TY - CONF
AB - We present a new algorithm for enforcing incompressibility for Smoothed Particle Hydrodynamics (SPH) by preserving uniform density across the domain. We propose a hybrid method that uses a Poisson solve on a coarse grid to enforce a divergence free velocity ﬁeld, followed by a local density correction of the particles. This avoids typical grid artifacts and maintains the Lagrangian nature of SPH by directly transferring pressures onto particles. Our method can be easily integrated with existing SPH techniques such as the incompressible PCISPH method as well as weakly compressible SPH by adding an additional force term. We show that this hybrid method accelerates convergence towards uniform density and permits a signiﬁcantly larger time step compared to earlier approaches while producing similar results. We demonstrate our approach in a variety of scenarios with signiﬁcant pressure gradients such as splashing liquids.
AU - Raveendran, Karthik
AU - Wojtan, Christopher J
AU - Turk, Greg
ED - Spencer, Stephen
ID - 3298
TI - Hybrid smoothed particle hydrodynamics
ER -
TY - CONF
AB - We introduce propagation models, a formalism designed to support general and efficient data structures for the transient analysis of biochemical reaction networks. We give two use cases for propagation abstract data types: the uniformization method and numerical integration. We also sketch an implementation of a propagation abstract data type, which uses abstraction to approximate states.
AU - Henzinger, Thomas A
AU - Mateescu, Maria
ID - 3299
TI - Propagation models for computing biochemical reaction networks
ER -
TY - CONF
AB - The chemical master equation is a differential equation describing the time evolution of the probability distribution over the possible “states” of a biochemical system. The solution of this equation is of interest within the systems biology field ever since the importance of the molec- ular noise has been acknowledged. Unfortunately, most of the systems do not have analytical solutions, and numerical solutions suffer from the course of dimensionality and therefore need to be approximated. Here, we introduce the concept of tail approximation, which retrieves an approximation of the probabilities in the tail of a distribution from the total probability of the tail and its conditional expectation. This approximation method can then be used to numerically compute the solution of the chemical master equation on a subset of the state space, thus fighting the explosion of the state space, for which this problem is renowned.
AU - Henzinger, Thomas A
AU - Mateescu, Maria
ID - 3301
TI - Tail approximation for the chemical master equation
ER -
TY - CONF
AB - Cloud computing aims to give users virtually unlimited pay-per-use computing resources without the burden of managing the underlying infrastructure. We present a new job execution environment Flextic that exploits scal- able static scheduling techniques to provide the user with a flexible pricing model, such as a tradeoff between dif- ferent degrees of execution speed and execution price, and at the same time, reduce scheduling overhead for the cloud provider. We have evaluated a prototype of Flextic on Amazon EC2 and compared it against Hadoop. For various data parallel jobs from machine learning, im- age processing, and gene sequencing that we considered, Flextic has low scheduling overhead and reduces job du- ration by up to 15% compared to Hadoop, a dynamic cloud scheduler.
AU - Henzinger, Thomas A
AU - Singh, Anmol
AU - Singh, Vasu
AU - Wies, Thomas
AU - Zufferey, Damien
ID - 3302
TI - Static scheduling in clouds
ER -
TY - CHAP
AB - Alpha shapes have been conceived in 1981 as an attempt to define the shape of a finite set of point in the plane. Since then, connections to diverse areas in the sciences and engineering have developed, including to pattern recognition, digital shape sampling and processing, and structural molecular biology. This survey begins with a historical account and discusses geometric, algorithmic, topological, and combinatorial aspects of alpha shapes in this sequence.
AU - Herbert Edelsbrunner
ID - 3311
T2 - Tessellations in the Sciences
TI - Alpha shapes - a survey
ER -
TY - GEN
AB - We study the 3D reconstruction of plant roots from multiple 2D images. To meet the challenge caused by the delicate nature of thin branches, we make three innovations to cope with the sensitivity to image quality and calibration. First, we model the background as a harmonic function to improve the segmentation of the root in each 2D image. Second, we develop the concept of the regularized visual hull which reduces the effect of jittering and refraction by ensuring consistency with one 2D image. Third, we guarantee connectedness through adjustments to the 3D reconstruction that minimize global error. Our software is part of a biological phenotype/genotype study of agricultural root systems. It has been tested on more than 40 plant roots and results are promising in terms of reconstruction quality and efficiency.
AU - Zheng, Ying
AU - Gu, Steve
AU - Edelsbrunner, Herbert
AU - Tomasi, Carlo
AU - Benfey, Philip
ID - 3312
T2 - Proceedings of the IEEE International Conference on Computer Vision
TI - Detailed reconstruction of 3D plant root shape
ER -
TY - CONF
AB - Interpreting an image as a function on a compact sub- set of the Euclidean plane, we get its scale-space by diffu- sion, spreading the image over the entire plane. This gener- ates a 1-parameter family of functions alternatively defined as convolutions with a progressively wider Gaussian ker- nel. We prove that the corresponding 1-parameter family of persistence diagrams have norms that go rapidly to zero as time goes to infinity. This result rationalizes experimental observations about scale-space. We hope this will lead to targeted improvements of related computer vision methods.
AU - Chen, Chao
AU - Edelsbrunner, Herbert
ID - 3313
T2 - Proceedings of the IEEE International Conference on Computer Vision
TI - Diffusion runs low on persistence fast
ER -
TY - CONF
AB - We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance µ in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution shape P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(n log n)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. An alternative algorithm, based purely on rational arithmetic, answers the same deconstruction problem, up to an uncertainty parameter, and its running time depends on the parameter δ (in addition to the other input parameters: n, δ and the radius of the disk). If the input shape is found to be approximable, the rational-arithmetic algorithm also computes an approximate solution shape for the problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution shape P with at most one more vertex than a vertex-minimal one. Our study is motivated by applications from two different domains. However, since the offset operation has numerous uses, we anticipate that the reverse question that we study here will be still more broadly applicable. We present results obtained with our implementation of the rational-arithmetic algorithm.
