TY - CONF AB - We show an (1+ϵ)-approximation algorithm for maintaining maximum s-t flow under m edge insertions in m1/2+o(1)ϵ−1/2 amortized update time for directed, unweighted graphs. This constitutes the first sublinear dynamic maximum flow algorithm in general sparse graphs with arbitrarily good approximation guarantee. AU - Goranci, Gramoz AU - Henzinger, Monika H ID - 14085 SN - 1868-8969 T2 - 50th International Colloquium on Automata, Languages, and Programming TI - Efficient data structures for incremental exact and approximate maximum flow VL - 261 ER - TY - CONF AB - A central problem in computational statistics is to convert a procedure for sampling combinatorial objects into a procedure for counting those objects, and vice versa. We will consider sampling problems which come from Gibbs distributions, which are families of probability distributions over a discrete space Ω with probability mass function of the form μ^Ω_β(ω) ∝ e^{β H(ω)} for β in an interval [β_min, β_max] and H(ω) ∈ {0} ∪ [1, n]. The partition function is the normalization factor Z(β) = ∑_{ω ∈ Ω} e^{β H(ω)}, and the log partition ratio is defined as q = (log Z(β_max))/Z(β_min) We develop a number of algorithms to estimate the counts c_x using roughly Õ(q/ε²) samples for general Gibbs distributions and Õ(n²/ε²) samples for integer-valued distributions (ignoring some second-order terms and parameters), We show this is optimal up to logarithmic factors. We illustrate with improved algorithms for counting connected subgraphs and perfect matchings in a graph. AU - Harris, David G. AU - Kolmogorov, Vladimir ID - 14084 SN - 1868-8969 T2 - 50th International Colloquium on Automata, Languages, and Programming TI - Parameter estimation for Gibbs distributions VL - 261 ER - TY - CONF AB - The maximization of submodular functions have found widespread application in areas such as machine learning, combinatorial optimization, and economics, where practitioners often wish to enforce various constraints; the matroid constraint has been investigated extensively due to its algorithmic properties and expressive power. Though tight approximation algorithms for general matroid constraints exist in theory, the running times of such algorithms typically scale quadratically, and are not practical for truly large scale settings. Recent progress has focused on fast algorithms for important classes of matroids given in explicit form. Currently, nearly-linear time algorithms only exist for graphic and partition matroids [Alina Ene and Huy L. Nguyen, 2019]. In this work, we develop algorithms for monotone submodular maximization constrained by graphic, transversal matroids, or laminar matroids in time near-linear in the size of their representation. Our algorithms achieve an optimal approximation of 1-1/e-ε and both generalize and accelerate the results of Ene and Nguyen [Alina Ene and Huy L. Nguyen, 2019]. In fact, the running time of our algorithm cannot be improved within the fast continuous greedy framework of Badanidiyuru and Vondrák [Ashwinkumar Badanidiyuru and Jan Vondrák, 2014]. To achieve near-linear running time, we make use of dynamic data structures that maintain bases with approximate maximum cardinality and weight under certain element updates. These data structures need to support a weight decrease operation and a novel Freeze operation that allows the algorithm to freeze elements (i.e. force to be contained) in its basis regardless of future data structure operations. For the laminar matroid, we present a new dynamic data structure using the top tree interface of Alstrup, Holm, de Lichtenberg, and Thorup [Stephen Alstrup et al., 2005] that maintains the maximum weight basis under insertions and deletions of elements in O(log n) time. This data structure needs to support certain subtree query and path update operations that are performed every insertion and deletion that are non-trivial to handle in conjunction. For the transversal matroid the Freeze operation corresponds to requiring the data structure to keep a certain set S of vertices matched, a property that we call S-stability. While there is a large body of work on dynamic matching algorithms, none are S-stable and maintain an approximate maximum weight matching under vertex updates. We give the first such algorithm for bipartite graphs with total running time linear (up to log factors) in the number of edges. AU - Henzinger, Monika H AU - Liu, Paul AU - Vondrák, Jan AU - Zheng, Da Wei ID - 14086 SN - 18688969 T2 - 50th International Colloquium on Automata, Languages, and Programming TI - Faster submodular maximization for several classes of matroids VL - 261 ER - TY - CONF AB - In this work we consider the list-decodability and list-recoverability of arbitrary q-ary codes, for all integer values of q ≥ 2. A code is called (p,L)_q-list-decodable if every radius pn Hamming ball contains less than L codewords; (p,𝓁,L)_q-list-recoverability is a generalization where we place radius pn Hamming balls on every point of a combinatorial rectangle with side length 𝓁 and again stipulate that there be less than L codewords. Our main contribution is to precisely calculate the maximum value of p for which there exist infinite families of positive rate (p,𝓁,L)_q-list-recoverable codes, the quantity we call the zero-rate threshold. Denoting this value by p_*, we in fact show that codes correcting a p_*+ε fraction of errors must have size O_ε(1), i.e., independent of n. Such a result is typically referred to as a "Plotkin bound." To complement this, a standard random code with expurgation construction shows that there exist positive rate codes correcting a p_*-ε fraction of errors. We also follow a classical proof template (typically attributed to Elias and Bassalygo) to derive from the zero-rate threshold other tradeoffs between rate and decoding radius for list-decoding and list-recovery. Technically, proving the Plotkin bound boils down to demonstrating the Schur convexity of a certain function defined on the q-simplex as well as the convexity of a univariate function derived from it. We remark that an earlier argument claimed similar results for q-ary list-decoding; however, we point out that this earlier proof is flawed. AU - Resch, Nicolas AU - Yuan, Chen AU - Zhang, Yihan ID - 14083 SN - 1868-8969 T2 - 50th International Colloquium on Automata, Languages, and Programming TI - Zero-rate thresholds and new capacity bounds for list-decoding and list-recovery VL - 261 ER - TY - JOUR AB - Models for same-material contact electrification in granular media often rely on a local charge-driving parameter whose spatial variations lead to a stochastic origin for charge exchange. Measuring the charge transfer from individual granular spheres after contacts with substrates of the same material, we find instead a “global” charging behavior, coherent over the sample’s whole surface. Cleaning and baking samples fully resets charging magnitude and direction, which indicates the underlying global parameter is not intrinsic to the material, but acquired from its history. Charging behavior is randomly and irreversibly affected by changes in relative humidity, hinting at a mechanism where adsorbates, in particular, water, are fundamental to the charge-transfer process. AU - Grosjean, Galien M AU - Waitukaitis, Scott R ID - 12697 IS - 9 JF - Physical Review Letters KW - General Physics KW - Electrostatics KW - Triboelectricity KW - Soft Matter KW - Acoustic Levitation KW - Granular Materials SN - 0031-9007 TI - Single-collision statistics reveal a global mechanism driven by sample history for contact electrification in granular media VL - 130 ER - TY - THES AB - About a 100 years ago, we discovered that our universe is inherently noisy, that is, measuring any physical quantity with a precision beyond a certain point is not possible because of an omnipresent inherent noise. We call this - the quantum noise. Certain physical processes allow this quantum noise to get correlated in conjugate physical variables. These quantum correlations can be used to go beyond the potential of our inherently noisy universe and obtain a quantum advantage over the classical applications. Quantum noise being inherent also means that, at the fundamental level, the physical