developed by Corrigan-Gibs et al. for improving concrete security of memory-hard functions. We analyze the collected data and show the effects various parameters have on the memory consumption of the attack. In particular, we can draw several interesting conclusions about the level of security provided by these functions. · For the Alwen-Blocki attack to fail against practical memory parameters, Argon2i-B must be instantiated with more than 10 passes on memory - beyond the "paranoid" parameter setting in the current IRTF proposal. · The technique of Corrigan-Gibs for improving security can also be overcome by the Alwen-Blocki attack under realistic hardware constraints. · On a positive note, both the asymptotic and concrete security of Argon2i-B seem to improve on that of Argon2i-A. AU - Alwen, Joel F AU - Blocki, Jeremiah ID - 1176 SN - 978-150905761-0 TI - Towards practical attacks on Argon2i and balloon hashing ER -