AU - Berberich, Eric
AU - Halperin, Dan
AU - Kerber, Michael
AU - Pogalnikova, Roza
ID - 3329
T2 - Proceedings of the twenty-seventh annual symposium on Computational geometry
TI - Deconstructing approximate offsets
ER -
TY - CONF
AB - We consider the problem of approximating all real roots of a square-free polynomial f. Given isolating intervals, our algorithm refines each of them to a width at most 2-L, that is, each of the roots is approximated to L bits after the binary point. Our method provides a certified answer for arbitrary real polynomials, only requiring finite approximations of the polynomial coefficient and choosing a suitable working precision adaptively. In this way, we get a correct algorithm that is simple to implement and practically efficient. Our algorithm uses the quadratic interval refinement method; we adapt that method to be able to cope with inaccuracies when evaluating f, without sacrificing its quadratic convergence behavior. We prove a bound on the bit complexity of our algorithm in terms of degree, coefficient size and discriminant. Our bound improves previous work on integer polynomials by a factor of deg f and essentially matches best known theoretical bounds on root approximation which are obtained by very sophisticated algorithms.
AU - Kerber, Michael
AU - Sagraloff, Michael
ID - 3330
TI - Root refinement for real polynomials
ER -
TY - JOUR
AB - Given an algebraic hypersurface O in ℝd, how many simplices are necessary for a simplicial complex isotopic to O? We address this problem and the variant where all vertices of the complex must lie on O. We give asymptotically tight worst-case bounds for algebraic plane curves. Our results gradually improve known bounds in higher dimensions; however, the question for tight bounds remains unsolved for d ≥ 3.
AU - Kerber, Michael
AU - Sagraloff, Michael
ID - 3332
IS - 3
JF - Graphs and Combinatorics
TI - A note on the complexity of real algebraic hypersurfaces
VL - 27
ER -
TY - JOUR
AU - Edelsbrunner, Herbert
AU - Pach, János
AU - Ziegler, Günter
ID - 3334
IS - 1
JF - Discrete & Computational Geometry
TI - Letter from the new editors-in-chief
VL - 45
ER -
TY - CHAP
AB - We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic. The richer information content of Betti numbers goes along the availability of fast algorithms to compute them. For continuous density fields, we determine the scale-dependence of Betti numbers by invoking the cosmologically familiar filtration of sublevel or superlevel sets defined by density thresholds. For the discrete galaxy distribution, however, the analysis is based on the alpha shapes of the particles. These simplicial complexes constitute an ordered sequence of nested subsets of the Delaunay tessellation, a filtration defined by the scale parameter, α. As they are homotopy equivalent to the sublevel sets of the distance field, they are an excellent tool for assessing the topological structure of a discrete point distribution. In order to develop an intuitive understanding for the behavior of Betti numbers as a function of α, and their relation to the morphological patterns in the Cosmic Web, we first study them within the context of simple heuristic Voronoi clustering models. These can be tuned to consist of specific morphological elements of the Cosmic Web, i.e. clusters, filaments, or sheets. To elucidate the relative prominence of the various Betti numbers in different stages of morphological evolution, we introduce the concept of alpha tracks. Subsequently, we address the topology of structures emerging in the standard LCDM scenario and in cosmological scenarios with alternative dark energy content. The evolution of the Betti numbers is shown to reflect the hierarchical evolution of the Cosmic Web. We also demonstrate that the scale-dependence of the Betti numbers yields a promising measure of cosmological parameters, with a potential to help in determining the nature of dark energy and to probe primordial non-Gaussianities. We also discuss the expected Betti numbers as a function of the density threshold for superlevel sets of a Gaussian random field. Finally, we introduce the concept of persistent homology. It measures scale levels of the mass distribution and allows us to separate small from large scale features. Within the context of the hierarchical cosmic structure formation, persistence provides a natural formalism for a multiscale topology study of the Cosmic Web.
AU - Van De Weygaert, Rien
AU - Vegter, Gert
AU - Edelsbrunner, Herbert
AU - Jones, Bernard
AU - Pranav, Pratyush
AU - Park, Changbom
AU - Hellwing, Wojciech
AU - Eldering, Bob
AU - Kruithof, Nico
AU - Bos, Patrick
AU - Hidding, Johan
AU - Feldbrugge, Job
AU - Ten Have, Eline
AU - Van Engelen, Matti
AU - Caroli, Manuel
AU - Teillaud, Monique
ED - Gavrilova, Marina
ED - Tan, Kenneth
ED - Mostafavi, Mir
ID - 3335
T2 - Transactions on Computational Science XIV
TI - Alpha, Betti and the Megaparsec Universe: On the topology of the Cosmic Web
VL - 6970
ER -
TY - CONF
AB - In addition to being correct, a system should be robust, that is, it should behave reasonably even after receiving unexpected inputs. In this paper, we summarize two formal notions of robustness that we have introduced previously for reactive systems. One of the notions is based on assigning costs for failures on a user-provided notion of incorrect transitions in a specification. Here, we define a system to be robust if a finite number of incorrect inputs does not lead to an infinite number of incorrect outputs. We also give a more refined notion of robustness that aims to minimize the ratio of output failures to input failures. The second notion is aimed at liveness. In contrast to the previous notion, it has no concept of recovery from an error. Instead, it compares the ratio of the number of liveness constraints that the system violates to the number of liveness constraints that the environment violates.
AU - Bloem, Roderick
AU - Chatterjee, Krishnendu
AU - Greimel, Karin
AU - Henzinger, Thomas A
AU - Jobstmann, Barbara
ID - 3316
T2 - 6th IEEE International Symposium on Industrial and Embedded Systems
TI - Specification-centered robustness
ER -
TY - JOUR
AB - Parvalbumin is thought to act in a manner similar to EGTA, but how a slow Ca2+ buffer affects nanodomain-coupling regimes at GABAergic synapses is unclear. Direct measurements of parvalbumin concentration and paired recordings in rodent hippocampus and cerebellum revealed that parvalbumin affects synaptic dynamics only when expressed at high levels. Modeling suggests that, in high concentrations, parvalbumin may exert BAPTA-like effects, modulating nanodomain coupling via competition with local saturation of endogenous fixed buffers.