quantities are not well defined and therefore, objects can stay in multiple states at the same time. For example, the position of a particle not being well defined means that the particle is in multiple positions at the same time. About 4 decades ago, we started exploring the possibility of using objects which can be in multiple states at the same time to increase the dimensionality in computation. Thus, the field of quantum computing was born. We discovered that using quantum entanglement, a property closely related to quantum correlations, can be used to speed up computation of certain problems, such as factorisation of large numbers, faster than any known classical algorithm. Thus began the pursuit to make quantum computers a reality. Till date, we have explored quantum control over many physical systems including photons, spins, atoms, ions and even simple circuits made up of superconducting material. However, there persists one ubiquitous theme. The more readily a system interacts with an external field or matter, the more easily we can control it. But this also means that such a system can easily interact with a noisy environment and quickly lose its coherence. Consequently, such systems like electron spins need to be protected from the environment to ensure the longevity of their coherence. Other systems like nuclear spins are naturally protected as they do not interact easily with the environment. But, due to the same reason, it is harder to interact with such systems. After decades of experimentation with various systems, we are convinced that no one type of quantum system would be the best for all the quantum applications. We would need hybrid systems which are all interconnected - much like the current internet where all sorts of devices can all talk to each other - but now for quantum devices. A quantum internet. Optical photons are the best contenders to carry information for the quantum internet. They can carry quantum information cheaply and without much loss - the same reasons which has made them the backbone of our current internet. Following this direction, many systems, like trapped ions, have already demonstrated successful quantum links over a large distances using optical photons. However, some of the most promising contenders for quantum computing which are based on microwave frequencies have been left behind. This is because high energy optical photons can adversely affect fragile low-energy microwave systems. In this thesis, we present substantial progress on this missing quantum link between microwave and optics using electrooptical nonlinearities in lithium niobate. The nonlinearities are enhanced by using resonant cavities for all the involved modes leading to observation of strong direct coupling between optical and microwave frequencies. With this strong coupling we are not only able to achieve almost 100\% internal conversion efficiency with low added noise, thus presenting a quantum-enabled transducer, but also we are able to observe novel effects such as cooling of a microwave mode using optics. The strong coupling regime also leads to direct observation of dynamical backaction effect between microwave and optical frequencies which are studied in detail here. Finally, we also report first observation of microwave-optics entanglement in form of two-mode squeezed vacuum squeezed 0.7dB below vacuum level. With this new bridge between microwave and optics, the microwave-based quantum technologies can finally be a part of a quantum network which is based on optical photons - putting us one step closer to a future with quantum internet. AU - Sahu, Rishabh ID - 13175 KW - quantum optics KW - electrooptics KW - quantum networks KW - quantum communication KW - transduction SN - 2663 - 337X TI - Cavity quantum electrooptics ER - TY - THES AB - About a 100 years ago, we discovered that our universe is inherently noisy, that is, measuring any physical quantity with a precision beyond a certain point is not possible because of an omnipresent inherent noise. We call this - the quantum noise. Certain physical processes allow this quantum noise to get correlated in conjugate physical variables. These quantum correlations can be used to go beyond the potential of our inherently noisy universe and obtain a quantum advantage over the classical applications. Quantum noise being inherent also means that, at the fundamental level, the physical quantities are not well defined and therefore, objects can stay in multiple states at the same time. For example, the position of a particle not being well defined means that the particle is in multiple positions at the same time. About 4 decades ago, we started exploring the possibility of using objects which can be in multiple states at the same time to increase the dimensionality in computation. Thus, the field of quantum computing was born. We discovered that using quantum entanglement, a property closely related to quantum correlations, can be used to speed up computation of certain problems, such as factorisation of large numbers, faster than any known classical algorithm. Thus began the pursuit to make quantum computers a reality. Till date, we have explored quantum control over many physical systems including photons, spins, atoms, ions and even simple circuits made up of superconducting material. However, there persists one ubiquitous theme. The more readily a system interacts with an external field or matter, the more easily we can control it. But this also means that such a system can easily interact with a noisy environment and quickly lose its coherence. Consequently, such systems like electron spins need to be protected from the environment to ensure the longevity of their coherence. Other systems like nuclear spins are naturally protected as they do not interact easily with the environment. But, due to the same reason, it is harder to interact with such systems. After decades of experimentation with various systems, we are convinced that no one type of quantum system would be the best for all the quantum applications. We would need hybrid systems which are all interconnected - much like the current internet where all sorts of devices can all talk to each other - but now for quantum devices. A quantum internet. Optical photons are the best contenders to carry information for the quantum internet. They can carry quantum information cheaply and without much loss - the same reasons which has made them the backbone of our current internet. Following this direction, many systems, like trapped ions, have already demonstrated successful quantum links over a large distances using optical photons. However, some of the most promising contenders for quantum computing which are based on microwave frequencies have been left behind. This is because high energy optical photons can adversely affect fragile low-energy microwave systems. In this thesis, we present substantial progress on this missing quantum link between microwave and optics using electrooptical nonlinearities in lithium niobate. The nonlinearities are enhanced by using resonant cavities for all the involved modes leading to observation of strong direct coupling between optical and microwave frequencies. With this strong coupling we are not only able to achieve almost 100\% internal conversion efficiency with low added noise, thus presenting a quantum-enabled transducer, but also we are able to observe novel effects such as cooling of a microwave mode using optics. The strong coupling regime also leads to direct observation of dynamical backaction effect between microwave and optical frequencies which are studied in detail here. Finally, we also report first observation of microwave-optics entanglement in form of two-mode squeezed vacuum squeezed 0.7dB below vacuum level. With this new bridge between microwave and optics, the microwave-based quantum technologies can finally be a part of a quantum network which is based on optical photons - putting us one step closer to a future with quantum internet. AU - Sahu, Rishabh ID - 12900 KW - quantum optics KW - electrooptics KW - quantum networks KW - quantum communication KW - transduction SN - 2663 - 337X TI - Cavity quantum electrooptics ER - TY - CONF AB - We study the problem of training and certifying adversarially robust quantized neural networks (QNNs). Quantization is a technique for making neural networks more efficient by running them using low-bit integer arithmetic and is therefore commonly adopted in industry. Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization, and certification of the quantized representation is necessary to guarantee robustness. In this work, we present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs. Inspired by advances in robust learning of non-quantized networks, our training algorithm computes the gradient of an abstract representation of the actual network. Unlike existing approaches, our method can handle the discrete semantics of QNNs. Based on QA-IBP, we also develop a complete verification procedure for verifying the adversarial robustness of QNNs, which is guaranteed to terminate and produce a correct answer. Compared to existing approaches, the key advantage of our verification procedure is that it runs entirely on GPU or other accelerator devices. We demonstrate experimentally that our approach significantly outperforms existing methods and establish the new state-of-the-art for training and certifying the robustness of QNNs. AU - Lechner, Mathias AU - Zikelic, Dorde AU - Chatterjee, Krishnendu AU - Henzinger, Thomas A AU - Rus, Daniela ID - 14242 IS - 12 SN - 9781577358800 T2 - Proceedings of the 37th AAAI Conference on Artificial Intelligence TI - Quantization-aware interval bound propagation for training certifiably robust quantized neural networks VL - 37 ER - TY - CONF AB - Two-player zero-sum "graph games" are central in logic, verification, and multi-agent systems. The game proceeds by placing a token on a vertex of a graph, and allowing the players to move it to produce an infinite path, which determines the winner or payoff of the game. Traditionally, the players alternate turns in moving the token. In "bidding games", however, the players have budgets and in each turn, an auction (bidding) determines which player moves the token. So far, bidding games have only been studied as full-information games. In this work we initiate the study of partial-information bidding games: we study bidding games in which a player's initial budget is drawn from a known probability distribution. We show that while for some bidding mechanisms and objectives, it is straightforward to adapt the results from the full-information setting to the partial-information setting, for others, the analysis is significantly more challenging, requires new techniques, and gives rise to interesting results. Specifically, we study games with "mean-payoff" objectives in combination with "poorman" bidding. We construct optimal strategies for a partially-informed player who plays against a fully-informed adversary. We show that, somewhat surprisingly, the "value" under pure strategies does not necessarily exist in such games. AU - Avni, Guy AU - Jecker, Ismael R AU - Zikelic, Dorde ID - 14243 IS - 5 SN - 9781577358800 T2 - Proceedings of the 37th AAAI Conference on Artificial Intelligence TI - Bidding graph games with partially-observable budgets VL - 37 ER - TY - CONF AB - We present a technique to optimize the reflectivity of a surface while preserving its overall shape. The naïve optimization of the mesh vertices using the gradients of reflectivity simulations results in undesirable distortion. In contrast, our robust formulation optimizes the surface normal as an independent variable that bridges the reflectivity term with differential rendering, and the regularization term with as-rigid-as-possible elastic energy. We further adaptively subdivide the input mesh to improve the convergence. Consequently, our method can minimize the retroreflectivity of a wide range of input shapes, resulting in sharply creased shapes ubiquitous among stealth aircraft and Sci-Fi vehicles. Furthermore, by changing the reward for the direction of the outgoing light directions, our method can be applied to other reflectivity design tasks, such as the optimization of architectural walls to concentrate light in a specific region. We have tested the proposed method using light-transport simulations and real-world 3D-printed objects. AU - Tojo, Kenji AU - Shamir, Ariel AU - Bickel, Bernd AU - Umetani, Nobuyuki ID - 14241 SN - 9798400701597 T2 - SIGGRAPH 2023 Conference Proceedings TI - Stealth shaper: Reflectivity optimization as surface stylization ER - TY - JOUR AB - Presynaptic inputs determine the pattern of activation of postsynaptic neurons in a neural circuit. Molecular and genetic pathways that regulate the selective formation of subsets of presynaptic inputs are largely unknown, despite significant understanding of the general process of synaptogenesis. In this study, we have begun to identify such factors using the spinal monosynaptic stretch reflex circuit as a model system. In this neuronal circuit, Ia proprioceptive afferents establish monosynaptic connections with spinal motor neurons that project to the same muscle (termed homonymous connections) or muscles with related or synergistic function. However, monosynaptic connections are not formed with motor neurons innervating muscles with antagonistic functions. The ETS transcription factor ER81 (also known as ETV1) is expressed by all proprioceptive afferents, but only a small set of motor neuron pools in the lumbar spinal cord of the mouse. Here we use conditional mouse genetic techniques to eliminate Er81 expression selectively from motor neurons. We find that ablation of Er81 in motor neurons reduces synaptic inputs from proprioceptive afferents conveying information from homonymous and synergistic muscles, with no change observed in the connectivity pattern from antagonistic proprioceptive afferents. In summary, these findings suggest a role for ER81 in defined motor neuron pools to control the assembly of specific presynaptic inputs and thereby influence the profile of activation of these motor neurons. AU - Ladle, David R. AU - Hippenmeyer, Simon ID - 12562 IS - 3 JF - Journal of Neurophysiology KW - Physiology KW - General Neuroscience SN - 0022-3077 TI - Loss of ETV1/ER81 in motor neurons leads to reduced monosynaptic inputs from proprioceptive sensory neurons VL - 129 ER - TY - CONF AB - Machine-learned systems are in widespread use for making decisions about humans, and it is important that they are fair, i.e., not biased against individuals based on sensitive attributes. We present runtime verification of algorithmic fairness for systems whose models are unknown, but are assumed to have a Markov chain structure. We introduce a specification language that can model many common algorithmic fairness properties, such as demographic parity, equal opportunity, and social burden. We build monitors that observe a long sequence of events as generated by a given system, and output, after each observation, a quantitative estimate of how fair or biased the system was on that run until that point in time. The estimate is proven to be correct modulo a variable error bound and a given confidence level, where the error bound gets tighter as the observed sequence gets longer. Our monitors are of two types, and use, respectively, frequentist and Bayesian statistical inference techniques. While the frequentist monitors compute estimates that are objectively correct with respect to the ground truth, the Bayesian monitors compute estimates that are correct subject to a given prior belief about the system’s model. Using a prototype implementation, we show how we can monitor if a bank is fair in giving loans to applicants from different social backgrounds, and if a college is fair in admitting students while maintaining a reasonable financial burden on the society. Although they exhibit different theoretical complexities in certain cases, in our experiments, both frequentist and Bayesian monitors took less than a millisecond to update their verdicts after each observation. AU - Henzinger, Thomas A AU - Karimi, Mahyar AU - Kueffner, Konstantin AU - Mallik, Kaushik ID - 13310 SN - 0302-9743 T2 - Computer Aided Verification TI - Monitoring algorithmic fairness VL - 13965 ER - TY - JOUR AB - Background: This study seeks to evaluate the impact of breast cancer (BRCA) gene status on