AU - Eggermann, Emmanuel
AU - Jonas, Peter M
ID - 3318
JF - Nature Neuroscience
TI - How the “slow” Ca(2+) buffer parvalbumin affects transmitter release in nanodomain coupling regimes at GABAergic synapses
VL - 15
ER -
TY - CONF
AB - We address the problem of metric learning for multi-view data, namely the construction of embedding projections from data in different representations into a shared feature space, such that the Euclidean distance in this space provides a meaningful within-view as well as between-view similarity. Our motivation stems from the problem of cross-media retrieval tasks, where the availability of a joint Euclidean distance function is a pre-requisite to allow fast, in particular hashing-based, nearest neighbor queries. We formulate an objective function that expresses the intuitive concept that matching samples are mapped closely together in the output space, whereas non-matching samples are pushed apart, no matter in which view they are available. The resulting optimization problem is not convex, but it can be decomposed explicitly into a convex and a concave part, thereby allowing efficient optimization using the convex-concave procedure. Experiments on an image retrieval task show that nearest-neighbor based cross-view retrieval is indeed possible, and the proposed technique improves the retrieval accuracy over baseline techniques.
AU - Quadrianto, Novi
AU - Lampert, Christoph
ID - 3319
TI - Learning multi-view neighborhood preserving projections
ER -
TY - JOUR
AB - Powerful statistical models that can be learned efficiently from large amounts of data are currently revolutionizing computer vision. These models possess a rich internal structure reflecting task-specific relations and constraints. This monograph introduces the reader to the most popular classes of structured models in computer vision. Our focus is discrete undirected graphical models which we cover in detail together with a description of algorithms for both probabilistic inference and maximum a posteriori inference. We discuss separately recently successful techniques for prediction in general structured models. In the second part of this monograph we describe methods for parameter learning where we distinguish the classic maximum likelihood based methods from the more recent prediction-based parameter learning methods. We highlight developments to enhance current models and discuss kernelized models and latent variable models. To make the monograph more practical and to provide links to further study we provide examples of successful application of many methods in the computer vision literature.
AU - Nowozin, Sebastian
AU - Lampert, Christoph
ID - 3320
IS - 3-4
JF - Foundations and Trends in Computer Graphics and Vision
TI - Structured learning and prediction in computer vision
VL - 6
ER -
TY - CONF
AB - Automated termination provers often use the following schema to prove that a program terminates: construct a relational abstraction of the program's transition relation and then show that the relational abstraction is well-founded. The focus of current tools has been on developing sophisticated techniques for constructing the abstractions while relying on known decidable logics (such as linear arithmetic) to express them. We believe we can significantly increase the class of programs that are amenable to automated termination proofs by identifying more expressive decidable logics for reasoning about well-founded relations. We therefore present a new decision procedure for reasoning about multiset orderings, which are among the most powerful orderings used to prove termination. We show that, using our decision procedure, one can automatically prove termination of natural abstractions of programs.
AU - Piskac, Ruzica
AU - Wies, Thomas
ED - Jhala, Ranjit
ED - Schmidt, David
ID - 3324
TI - Decision procedures for automating termination proofs
VL - 6538
ER -
TY - CONF
AB - We introduce streaming data string transducers that map input data strings to output data strings in a single left-to-right pass in linear time. Data strings are (unbounded) sequences of data values, tagged with symbols from a finite set, over a potentially infinite data do- main that supports only the operations of equality and ordering. The transducer uses a finite set of states, a finite set of variables ranging over the data domain, and a finite set of variables ranging over data strings. At every step, it can make decisions based on the next in- put symbol, updating its state, remembering the input data value in its data variables, and updating data-string variables by concatenat- ing data-string variables and new symbols formed from data vari- ables, while avoiding duplication. We establish that the problems of checking functional equivalence of two streaming transducers, and of checking whether a streaming transducer satisfies pre/post verification conditions specified by streaming acceptors over in- put/output data-strings, are in PSPACE. We identify a class of imperative and a class of functional pro- grams, manipulating lists of data items, which can be effectively translated to streaming data-string transducers. The imperative pro- grams dynamically modify a singly-linked heap by changing next- pointers of heap-nodes and by adding new nodes. The main re- striction specifies how the next-pointers can be used for traversal. We also identify an expressively equivalent fragment of functional programs that traverse a list using syntactically restricted recursive calls. Our results lead to algorithms for assertion checking and for checking functional equivalence of two programs, written possibly in different programming styles, for commonly used routines such as insert, delete, and reverse.
AU - Alur, Rajeev
AU - Cerny, Pavol
ID - 3325
IS - 1
TI - Streaming transducers for algorithmic verification of single pass list processing programs
VL - 46
ER -
TY - CONF
AB - Weighted automata map input words to numerical values. Ap- plications of weighted automata include formal verification of quantitative properties, as well as text, speech, and image processing. A weighted au- tomaton is defined with respect to a semiring. For the tropical semiring, the weight of a run is the sum of the weights of the transitions taken along the run, and the value of a word is the minimal weight of an accepting run on it. In the 90’s, Krob studied the decidability of problems on rational series defined with respect to the tropical semiring. Rational series are strongly related to weighted automata, and Krob’s results apply to them. In par- ticular, it follows from Krob’s results that the universality problem (that is, deciding whether the values of all words are below some threshold) is decidable for weighted automata defined with respect to the tropical semir- ing with domain ∪ {∞}, and that the equality problem is undecidable when the domain is ∪ {∞}. In this paper we continue the study of the borders of decidability in weighted automata, describe alternative and direct proofs of the above results, and tighten them further. Unlike the proofs of Krob, which are algebraic in their nature, our proofs stay in the terrain of state machines, and the reduction is from the halting problem of a two-counter machine. This enables us to significantly simplify Krob’s reasoning, make the un- decidability result accessible to the automata-theoretic community, and strengthen it to apply already to a very simple class of automata: all the states are accepting, there are no initial nor final weights, and all the weights on the transitions are from the set {−1, 0, 1}. The fact we work directly with the automata enables us to tighten also the decidability re- sults and to show that the universality problem for weighted automata defined with respect to the tropical semiring with domain ∪ {∞}, and in fact even with domain ≥0 ∪ {∞}, is PSPACE-complete. Our results thus draw a sharper picture about the decidability of decision problems for weighted automata, in both the front of containment vs. universality and the front of the ∪ {∞} vs. the ∪ {∞} domains.
AU - Almagor, Shaull
AU - Boker, Udi
AU - Kupferman, Orna
ID - 3326
TI - What’s decidable about weighted automata
VL - 6996
ER -
TY - CONF
AB - We report on a generic uni- and bivariate algebraic kernel that is publicly available with CGAL 3.7. It comprises complete, correct, though efficient state-of-the-art implementations on polynomials, roots of polynomial systems, and the support to analyze algebraic curves defined by bivariate polynomials. The kernel design is generic, that is, various number types and substeps can be exchanged. It is accompanied with a ready-to-use interface to enable arrangements induced by algebraic curves, that have already been used as basis for various geometric applications, as arrangements on Dupin cyclides or the triangulation of algebraic surfaces. We present two novel applications: arrangements of rotated algebraic curves and Boolean set operations on polygons bounded by segments of algebraic curves. We also provide experiments showing that our general implementation is competitive and even often clearly outperforms existing implementations that are explicitly tailored for specific types of non-linear curves that are available in CGAL.
AU - Berberich, Eric
AU - Hemmer, Michael
AU - Kerber, Michael
ID - 3328
TI - A generic algebraic kernel for non linear geometric applications
ER -
TY - CONF
AB - Playing table tennis is a difficult task for robots, especially due to their limitations of acceleration. A key bottleneck is the amount of time needed to reach the desired hitting position and velocity of the racket for returning the incoming ball. Here, it often does not suffice to simply extrapolate the ball's trajectory after the opponent returns it but more information is needed. Humans are able to predict the ball's trajectory based on the opponent's moves and, thus, have a considerable advantage. Hence, we propose to incorporate an anticipation system into robot table tennis players, which enables the robot to react earlier while the opponent is performing the striking movement. Based on visual observation of the opponent's racket movement, the robot can predict the aim of the opponent and adjust its movement generation accordingly. The policies for deciding how and when to react are obtained by reinforcement learning. We conduct experiments with an existing robot player to show that the learned reaction policy can significantly improve the performance of the overall system.
AU - Wang, Zhikun
AU - Lampert, Christoph
AU - Mülling, Katharina
AU - Schölkopf, Bernhard
AU - Peters, Jan
ID - 3337
TI - Learning anticipation policies for robot table tennis
ER -
TY - CONF
AB - We study multi-label prediction for structured output sets, a problem that occurs, for example, in object detection in images, secondary structure prediction in computational biology, and graph matching with symmetries. Conventional multilabel classification techniques are typically not applicable in this situation, because they require explicit enumeration of the label set, which is infeasible in case of structured outputs. Relying on techniques originally designed for single-label structured prediction, in particular structured support vector machines, results in reduced prediction accuracy, or leads to infeasible optimization problems. In this work we derive a maximum-margin training formulation for multi-label structured prediction that remains computationally tractable while achieving high prediction accuracy. It also shares most beneficial properties with single-label maximum-margin approaches, in particular formulation as a convex optimization problem, efficient working set training, and PAC-Bayesian generalization bounds.
AU - Lampert, Christoph
ID - 3163
TI - Maximum margin multi-label structured prediction
ER -
TY - GEN
AB - We study multi-label prediction for structured output spaces, a problem that occurs, for example, in object detection in images, secondary structure prediction in computational biology, and graph matching with symmetries. Conventional multi-label classification techniques are typically not applicable in this situation, because they require explicit enumeration of the label space, which is infeasible in case of structured outputs. Relying on techniques originally designed for single- label structured prediction, in particular structured support vector machines, results in reduced prediction accuracy, or leads to infeasible optimization problems. In this work we derive a maximum-margin training formulation for multi-label structured prediction that remains computationally tractable while achieving high prediction accuracy. It also shares most beneficial properties with single-label maximum-margin approaches, in particular a formulation as a convex optimization problem, efficient working set training, and PAC-Bayesian generalization bounds.
AU - Lampert, Christoph
ID - 3322
T2 - NIPS: Neural Information Processing Systems
TI - Maximum margin multi label structured prediction
ER -
TY - CONF
AB - We study Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) functions. We consider two different objectives, namely, expectation and satisfaction objectives. Given an MDP with k reward functions, in the expectation objective the goal is to maximize the expected limit-average value, and in the satisfaction objective the goal is to maximize the probability of runs such that the limit-average value stays above a given vector. We show that under the expectation objective, in contrast to the single-objective case, both randomization and memory are necessary for strategies, and that finite-memory randomized strategies are sufficient. Under the satisfaction objective, in contrast to the single-objective case, infinite memory is necessary for strategies, and that randomized memoryless strategies are sufficient for epsilon-approximation, for all epsilon>;0. We further prove that the decision problems for both expectation and satisfaction objectives can be solved in polynomial time and the trade-off curve (Pareto curve) can be epsilon-approximated in time polynomial in the size of the MDP and 1/epsilon, and exponential in the number of reward functions, for all epsilon>;0. Our results also reveal flaws in previous work for MDPs with multiple mean-payoff functions under the expectation objective, correct the flaws and obtain improved results.
AU - Brázdil, Tomáš
AU - Brožek, Václav
AU - Chatterjee, Krishnendu
AU - Forejt, Vojtěch
AU - Kučera, Antonín
ID - 3346
TI - Two views on multiple mean payoff objectives in Markov Decision Processes
ER -
TY - CONF
AB - The class of omega-regular languages provides a robust specification language in verification. Every omega-regular condition can be decomposed into a safety part and a liveness part. The liveness part ensures that something good happens "eventually". Finitary liveness was proposed by Alur and Henzinger as a stronger formulation of liveness. It requires that there exists an unknown, fixed bound b such that something good happens within b transitions. In this work we consider automata with finitary acceptance conditions defined by finitary Buchi, parity and Streett languages. We study languages expressible by such automata: we give their topological complexity and present a regular-expression characterization. We compare the expressive power of finitary automata and give optimal algorithms for classical decisions questions. We show that the finitary languages are Sigma 2-complete; we present a complete picture of the expressive power of various classes of automata with finitary and infinitary acceptance conditions; we show that the languages defined by finitary parity automata exactly characterize the star-free fragment of omega B-regular languages; and we show that emptiness is NLOGSPACE-complete and universality as well as language inclusion are PSPACE-complete for finitary parity and Streett automata.