tumor dissemination pattern, surgical outcome and survival in a multicenter cohort of paired primary ovarian cancer (pOC) and recurrent ovarian cancer (rOC). Patients and Methods: Medical records and follow-up data from 190 patients were gathered retrospectively. All patients had surgery at pOC and at least one further rOC surgery at four European high-volume centers. Patients were divided into one cohort with confirmed mutation for BRCA1 and/or BRCA2 (BRCAmut) and a second cohort with BRCA wild type or unknown (BRCAwt). Patterns of tumor presentation, surgical outcome and survival data were analyzed between the two groups. Results: Patients with BRCAmut disease were on average 4 years younger and had significantly more tumor involvement upon diagnosis. Patients with BRCAmut disease showed higher debulking rates at all stages. Multivariate analysis showed that only patient age had significant predictive value for complete tumor resection in pOC. At rOC, however, only BRCAmut status significantly correlated with optimal debulking. Patients with BRCAmut disease showed significantly prolonged overall survival (OS) by 24.3 months. Progression-free survival (PFS) was prolonged in the BRCAmut group at all stages as well, reaching statistical significance during recurrence. Conclusions: Patients with BRCAmut disease showed a more aggressive course of disease with earlier onset and more extensive tumor dissemination at pOC. However, surgical outcome and OS were significantly better in patients with BRCAmut disease compared with patients with BRCAwt disease. We therefore propose to consider BRCAmut status in regard to patient selection for cytoreductive surgery, especially in rOC. AU - Glajzer, Jacek AU - Castillo-Tong, Dan Cacsire AU - Richter, Rolf AU - Vergote, Ignace AU - Kulbe, Hagen AU - Vanderstichele, Adriaan AU - Ruscito, Ilary AU - Trillsch, Fabian AU - Mustea, Alexander AU - Kreuzinger, Caroline AU - Gourley, Charlie AU - Gabra, Hani AU - Taube, Eliane T. AU - Dorigo, Oliver AU - Horst, David AU - Keunecke, Carlotta AU - Baum, Joanna AU - Angelotti, Timothy AU - Sehouli, Jalid AU - Braicu, Elena Ioana ID - 12205 JF - Annals of Surgical Oncology KW - Oncology KW - Surgery SN - 1068-9265 TI - Impact of BRCA mutation status on tumor dissemination pattern, surgical outcome and patient survival in primary and recurrent high-grade serous ovarian cancer: A multicenter retrospective study by the Ovarian Cancer Therapy-Innovative Models Prolong Survival (OCTIPS) consortium VL - 30 ER - TY - JOUR AU - Glajzer, Jacek AU - Castillo-Tong, Dan Cacsire AU - Richter, Rolf AU - Vergote, Ignace AU - Kulbe, Hagen AU - Vanderstichele, Adriaan AU - Ruscito, Ilary AU - Trillsch, Fabian AU - Mustea, Alexander AU - Kreuzinger, Caroline AU - Gourley, Charlie AU - Gabra, Hani AU - Taube, Eliane T. AU - Dorigo, Oliver AU - Horst, David AU - Keunecke, Carlotta AU - Baum, Joanna AU - Angelotti, Timothy AU - Sehouli, Jalid AU - Braicu, Elena Ioana ID - 12115 JF - Annals of Surgical Oncology KW - Oncology KW - Surgery SN - 1068-9265 TI - ASO Visual Abstract: Impact of BRCA mutation status on tumor dissemination pattern, surgical outcome, and patient survival in primary and recurrent high-grade serous ovarian cancer (HGSOC). A multicenter, retrospective study of the ovarian cancer therapy—innovative models prolong survival (OCTIPS) consortium VL - 30 ER - TY - JOUR AB - Junctions between the endoplasmic reticulum (ER) and the plasma membrane (PM) are specialized membrane contacts ubiquitous in eukaryotic cells. Concentration of intracellular signaling machinery near ER-PM junctions allows these domains to serve critical roles in lipid and Ca2+ signaling and homeostasis. Subcellular compartmentalization of protein kinase A (PKA) signaling also regulates essential cellular functions, however, no specific association between PKA and ER-PM junctional domains is known. Here, we show that in brain neurons type I PKA is directed to Kv2.1 channel-dependent ER-PM junctional domains via SPHKAP, a type I PKA-specific anchoring protein. SPHKAP association with type I PKA regulatory subunit RI and ER-resident VAP proteins results in the concentration of type I PKA between stacked ER cisternae associated with ER-PM junctions. This ER-associated PKA signalosome enables reciprocal regulation between PKA and Ca2+ signaling machinery to support Ca2+ influx and excitation-transcription coupling. These data reveal that neuronal ER-PM junctions support a receptor-independent form of PKA signaling driven by membrane depolarization and intracellular Ca2+, allowing conversion of information encoded in electrical signals into biochemical changes universally recognized throughout the cell. AU - Vierra, Nicholas C. AU - Ribeiro-Silva, Luisa AU - Kirmiz, Michael AU - Van Der List, Deborah AU - Bhandari, Pradeep AU - Mack, Olivia A. AU - Carroll, James AU - Le Monnier, Elodie AU - Aicher, Sue A. AU - Shigemoto, Ryuichi AU - Trimmer, James S. ID - 14253 JF - Nature Communications TI - Neuronal ER-plasma membrane junctions couple excitation to Ca2+-activated PKA signaling VL - 14 ER - TY - CONF AB - We provide a learning-based technique for guessing a winning strategy in a parity game originating from an LTL synthesis problem. A cheaply obtained guess can be useful in several applications. Not only can the guessed strategy be applied as best-effort in cases where the game’s huge size prohibits rigorous approaches, but it can also increase the scalability of rigorous LTL synthesis in several ways. Firstly, checking whether a guessed strategy is winning is easier than constructing one. Secondly, even if the guess is wrong in some places, it can be fixed by strategy iteration faster than constructing one from scratch. Thirdly, the guess can be used in on-the-fly approaches to prioritize exploration in the most fruitful directions. In contrast to previous works, we (i) reflect the highly structured logical information in game’s states, the so-called semantic labelling, coming from the recent LTL-to-automata translations, and (ii) learn to reflect it properly by learning from previously solved games, bringing the solving process closer to human-like reasoning. AU - Kretinsky, Jan AU - Meggendorfer, Tobias AU - Prokop, Maximilian AU - Rieder, Sabine ID - 14259 SN - 0302-9743 T2 - 35th International Conference on Computer Aided Verification TI - Guessing winning policies in LTL synthesis by semantic learning VL - 13964 ER - TY - JOUR AB - Context. Space asteroseismology is revolutionizing our knowledge of the internal structure and dynamics of stars. A breakthrough is ongoing with the recent discoveries of signatures of strong magnetic fields in the core of red giant stars. The key signature for such a detection is the asymmetry these fields induce in the frequency splittings of observed dipolar mixed gravito-acoustic modes. Aims. We investigate the ability of the observed asymmetries of the frequency splittings of dipolar mixed modes to constrain the geometrical properties of deep magnetic fields. Methods. We used the powerful analytical Racah-Wigner algebra used in quantum mechanics to characterize the geometrical couplings of dipolar mixed oscillation modes with various realistically plausible topologies of fossil magnetic fields. We also computed the induced perturbation of their frequencies. Results. First, in the case of an oblique magnetic dipole, we provide the exact analytical expression of the asymmetry as a function of the angle between the rotation and magnetic axes. Its value provides a direct measure of this angle. Second, considering a combination of axisymmetric dipolar and quadrupolar fields, we show how the asymmetry is blind to the unraveling of the relative strength and sign of each component. Finally, in the case of a given multipole, we show that a negative asymmetry is a signature of non-axisymmetric topologies. Conclusions. Asymmetries of dipolar mixed modes provide a key bit of information on the geometrical topology of deep fossil magnetic fields, but this is insufficient on its own. Asteroseismic constraints should therefore be combined with spectropolarimetric observations and numerical simulations, which aim to predict the more probable stable large-scale geometries. AU - Mathis, S. AU - Bugnet, Lisa Annabelle ID - 14256 JF - Astronomy and Astrophysics SN - 0004-6361 TI - Asymmetries of frequency splittings of dipolar mixed modes: A window on the topology of deep magnetic fields VL - 676 ER - TY - JOUR AB - In this work, a generalized, adapted Numerov implementation capable of determining band structures of periodic quantum systems is outlined. Based on the input potential, the presented approach numerically solves the Schrödinger equation in position space at each momentum space point. Thus, in addition to the band structure, the method inherently provides information about the state functions and probability densities in position space at each momentum space point considered. The generalized, adapted Numerov framework provided reliable estimates for a variety of increasingly complex test suites in one, two, and three dimensions. The accuracy of the proposed methodology was benchmarked against results obtained for the analytically solvable Kronig-Penney model. Furthermore, the presented numerical solver was applied to a model potential representing a 2D optical lattice being a challenging application relevant, for example, in the field of quantum computing. AU - Gamper, Jakob AU - Kluibenschedl, Florian AU - Weiss, Alexander K.H. AU - Hofer, Thomas S. ID - 14261 IS - 33 JF - Journal of Physical Chemistry Letters TI - Accessing position space wave functions in band structure calculations of periodic systems - a generalized, adapted numerov implementation for one-, two-, and three-dimensional quantum problems VL - 14 ER - TY - JOUR AB - Living tissues are characterized by an intrinsically mechanochemical interplay of active physical forces and complex biochemical signaling pathways. Either feature alone can give rise to complex emergent phenomena, for example, mechanically driven glassy dynamics and rigidity transitions, or chemically driven reaction-diffusion instabilities. An important question is how to quantitatively assess the contribution of these different cues to the large-scale dynamics of biological materials. We address this in Madin-Darby canine kidney (MDCK) monolayers, considering both mechanochemical feedback between extracellular signal-regulated kinase (ERK) signaling activity and cellular density as well as a mechanically active tissue rheology via a self-propelled vertex model. We show that the relative strength of active migration forces to mechanochemical couplings controls a transition from a uniform active glass to periodic spatiotemporal waves. We parametrize the model from published experimental data sets on MDCK monolayers and use it to make new predictions on the correlation functions of cellular dynamics and the dynamics of topological defects associated with the oscillatory phase of cells. Interestingly, MDCK monolayers are best described by an intermediary parameter region in which both mechanochemical couplings and noisy active propulsion have a strong influence on the dynamics. Finally, we study how tissue rheology and ERK waves produce feedback on one another and uncover a mechanism via which tissue fluidity can be controlled by mechanochemical waves at both the local and global levels. AU - Boocock, Daniel R AU - Hirashima, Tsuyoshi AU - Hannezo, Edouard B ID - 14277 IS - 1 JF - PRX Life SN - 2835-8279 TI - Interplay between mechanochemical patterning and glassy dynamics in cellular monolayers VL - 1 ER - TY - JOUR AB - The execution of cognitive functions requires coordinated circuit activity across different brain areas that involves the associated firing of neuronal assemblies. Here, we tested the circuit mechanism behind assembly interactions between the hippocampus and the medial prefrontal cortex (mPFC) of adult rats by recording neuronal populations during a rule-switching task. We identified functionally coupled CA1-mPFC cells that synchronized their activity beyond that expected from common spatial coding or oscillatory firing. When such cell pairs fired together, the mPFC cell strongly phase locked to CA1 theta oscillations and maintained consistent theta firing phases, independent of the theta timing of their CA1 counterpart. These functionally connected CA1-mPFC cells formed interconnected assemblies. While firing together with their CA1 assembly partners, mPFC cells fired along specific theta sequences. Our results suggest that upregulated theta oscillatory firing of mPFC cells can signal transient interactions with specific CA1 assemblies, thus enabling distributed computations. AU - Nardin, Michele AU - Käfer, Karola AU - Stella, Federico AU - Csicsvari, Jozsef L ID - 14314 IS - 9 JF - Cell Reports TI - Theta oscillations as a substrate for medial prefrontal-hippocampal assembly interactions VL - 42 ER - TY - JOUR AB - During apoptosis, caspases degrade 8 out of ~30 nucleoporins to irreversibly demolish the nuclear pore complex. However, for poorly understood reasons, caspases are also activated during cell differentiation. Here, we show that sublethal activation of caspases during myogenesis results in the transient proteolysis of four peripheral Nups and one transmembrane Nup. ‘Trimmed’ NPCs become nuclear export-defective, and we identified in an unbiased manner several classes of cytoplasmic, plasma membrane, and mitochondrial proteins that rapidly accumulate in the nucleus. NPC trimming by non-apoptotic caspases was also observed in neurogenesis and endoplasmic reticulum stress. Our results suggest that caspases can reversibly modulate nuclear transport activity, which allows them to function as agents of cell differentiation and adaptation at sublethal levels. AU - Cho, Ukrae H. AU - Hetzer, Martin W ID - 14315 JF - eLife TI - Caspase-mediated nuclear pore complex trimming in cell differentiation and endoplasmic reticulum stress VL - 12 ER - TY - JOUR AB - We study multigraphs whose edge-sets are the union of three perfect matchings, M1, M2, and M3. Given such a graph G and any a1; a2; a3 2 N with a1 +a2 +a3 6 n - 2, we show there exists a matching M of G with jM \ Mij = ai for each i 2 f1; 2; 3g. The bound n - 2 in the theorem is best possible in general. We conjecture however that if G is bipartite, the same result holds with n - 2 replaced by n - 1. We give a construction that shows such a result would be tight. We also make a conjecture generalising the Ryser-Brualdi-Stein conjecture with colour multiplicities. AU - Anastos, Michael AU - Fabian, David AU - Müyesser, Alp AU - Szabó, Tibor ID - 14319 IS - 3 JF - Electronic Journal of Combinatorics TI - Splitting matchings and the Ryser-Brualdi-Stein conjecture for multisets VL - 30 ER - TY - CONF AB - Probabilistic recurrence relations (PRRs) are a standard formalism for describing the runtime of a randomized algorithm. Given a PRR and a time limit κ, we consider the tail probability Pr[T≥κ], i.e., the probability that the randomized runtime T of the PRR exceeds κ. Our focus is the formal analysis of tail bounds that aims at finding a tight asymptotic upper bound u≥Pr[T≥κ]. To address this problem, the classical and most well-known approach is the cookbook method by Karp (JACM 1994), while other approaches are mostly limited to deriving tail bounds of specific PRRs via involved custom analysis. In this work, we propose a novel approach for deriving the common exponentially-decreasing tail bounds for PRRs whose preprocessing time and random passed sizes observe discrete or (piecewise) uniform distribution and whose recursive call is either a single procedure call or a divide-and-conquer. We first establish a theoretical approach via Markov’s inequality, and then instantiate the theoretical approach with a template-based algorithmic approach via a refined treatment of exponentiation. Experimental evaluation shows that our algorithmic approach is capable of deriving tail bounds that are (i) asymptotically tighter than Karp’s method, (ii) match the best-known manually-derived asymptotic tail bound for QuickSelect, and (iii) is only slightly worse (with a loglogn factor) than the manually-proven optimal asymptotic tail bound for QuickSort. Moreover, our algorithmic approach handles all examples (including realistic PRRs such as QuickSort, QuickSelect, DiameterComputation, etc.) in less than 0.1 s, showing that our approach is