AU - Chatterjee, Krishnendu
AU - Fijalkow, Nathanaël
ID - 3347
TI - Finitary languages
VL - 6638
ER -
TY - CONF
AB - We study synthesis of controllers for real-time systems, where the objective is to stay in a given safe set. The problem is solved by obtaining winning strategies in the setting of concurrent two-player timed automaton games with safety objectives. To prevent a player from winning by blocking time, we restrict each player to strategies that ensure that the player cannot be responsible for causing a zeno run. We construct winning strategies for the controller which require access only to (1) the system clocks (thus, controllers which require their own internal infinitely precise clocks are not necessary), and (2) a linear (in the number of clocks) number of memory bits. Precisely, we show that for safety objectives, a memory of size (3 · |C|+lg(|C|+1)) bits suffices for winning controller strategies, where C is the set of clocks of the timed automaton game, significantly improving the previous known exponential bound. We also settle the open question of whether winning region controller strategies require memory for safety objectives by showing with an example the necessity of memory for region strategies to win for safety objectives.
AU - Chatterjee, Krishnendu
AU - Prabhu, Vinayak
ID - 3348
TI - Synthesis of memory efficient real time controllers for safety objectives
ER -
TY - CONF
AB - Games on graphs provide a natural model for reactive non-terminating systems. In such games, the interaction of two players on an arena results in an infinite path that describes a run of the system. Different settings are used to model various open systems in computer science, as for instance turn-based or concurrent moves, and deterministic or stochastic transitions. In this paper, we are interested in turn-based games, and specifically in deterministic parity games and stochastic reachability games (also known as simple stochastic games). We present a simple, direct and efficient reduction from deterministic parity games to simple stochastic games: it yields an arena whose size is linear up to a logarithmic factor in size of the original arena.
AU - Chatterjee, Krishnendu
AU - Fijalkow, Nathanaël
ID - 3349
TI - A reduction from parity games to simple stochastic games
VL - 54
ER -
TY - CONF
AB - A controller for a discrete game with ω-regular objectives requires attention if, intuitively, it requires measuring the state and switching from the current control action. Minimum attention controllers are preferable in modern shared implementations of cyber-physical systems because they produce the least burden on system resources such as processor time or communication bandwidth. We give algorithms to compute minimum attention controllers for ω-regular objectives in imperfect information discrete two-player games. We show a polynomial-time reduction from minimum attention controller synthesis to synthesis of controllers for mean-payoff parity objectives in games of incomplete information. This gives an optimal EXPTIME-complete synthesis algorithm. We show that the minimum attention controller problem is decidable for infinite state systems with finite bisimulation quotients. In particular, the problem is decidable for timed and rectangular automata.
AU - Chatterjee, Krishnendu
AU - Majumdar, Ritankar
ED - Fahrenberg, Uli
ED - Tripakis, Stavros
ID - 3350
TI - Minimum attention controller synthesis for omega regular objectives
VL - 6919
ER -
TY - CONF
AB - In two-player games on graph, the players construct an infinite path through the game graph and get a reward computed by a payoff function over infinite paths. Over weighted graphs, the typical and most studied payoff functions compute the limit-average or the discounted sum of the rewards along the path. Besides their simple definition, these two payoff functions enjoy the property that memoryless optimal strategies always exist. In an attempt to construct other simple payoff functions, we define a class of payoff functions which compute an (infinite) weighted average of the rewards. This new class contains both the limit-average and the discounted sum functions, and we show that they are the only members of this class which induce memoryless optimal strategies, showing that there is essentially no other simple payoff functions.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
AU - Singh, Rohit
ED - Owe, Olaf
ED - Steffen, Martin
ED - Telle, Jan Arne
ID - 3351
TI - On memoryless quantitative objectives
VL - 6914
ER -
TY - JOUR
AB - Exploring the connection of biology with reactive systems to better understand living systems.
AU - Fisher, Jasmin
AU - Harel, David
AU - Henzinger, Thomas A
ID - 3352
IS - 10
JF - Communications of the ACM
TI - Biology as reactivity
VL - 54
ER -
TY - JOUR
AB - Compositional theories are crucial when designing large and complex systems from smaller components. In this work we propose such a theory for synchronous concurrent systems. Our approach follows so-called interface theories, which use game-theoretic interpretations of composition and refinement. These are appropriate for systems with distinct inputs and outputs, and explicit conditions on inputs that must be enforced during composition. Our interfaces model systems that execute in an infinite sequence of synchronous rounds. At each round, a contract must be satisfied. The contract is simply a relation specifying the set of valid input/output pairs. Interfaces can be composed by parallel, serial or feedback composition. A refinement relation between interfaces is defined, and shown to have two main properties: (1) it is preserved by composition, and (2) it is equivalent to substitutability, namely, the ability to replace an interface by another one in any context. Shared refinement and abstraction operators, corresponding to greatest lower and least upper bounds with respect to refinement, are also defined. Input-complete interfaces, that impose no restrictions on inputs, and deterministic interfaces, that produce a unique output for any legal input, are discussed as special cases, and an interesting duality between the two classes is exposed. A number of illustrative examples are provided, as well as algorithms to compute compositions, check refinement, and so on, for finite-state interfaces.
AU - Tripakis, Stavros
AU - Lickly, Ben
AU - Henzinger, Thomas A
AU - Lee, Edward
ID - 3353
IS - 4
JF - ACM Transactions on Programming Languages and Systems (TOPLAS)
TI - A theory of synchronous relational interfaces
VL - 33
ER -
TY - GEN
AB - Turn-based stochastic games and its important subclass Markov decision processes (MDPs) provide models for systems with both probabilistic and nondeterministic behaviors. We consider turn-based stochastic games with two classical quantitative objectives: discounted-sum and long-run average objectives. The game models and the quantitative objectives are widely used in probabilistic verification, planning, optimal inventory control, network protocol and performance analysis. Games and MDPs that model realistic systems often have very large state spaces, and probabilistic abstraction techniques are necessary to handle the state-space explosion. The commonly used full-abstraction techniques do not yield space-savings for systems that have many states with similar value, but does not necessarily have similar transition structure. A semi-abstraction technique, namely Magnifying-lens abstractions (MLA), that clusters states based on value only, disregarding differences in their transition relation was proposed for qualitative objectives (reachability and safety objectives). In this paper we extend the MLA technique to solve stochastic games with discounted-sum and long-run average objectives. We present the MLA technique based abstraction-refinement algorithm for stochastic games and MDPs with discounted-sum objectives. For long-run average objectives, our solution works for all MDPs and a sub-class of stochastic games where every state has the same value.
AU - Chatterjee, Krishnendu
AU - De Alfaro, Luca
AU - Pritam, Roy
ID - 3339
T2 - arXiv
TI - Magnifying lens abstraction for stochastic games with discounted and long-run average objectives
ER -
TY - CONF
AB - We consider Markov decision processes (MDPs) with ω-regular specifications given as parity objectives. We consider the problem of computing the set of almost-sure winning states from where the objective can be ensured with probability 1. The algorithms for the computation of the almost-sure winning set for parity objectives iteratively use the solutions for the almost-sure winning set for Büchi objectives (a special case of parity objectives). Our contributions are as follows: First, we present the first subquadratic symbolic algorithm to compute the almost-sure winning set for MDPs with Büchi objectives; our algorithm takes O(nm) symbolic steps as compared to the previous known algorithm that takes O(n 2) symbolic steps, where n is the number of states and m is the number of edges of the MDP. In practice MDPs often have constant out-degree, and then our symbolic algorithm takes O(nn) symbolic steps, as compared to the previous known O(n 2) symbolic steps algorithm. Second, we present a new algorithm, namely win-lose algorithm, with the following two properties: (a) the algorithm iteratively computes subsets of the almost-sure winning set and its complement, as compared to all previous algorithms that discover the almost-sure winning set upon termination; and (b) requires O(nK) symbolic steps, where K is the maximal number of edges of strongly connected components (scc’s) of the MDP. The win-lose algorithm requires symbolic computation of scc’s. Third, we improve the algorithm for symbolic scc computation; the previous known algorithm takes linear symbolic steps, and our new algorithm improves the constants associated with the linear number of steps. In the worst case the previous known algorithm takes 5·n symbolic steps, whereas our new algorithm takes 4 ·n symbolic steps.
AU - Chatterjee, Krishnendu
AU - Henzinger, Monika
AU - Joglekar, Manas
AU - Nisarg, Shah
ED - Gopalakrishnan, Ganesh
ED - Qadeer, Shaz
ID - 3342
TI - Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives
VL - 6806
ER -
TY - CONF
AB - We present faster and dynamic algorithms for the following problems arising in probabilistic verification: Computation of the maximal end-component (mec) decomposition of Markov decision processes (MDPs), and of the almost sure winning set for reachability and parity objectives in MDPs. We achieve the following running time for static algorithms in MDPs with graphs of n vertices and m edges: (1) O(m · min{ √m, n2/3 }) for the mec decomposition, improving the longstanding O(m·n) bound; (2) O(m·n2/3) for reachability objectives, improving the previous O(m · √m) bound for m > n4/3; and (3) O(m · min{ √m, n2/3 } · log(d)) for parity objectives with d priorities, improving the previous O(m · √m · d) bound. We also give incremental and decremental algorithms in linear time for mec decomposition and reachability objectives and O(m · log d) time for parity ob jectives.
AU - Chatterjee, Krishnendu
AU - Henzinger, Monika
ID - 3343
TI - Faster and dynamic algorithms for maximal end component decomposition and related graph problems in probabilistic verification
ER -
TY - CONF
AB - Games played on graphs provide the mathematical framework to analyze several important problems in computer science as well as mathematics, such as the synthesis problem of Church, model checking of open reactive systems and many others. On the basis of mode of interaction of the players these games can be classified as follows: (a) turn-based (players make moves in turns); and (b) concurrent (players make moves simultaneously). On the basis of the information available to the players these games can be classified as follows: (a) perfect-information (players have perfect view of the game); and (b) partial-information (players have partial view of the game). In this talk we will consider all these classes of games with reachability objectives, where the goal of one player is to reach a set of target vertices of the graph, and the goal of the opponent player is to prevent the player from reaching the target. We will survey the results for various classes of games, and the results range from linear time decision algorithms to EXPTIME-complete problems to undecidable problems.
AU - Chatterjee, Krishnendu
ED - Delzanno, Giorgo
ED - Potapov, Igor
ID - 3344
TI - Graph games with reachability objectives
VL - 6945
ER -
TY - CONF
AB - We consider two-player graph games whose objectives are request-response condition, i.e conjunctions of conditions of the form "if a state with property Rq is visited, then later a state with property Rp is visited". The winner of such games can be decided in EXPTIME and the problem is known to be NP-hard. In this paper, we close this gap by showing that this problem is, in fact, EXPTIME-complete. We show that the problem becomes PSPACE-complete if we only consider games played on DAGs, and NP-complete or PTIME-complete if there is only one player (depending on whether he wants to enforce or spoil the request-response condition). We also present near-optimal bounds on the memory needed to design winning strategies for each player, in each case.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Horn, Florian
ED - Dediu, Adrian-Horia
ED - Inenaga, Shunsuke
ED - Martín-Vide, Carlos
ID - 3357
TI - The complexity of request-response games
VL - 6638
ER -
TY - CONF
AB - The static scheduling problem often arises as a fundamental problem in real-time systems and grid computing. We consider the problem of statically scheduling a large job expressed as a task graph on a large number of computing nodes, such as a data center. This paper solves the large-scale static scheduling problem using abstraction refinement, a technique commonly used in formal verification to efficiently solve computationally hard problems. A scheduler based on abstraction refinement first attempts to solve the scheduling problem with abstract representations of the job and the computing resources. As abstract representations are generally small, the scheduling can be done reasonably fast. If the obtained schedule does not meet specified quality conditions (like data center utilization or schedule makespan) then the scheduler refines the job and data center abstractions and, again solves the scheduling problem. We develop different schedulers based on abstraction refinement. We implemented these schedulers and used them to schedule task graphs from various computing domains on simulated data centers with realistic topologies. We compared the speed of scheduling and the quality of the produced schedules with our abstraction refinement schedulers against a baseline scheduler that does not use any abstraction. We conclude that abstraction refinement techniques give a significant speed-up compared to traditional static scheduling heuristics, at a reasonable cost in the quality of the produced schedules. We further used our static schedulers in an actual system that we deployed on Amazon EC2 and compared it against the Hadoop dynamic scheduler for large MapReduce jobs. Our experiments indicate that there is great potential for static scheduling techniques.