efficient in practice. AU - Sun, Yican AU - Fu, Hongfei AU - Chatterjee, Krishnendu AU - Goharshady, Amir Kafshdar ID - 14318 SN - 0302-9743 T2 - Computer Aided Verification TI - Automated tail bound analysis for probabilistic recurrence relations VL - 13966 ER - TY - CONF AB - Markov decision processes can be viewed as transformers of probability distributions. While this view is useful from a practical standpoint to reason about trajectories of distributions, basic reachability and safety problems are known to be computationally intractable (i.e., Skolem-hard) to solve in such models. Further, we show that even for simple examples of MDPs, strategies for safety objectives over distributions can require infinite memory and randomization. In light of this, we present a novel overapproximation approach to synthesize strategies in an MDP, such that a safety objective over the distributions is met. More precisely, we develop a new framework for template-based synthesis of certificates as affine distributional and inductive invariants for safety objectives in MDPs. We provide two algorithms within this framework. One can only synthesize memoryless strategies, but has relative completeness guarantees, while the other can synthesize general strategies. The runtime complexity of both algorithms is in PSPACE. We implement these algorithms and show that they can solve several non-trivial examples. AU - Akshay, S. AU - Chatterjee, Krishnendu AU - Meggendorfer, Tobias AU - Zikelic, Dorde ID - 14317 SN - 0302-9743 T2 - International Conference on Computer Aided Verification TI - MDPs as distribution transformers: Affine invariant synthesis for safety objectives VL - 13966 ER - TY - JOUR AB - Clathrin-mediated vesicle trafficking plays central roles in post-Golgi transport. In yeast (Saccharomyces cerevisiae), the AP-1 complex and GGA adaptors are predicted to generate distinct transport vesicles at the trans-Golgi network (TGN), and the epsin-related proteins Ent3p and Ent5p (collectively Ent3p/5p) act as accessories for these adaptors. Recently, we showed that vesicle transport from the TGN is crucial for yeast Rab5 (Vps21p)-mediated endosome formation, and that Ent3p/5p are crucial for this process, whereas AP-1 and GGA adaptors are dispensable. However, these observations were incompatible with previous studies showing that these adaptors are required for Ent3p/5p recruitment to the TGN, and thus the overall mechanism responsible for regulation of Vps21p activity remains ambiguous. Here, we investigated the functional relationships between clathrin adaptors in post-Golgi-mediated Vps21p activation. We show that AP-1 disruption in the ent3Δ5Δ mutant impaired transport of the Vps21p guanine nucleotide exchange factor Vps9p transport to the Vps21p compartment and severely reduced Vps21p activity. Additionally, GGA adaptors, the phosphatidylinositol-4-kinase Pik1p and Rab11 GTPases Ypt31p and Ypt32p were found to have partially overlapping functions for recruitment of AP-1 and Ent3p/5p to the TGN. These findings suggest a distinct role of clathrin adaptors for Vps21p activation in the TGN–endosome trafficking pathway. AU - Nagano, Makoto AU - Aoshima, Kaito AU - Shimamura, Hiroki AU - Siekhaus, Daria E AU - Toshima, Junko Y. AU - Toshima, Jiro ID - 14316 IS - 17 JF - Journal of Cell Science SN - 0021-9533 TI - Distinct role of TGN-resident clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway VL - 136 ER - TY - JOUR AB - The development of two-dimensional materials has resulted in a diverse range of novel, high-quality compounds with increasing complexity. A key requirement for a comprehensive quantitative theory is the accurate determination of these materials' band structure parameters. However, this task is challenging due to the intricate band structures and the indirect nature of experimental probes. In this work, we introduce a general framework to derive band structure parameters from experimental data using deep neural networks. We applied our method to the penetration field capacitance measurement of trilayer graphene, an effective probe of its density of states. First, we demonstrate that a trained deep network gives accurate predictions for the penetration field capacitance as a function of tight-binding parameters. Next, we use the fast and accurate predictions from the trained network to automatically determine tight-binding parameters directly from experimental data, with extracted parameters being in a good agreement with values in the literature. We conclude by discussing potential applications of our method to other materials and experimental techniques beyond penetration field capacitance. AU - Henderson, Paul M AU - Ghazaryan, Areg AU - Zibrov, Alexander A. AU - Young, Andrea F. AU - Serbyn, Maksym ID - 14320 IS - 12 JF - Physical Review B SN - 2469-9950 TI - Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene VL - 108 ER - TY - THES AB - Nonergodic systems, whose out-of-equilibrium dynamics fail to thermalize, provide a fascinating research direction both for fundamental reasons and for application in state of the art quantum devices. Going beyond the description of statistical mechanics, ergodicity breaking yields a new paradigm in quantum many-body physics, introducing novel phases of matter with no counterpart at equilibrium. In this Thesis, we address different open questions in the field, focusing on disorder-induced many-body localization (MBL) and on weak ergodicity breaking in kinetically constrained models. In particular, we contribute to the debate about transport in kinetically constrained models, studying the effect of $U(1)$ conservation and inversion-symmetry breaking in a family of quantum East models. Using tensor network techniques, we analyze the dynamics of large MBL systems beyond the limit of exact numerical methods. In this setting, we approach the debated topic of the coexistence of localized and thermal eigenstates separated by energy thresholds known as many-body mobility edges. Inspired by recent experiments, our work further investigates the localization of a small bath induced by the coupling to a large localized chain, the so-called MBL proximity effect. In the first Chapter, we introduce a family of particle-conserving kinetically constrained models, inspired by the quantum East model. The system we study features strong inversion-symmetry breaking, due to the nature of the correlated hopping. We show that these models host so-called quantum Hilbert space fragmentation, consisting of disconnected subsectors in an entangled basis, and further provide an analytical description of this phenomenon. We further probe its effect on dynamics of simple product states, showing revivals in fidelity and local observalbes. The study of dynamics within the largest subsector reveals an anomalous transient superdiffusive behavior crossing over to slow logarithmic dynamics at later times. This work suggests that particle conserving constrained models with inversion-symmetry breaking realize new universality classes of dynamics and invite their further theoretical and experimental studies. Next, we use kinetic constraints and disorder to design a model with many-body mobility edges in particle density. This feature allows to study the dynamics of localized and thermal states in large systems beyond the limitations of previous studies. The time-evolution shows typical signatures of localization at small densities, replaced by thermal behavior at larger densities. Our results provide evidence in favor of the stability of many-body mobility edges, which was recently challenged by a theoretical argument. To support our findings, we probe the mechanism proposed as a cause of delocalization in many-body localized systems with mobility edges suggesting its ineffectiveness in the model studied. In the last Chapter of this Thesis, we address the topic of many-body localization proximity effect. We study a model inspired by recent experiments, featuring Anderson localized coupled to a small bath of free hard-core bosons. The interaction among the two particle species results in non-trivial dynamics, which we probe using tensor network techniques. Our simulations show convincing evidence of many-body localization proximity effect when