AU - Henzinger, Thomas A
AU - Singh, Vasu
AU - Wies, Thomas
AU - Zufferey, Damien
ID - 3358
TI - Scheduling large jobs by abstraction refinement
ER -
TY - CONF
AB - Motivated by improvements in constraint-solving technology and by the increase of routinely available computational power, partial-program synthesis is emerging as an effective approach for increasing programmer productivity. The goal of the approach is to allow the programmer to specify a part of her intent imperatively (that is, give a partial program) and a part of her intent declaratively, by specifying which conditions need to be achieved or maintained. The task of the synthesizer is to construct a program that satisfies the specification. As an example, consider a partial program where threads access shared data without using any synchronization mechanism, and a declarative specification that excludes data races and deadlocks. The task of the synthesizer is then to place locks into the program code in order for the program to meet the specification.
In this paper, we argue that quantitative objectives are needed in partial-program synthesis in order to produce higher-quality programs, while enabling simpler specifications. Returning to the example, the synthesizer could construct a naive solution that uses one global lock for shared data. This can be prevented either by constraining the solution space further (which is error-prone and partly defeats the point of synthesis), or by optimizing a quantitative objective that models performance. Other quantitative notions useful in synthesis include fault tolerance, robustness, resource (memory, power) consumption, and information flow.
AU - Cerny, Pavol
AU - Henzinger, Thomas A
ID - 3359
TI - From boolean to quantitative synthesis
ER -
TY - CONF
AB - A discounted-sum automaton (NDA) is a nondeterministic finite automaton with edge weights, which values a run by the discounted sum of visited edge weights. More precisely, the weight in the i-th position of the run is divided by lambda^i, where the discount factor lambda is a fixed rational number greater than 1. Discounted summation is a common and useful measuring scheme, especially for infinite sequences, which reflects the assumption that earlier weights are more important than later weights. Determinizing automata is often essential, for example, in formal verification, where there are polynomial algorithms for comparing two deterministic NDAs, while the equivalence problem for NDAs is not known to be decidable. Unfortunately, however, discounted-sum automata are, in general, not determinizable: it is currently known that for every rational discount factor 1 < lambda < 2, there is an NDA with lambda (denoted lambda-NDA) that cannot be determinized. We provide positive news, showing that every NDA with an integral factor is determinizable. We also complete the picture by proving that the integers characterize exactly the discount factors that guarantee determinizability: we show that for every non-integral rational factor lambda, there is a nondeterminizable lambda-NDA. Finally, we prove that the class of NDAs with integral discount factors enjoys closure under the algebraic operations min, max, addition, and subtraction, which is not the case for general NDAs nor for deterministic NDAs. This shows that for integral discount factors, the class of NDAs forms an attractive specification formalism in quantitative formal verification. All our results hold equally for automata over finite words and for automata over infinite words.
AU - Boker, Udi
AU - Henzinger, Thomas A
ID - 3360
TI - Determinizing discounted-sum automata
VL - 12
ER -
TY - CONF
AB - In this paper, we investigate the computational complexity of quantitative information flow (QIF) problems. Information-theoretic quantitative relaxations of noninterference (based on Shannon entropy)have been introduced to enable more fine-grained reasoning about programs in situations where limited information flow is acceptable. The QIF bounding problem asks whether the information flow in a given program is bounded by a constant $d$. Our first result is that the QIF bounding problem is PSPACE-complete. The QIF memoryless synthesis problem asks whether it is possible to resolve nondeterministic choices in a given partial program in such a way that in the resulting deterministic program, the quantitative information flow is bounded by a given constant $d$. Our second result is that the QIF memoryless synthesis problem is also EXPTIME-complete. The QIF memoryless synthesis problem generalizes to QIF general synthesis problem which does not impose the memoryless requirement (that is, by allowing the synthesized program to have more variables then the original partial program). Our third result is that the QIF general synthesis problem is EXPTIME-hard.
AU - Cerny, Pavol
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
ID - 3361
TI - The complexity of quantitative information flow problems
ER -
TY - CONF
AB - State-transition systems communicating by shared variables have been the underlying model of choice for applications of model checking. Such formalisms, however, have difficulty with modeling process creation or death and communication reconfigurability. Here, we introduce “dynamic reactive modules” (DRM), a state-transition modeling formalism that supports dynamic reconfiguration and creation/death of processes. The resulting formalism supports two types of variables, data variables and reference variables. Reference variables enable changing the connectivity between processes and referring to instances of processes. We show how this new formalism supports parallel composition and refinement through trace containment. DRM provide a natural language for modeling (and ultimately reasoning about) biological systems and multiple threads communicating through shared variables.
AU - Fisher, Jasmin
AU - Henzinger, Thomas A
AU - Nickovic, Dejan
AU - Piterman, Nir
AU - Singh, Anmol
AU - Vardi, Moshe
ID - 3362
TI - Dynamic reactive modules
VL - 6901
ER -
TY - GEN
AB - We consider probabilistic automata on infinite words with acceptance defined by safety, reachability, Büchi, coBüchi, and limit-average conditions. We consider quantitative and qualitative decision problems. We present extensions and adaptations of proofs for probabilistic finite automata and present a complete characterization of the decidability and undecidability frontier of the quantitative and qualitative decision problems for probabilistic automata on infinite words.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Tracol, Mathieu
ID - 3363
TI - The decidability frontier for probabilistic automata on infinite words
ER -
TY - JOUR
AB - We consider two-player games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine the successor state. We consider ω-regular winning conditions specified as parity objectives. Both players are allowed to use randomization when choosing their moves. We study the computation of the limit-winning set of states, consisting of the states where the sup-inf value of the game for player 1 is 1: in other words, a state is limit-winning if player 1 can ensure a probability of winning arbitrarily close to 1. We show that the limit-winning set can be computed in O(n2d+2) time, where n is the size of the game structure and 2d is the number of priorities (or colors). The membership problem of whether a state belongs to the limit-winning set can be decided in NP ∩ coNP. While this complexity is the same as for the simpler class of turn-based parity games, where in each state only one of the two players has a choice of moves, our algorithms are considerably more involved than those for turn-based games. This is because concurrent games do not satisfy two of the most fundamental properties of turn-based parity games. First, in concurrent games limit-winning strategies require randomization; and second, they require infinite memory.
AU - Chatterjee, Krishnendu
AU - De Alfaro, Luca
AU - Henzinger, Thomas A
ID - 3354
IS - 4
JF - ACM Transactions on Computational Logic (TOCL)
TI - Qualitative concurrent parity games
VL - 12
ER -
TY - CONF
AB - Byzantine Fault Tolerant (BFT) protocols aim to improve the reliability of distributed systems. They enable systems to tolerate arbitrary failures in a bounded number of nodes. BFT protocols are usually proven correct for certain safety and liveness properties. However, recent studies have shown that the performance of state-of-the-art BFT protocols decreases drastically in the presence of even a single malicious node. This motivates a formal quantitative analysis of BFT protocols to investigate their performance characteristics under different scenarios. We present HyPerf, a new hybrid methodology based on model checking and simulation techniques for evaluating the performance of BFT protocols. We build a transition system corresponding to a BFT protocol and systematically explore the set of behaviors allowed by the protocol. We associate certain timing information with different operations in the protocol, like cryptographic operations and message transmission. After an elaborate state exploration, we use the time information to evaluate the performance characteristics of the protocol using simulation techniques. We integrate our framework in Mace, a tool for building and verifying distributed systems. We evaluate the performance of PBFT using our framework. We describe two different use-cases of our methodology. For the benign operation of the protocol, we use the time information as random variables to compute the probability distribution of the execution times. In the presence of faults, we estimate the worst-case performance of the protocol for various attacks that can be employed by malicious nodes. Our results show the importance of hybrid techniques in systematically analyzing the performance of large-scale systems.
AU - Halalai, Raluca
AU - Henzinger, Thomas A
AU - Singh, Vasu
ID - 3355
TI - Quantitative evaluation of BFT protocols
ER -
TY - CONF
AB - We present the tool Quasy, a quantitative synthesis tool. Quasy takes qualitative and quantitative specifications and automatically constructs a system that satisfies the qualitative specification and optimizes the quantitative specification, if such a system exists. The user can choose between a system that satisfies and optimizes the specifications (a) under all possible environment behaviors or (b) under the most-likely environment behaviors given as a probability distribution on the possible input sequences. Quasy solves these two quantitative synthesis problems by reduction to instances of 2-player games and Markov Decision Processes (MDPs) with quantitative winning objectives. Quasy can also be seen as a game solver for quantitative games. Most notable, it can solve lexicographic mean-payoff games with 2 players, MDPs with mean-payoff objectives, and ergodic MDPs with mean-payoff parity objectives.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Jobstmann, Barbara
AU - Singh, Rohit
ID - 3365
TI - QUASY: quantitative synthesis tool
VL - 6605
ER -
TY - JOUR
AB - Dynamic tactile sensing is a fundamental ability to recognize materials and objects. However, while humans are born with partially developed dynamic tactile sensing and quickly master this skill, today's robots remain in their infancy. The development of such a sense requires not only better sensors but the right algorithms to deal with these sensors' data as well. For example, when classifying a material based on touch, the data are noisy, high-dimensional, and contain irrelevant signals as well as essential ones. Few classification methods from machine learning can deal with such problems. In this paper, we propose an efficient approach to infer suitable lower dimensional representations of the tactile data. In order to classify materials based on only the sense of touch, these representations are autonomously discovered using visual information of the surfaces during training. However, accurately pairing vision and tactile samples in real-robot applications is a difficult problem. The proposed approach, therefore, works with weak pairings between the modalities. Experiments show that the resulting approach is very robust and yields significantly higher classification performance based on only dynamic tactile sensing.
AU - Kroemer, Oliver
AU - Lampert, Christoph
AU - Peters, Jan
ID - 3382
IS - 3
JF - IEEE Transactions on Robotics
TI - Learning dynamic tactile sensing with robust vision based training
VL - 27
ER -
TY - JOUR
AU - Heisenberg, Carl-Philipp J
ID - 3383
IS - S1
JF - FEBS Journal
TI - Invited Lectures ‐ Symposia Area
VL - 278
ER -
TY - JOUR
AB - Here we introduce a database of calibrated natural images publicly available through an easy-to-use web interface. Using a Nikon D70 digital SLR camera, we acquired about six-megapixel images of Okavango Delta of Botswana, a tropical savanna habitat similar to where the human eye is thought to have evolved. Some sequences of images were captured unsystematically while following a baboon troop, while others were designed to vary a single parameter such as aperture, object distance, time of day or position on the horizon. Images are available in the raw RGB format and in grayscale. Images are also available in units relevant to the physiology of human cone photoreceptors, where pixel values represent the expected number of photoisomerizations per second for cones sensitive to long (L), medium (M) and short (S) wavelengths. This database is distributed under a Creative Commons Attribution-Noncommercial Unported license to facilitate research in computer vision, psychophysics of perception, and visual neuroscience.
AU - Tkacik, Gasper
AU - Garrigan, Patrick
AU - Ratliff, Charles
AU - Milcinski, Grega
AU - Klein, Jennifer
AU - Seyfarth, Lucia
AU - Sterling, Peter
AU - Brainard, David
AU - Balasubramanian, Vijay
ID - 3384
IS - 6
JF - PLoS One
TI - Natural images from the birthplace of the human eye
VL - 6
ER -
TY - JOUR
AU - Sixt, Michael K
ID - 3385
IS - 1
JF - Immunology Letters
TI - Interstitial locomotion of leukocytes
VL - 138
ER -
TY - JOUR
AB - Evolutionary theories of ageing predict that life span increases with decreasing extrinsic mortality, and life span variation among queens in ant species seems to corroborate this prediction: queens, which are the only reproductive in a colony, live much longer than queens in multi-queen colonies. The latter often inhabit ephemeral nest sites and accordingly are assumed to experience a higher mortality risk. Yet, all prior studies compared queens from different single- and multi-queen species. Here, we demonstrate an effect of queen number on longevity and fecundity within a single, socially plastic species, where queens experience the similar level of extrinsic mortality. Queens from single- and two-queen colonies had significantly longer lifespan and higher fecundity than queens living in associations of eight queens. As queens also differ neither in morphology nor the mode of colony foundation, our study shows that the social environment itself strongly affects ageing rate.
AU - Schrempf, Alexandra
AU - Cremer, Sylvia
AU - Heinze, Jürgen
ID - 3386
IS - 7
JF - Journal of Evolutionary Biology
TI - Social influence on age and reproduction reduced lifespan and fecundity in multi queen ant colonies
VL - 24
ER -