the bath is composed by a single free particle and interactions are strong. We furthter observe an anomalous entanglement dynamics, which we explain through a phenomenological theory. Finally, we extract highly excited eigenstates of large systems, providing supplementary evidence in favor of our findings. AU - Brighi, Pietro ID - 12732 SN - 2663-337X TI - Ergodicity breaking in disordered and kinetically constrained quantum many-body systems ER - TY - JOUR AB - Quantum kinetically constrained models have recently attracted significant attention due to their anomalous dynamics and thermalization. In this work, we introduce a hitherto unexplored family of kinetically constrained models featuring conserved particle number and strong inversion-symmetry breaking due to facilitated hopping. We demonstrate that these models provide a generic example of so-called quantum Hilbert space fragmentation, that is manifested in disconnected sectors in the Hilbert space that are not apparent in the computational basis. Quantum Hilbert space fragmentation leads to an exponential in system size number of eigenstates with exactly zero entanglement entropy across several bipartite cuts. These eigenstates can be probed dynamically using quenches from simple initial product states. In addition, we study the particle spreading under unitary dynamics launched from the domain wall state, and find faster than diffusive dynamics at high particle densities, that crosses over into logarithmically slow relaxation at smaller densities. Using a classically simulable cellular automaton, we reproduce the logarithmic dynamics observed in the quantum case. Our work suggests that particle conserving constrained models with inversion symmetry breaking realize so far unexplored dynamical behavior and invite their further theoretical and experimental studies. AU - Brighi, Pietro AU - Ljubotina, Marko AU - Serbyn, Maksym ID - 14334 IS - 3 JF - SciPost Physics KW - General Physics and Astronomy SN - 2542-4653 TI - Hilbert space fragmentation and slow dynamics in particle-conserving quantum East models VL - 15 ER - TY - JOUR AB - We demonstrate the possibility of a coupling between the magnetization direction of a ferromagnet and the tilting angle of adsorbed achiral molecules. To illustrate the mechanism of the coupling, we analyze a minimal Stoner model that includes Rashba spin–orbit coupling due to the electric field on the surface of the ferromagnet. The proposed mechanism allows us to study magnetic anisotropy of the system with an extended Stoner–Wohlfarth model and argue that adsorbed achiral molecules can change magnetocrystalline anisotropy of the substrate. Our research aims to motivate further experimental studies of the current-free chirality induced spin selectivity effect involving both enantiomers. AU - Al Hyder, Ragheed AU - Cappellaro, Alberto AU - Lemeshko, Mikhail AU - Volosniev, Artem ID - 14321 IS - 10 JF - The Journal of Chemical Physics KW - Physical and Theoretical Chemistry KW - General Physics and Astronomy SN - 0021-9606 TI - Achiral dipoles on a ferromagnet can affect its magnetization direction VL - 159 ER - TY - JOUR AB - We propose a simple method to measure nonlinear Kerr refractive index in mid-infrared frequency range that avoids using sophisticated infrared detectors. Our approach is based on using a near-infrared probe beam which interacts with a mid-IR beam via wavelength-non-degenerate cross-phase modulation (XPM). By carefully measuring XPM-induced spectral modifications in the probe beam and comparing the experimental data with simulation results, we extract the value for the non-degenerate Kerr index. Finally, in order to obtain the value of degenerate mid-IR Kerr index, we use the well-established two-band formalism of Sheik-Bahae et al., which is shown to become particularly simple in the limit of low frequencies. The proposed technique is complementary to the conventional techniques, such as z-scan, and has the advantage of not requiring any mid-infrared detectors. AU - Lorenc, Dusan AU - Alpichshev, Zhanybek ID - 14342 IS - 9 JF - Applied Physics Letters SN - 0003-6951 TI - Mid-infrared Kerr index evaluation via cross-phase modulation with a near-infrared probe beam VL - 123 ER - TY - JOUR AB - Flows through pipes and channels are, in practice, almost always turbulent, and the multiscale eddying motion is responsible for a major part of the encountered friction losses and pumping costs1. Conversely, for pulsatile flows, in particular for aortic blood flow, turbulence levels remain low despite relatively large peak velocities. For aortic blood flow, high turbulence levels are intolerable as they would damage the shear-sensitive endothelial cell layer2,3,4,5. Here we show that turbulence in ordinary pipe flow is diminished if the flow is driven in a pulsatile mode that incorporates all the key features of the cardiac waveform. At Reynolds numbers comparable to those of aortic blood flow, turbulence is largely inhibited, whereas at much higher speeds, the turbulent drag is reduced by more than 25%. This specific operation mode is more efficient when compared with steady driving, which is the present situation for virtually all fluid transport processes ranging from heating circuits to water, gas and oil pipelines. AU - Scarselli, Davide AU - Lopez Alonso, Jose M AU - Varshney, Atul AU - Hof, Björn ID - 14341 IS - 7977 JF - Nature SN - 0028-0836 TI - Turbulence suppression by cardiac-cycle-inspired driving of pipe flow VL - 621 ER - TY - CONF AB - We formalized general (i.e., type-0) grammars using the Lean 3 proof assistant. We defined basic notions of rewrite rules and of words derived by a grammar, and used grammars to show closure of the class of type-0 languages under four operations: union, reversal, concatenation, and the Kleene star. The literature mostly focuses on Turing machine arguments, which are possibly more difficult to formalize. For the Kleene star, we could not follow the literature and came up with our own grammar-based construction. AU - Dvorak, Martin AU - Blanchette, Jasmin ID - 13120 SN - 9783959772846 T2 - 14th International Conference on Interactive Theorem Proving TI - Closure properties of general grammars - formally verified VL - 268 ER - TY - JOUR AB - Bundling crossings is a strategy which can enhance the readability of graph drawings. In this paper we consider good drawings, i.e., we require that any two edges have at most one common point which can be a common vertex or a crossing. Our main result is that there is a polynomial-time algorithm to compute an 8-approximation of the bundled crossing number of a good drawing with no toothed hole. In general the number of toothed holes has to be added to the 8-approximation. In the special case of circular drawings the approximation factor is 8, this improves upon the 10-approximation of Fink et al. [14]. Our approach also works with the same approximation factor for families of pseudosegments, i.e., curves intersecting at most once. We also show how to compute a 9/2-approximation when the intersection graph of the pseudosegments is bipartite and has no toothed hole. AU - Arroyo Guevara, Alan M AU - Felsner, Stefan ID - 13969 IS - 6 JF - Journal of Graph Algorithms and Applications SN - 1526-1719 TI - Approximating the bundled crossing number VL - 27 ER - TY - CONF AB - We study the Hamilton cycle problem with input a random graph G ~ G(n,p) in two different settings. In the first one, G is given to us in the form of randomly ordered adjacency lists while in the second one, we are given the adjacency matrix of G. In each of the two settings we derive a deterministic algorithm that w.h.p. either finds a Hamilton cycle or returns a certificate that such a cycle does not exist for p = p(n) ≥ 0. The running times of our algorithms are O(n) and respectively, each being best possible in its own setting. AU - Anastos, Michael ID - 14344 SN - 9781611977554 T2 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms TI - Fast algorithms for solving the Hamilton cycle problem with high probability VL - 2023 ER - TY - JOUR AB - Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes. AU - Schamberger, Barbara AU - Ziege, Ricardo AU - Anselme, Karine AU - Ben Amar, Martine AU - Bykowski, Michał AU - Castro, André P.G. AU - Cipitria, Amaia AU - Coles, Rhoslyn A. AU - Dimova, Rumiana AU - Eder, Michaela AU - Ehrig, Sebastian AU - Escudero, Luis M. AU - Evans, Myfanwy E. AU - Fernandes, Paulo R. AU - Fratzl, Peter AU - Geris, Liesbet AU - Gierlinger, Notburga AU - Hannezo, Edouard B AU - Iglič, Aleš AU - Kirkensgaard, Jacob J.K. AU - Kollmannsberger, Philip AU - Kowalewska, Łucja AU - Kurniawan, Nicholas A. AU - Papantoniou, Ioannis AU - Pieuchot, Laurent AU - Pires, Tiago H.V. AU - Renner, Lars D. AU - Sageman-Furnas, Andrew O. AU - Schröder-Turk, Gerd E. AU - Sengupta, Anupam AU - Sharma, Vikas R. AU - Tagua, Antonio AU - Tomba, Caterina AU - Trepat, Xavier AU - Waters, Sarah L. AU - Yeo, Edwina F. AU - Roschger, Andreas AU - Bidan, Cécile M. AU - Dunlop, John W.C. ID - 12710 IS - 13 JF - Advanced Materials SN - 0935-9648 TI - Curvature in biological systems: Its quantification, emergence, and implications across the scales VL - 35 ER - TY - JOUR AB - Photoisomerization of azobenzenes from their stable E isomer to the metastable Z state is the basis of numerous applications of these molecules. However, this reaction typically requires ultraviolet light, which limits applicability. In this study, we introduce disequilibration by sensitization under confinement (DESC), a supramolecular approach to induce the E-to-Z isomerization by using light of a desired color, including red. DESC relies on a combination of a macrocyclic host and a photosensitizer, which act together to selectively bind and sensitize E-azobenzenes for isomerization. The Z isomer lacks strong affinity for and is expelled from the host, which can then convert additional E-azobenzenes to the Z state. In this way, the host–photosensitizer complex converts photon energy into chemical energy in the form of out-of-equilibrium photostationary states, including ones that cannot be accessed through direct photoexcitation. AU - Gemen, Julius AU - Church, Jonathan R. AU - Ruoko, Tero-Petri AU - Durandin, Nikita AU - Białek, Michał J. AU - Weissenfels, Maren AU - Feller, Moran AU - Kazes, Miri AU - Borin, Veniamin A. AU - Odaybat, Magdalena AU - Kalepu, Rishir AU - Diskin-Posner, Yael AU - Oron, Dan AU - Fuchter, Matthew J. AU - Priimagi, Arri AU - Schapiro, Igor AU - Klajn, Rafal ID - 13340 IS - 6664 JF - Science TI - Disequilibrating azoarenes by visible-light sensitization under confinement VL - 381 ER - TY - JOUR AB - The elasticity of disordered and polydisperse polymer networks is a fundamental problem of soft matter physics that is still open. Here, we self-assemble polymer networks via simulations of a mixture of bivalent and tri- or tetravalent patchy particles, which result in an exponential strand length distribution analogous to that of experimental randomly cross-linked systems. After assembly, the network connectivity and topology are frozen and the resulting system is characterized. We find that the fractal structure of the network depends on the number density at which the assembly has been carried out, but that systems with the same mean valence and same assembly density have the same structural properties. Moreover, we compute the long-time limit of the mean-squared displacement, also known as the (squared) localization length, of the cross-links and of the middle monomers of the strands, showing that the dynamics of long strands is well described by the tube model. Finally, we find a relation connecting these two localization lengths at high density and connect the cross-link localization length to the shear modulus of the system. AU - Sorichetti, Valerio AU - Ninarello, Andrea AU - Ruiz-Franco, José AU - Hugouvieux, Virginie AU - Zaccarelli, Emanuela AU - Micheletti, Cristian AU - Kob, Walter AU - Rovigatti, Lorenzo ID - 12705 IS - 7 JF - Journal of Chemical Physics SN - 0021-9606 TI - Structure and elasticity of model disordered, polydisperse, and defect-free polymer networks VL - 158 ER - TY - JOUR AB - We study turn-based stochastic zero-sum games with lexicographic preferences over objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both randomness as well as controllable and adversarial non-determinism. Lexicographic order allows one to consider multiple objectives with a strict preference order. To the best of our knowledge, stochastic games with lexicographic objectives have not been studied before. For a mixture of reachability and safety objectives, we show that deterministic lexicographically optimal strategies exist and memory is only required to remember the already satisfied and violated objectives. For a constant number of objectives, we show that the relevant decision problem is in NP∩coNP, matching the current known bound for single objectives; and in general the decision problem is PSPACE-hard and can be solved in NEXPTIME∩coNEXPTIME. We present an algorithm that computes the lexicographically optimal strategies via a reduction to the computation of optimal strategies in a sequence of single-objectives games. For omega-regular objectives, we restrict our analysis to one-player games, also known as Markov decision processes. We show that lexicographically optimal strategies exist and need either randomization or finite memory. We present an algorithm that solves the relevant decision problem in polynomial time. We have implemented our algorithms and report experimental results on various case studies. AU - Chatterjee, Krishnendu AU - Katoen, Joost P AU - Mohr, Stefanie AU - Weininger, Maximilian AU - Winkler, Tobias ID - 12738 JF - Formal Methods in System Design TI - Stochastic games with lexicographic objectives ER - TY - GEN AB - The zip file includes source data used in the manuscript "CCR7 acts as both a sensor and a sink for CCL19 to coordinate collective leukocyte migration", as well as a representative Jupyter notebook to reproduce the main figures. Please see the preprint on bioRxiv and the DOI link there to access the final published version. Note the title change between the preprint and the published manuscript. A sample script for particle-based simulations of collective chemotaxis by self-generated gradients is also included (see Self-generated_chemotaxis_sample_script.ipynb) to generate exemplary cell trajectories. A detailed description of the simulation setup is provided in the supplementary information of the manuscipt. AU - Ucar, Mehmet C ID - 14279 TI - Source data for the manuscript "CCR7 acts as both a sensor and a sink for CCL19 to coordinate collective leukocyte migration" ER - TY - JOUR AB - We consider large non-Hermitian random matrices X with complex, independent, identically distributed centred entries and show that the linear statistics of their eigenvalues are asymptotically Gaussian for test functions having 2+ϵ derivatives. Previously this result was known only for a few special cases; either the test functions were required to be analytic [72], or the distribution of the matrix elements needed to be Gaussian [73], or at least match the Gaussian up to the first four moments [82, 56]. We find the exact dependence of the limiting variance on the fourth cumulant that was not known before. The proof relies on two novel ingredients: (i) a local law for a product of two resolvents of the Hermitisation of X with different spectral parameters and (ii) a coupling of several weakly dependent Dyson Brownian motions. These methods are also the key inputs for our analogous results on the linear eigenvalue statistics of real matrices X that are presented in the companion paper [32]. AU - Cipolloni, Giorgio AU - Erdös, László AU - Schröder, Dominik J ID - 10405 IS - 5 JF - Communications on Pure and Applied Mathematics SN - 0010-3640 TI - Central limit theorem for linear eigenvalue statistics of non-Hermitian random matrices VL - 76 ER - TY - JOUR AB - Mathematical models often aim to describe a complicated mechanism in a cohesive and simple manner. However, reaching perfect balance between being simple enough or overly simplistic is a challenging task. Frequently, game-theoretic models have an underlying assumption that players, whenever they choose to execute a specific action, do so perfectly. In fact, it is rare that action execution perfectly coincides with intentions of individuals, giving rise to behavioural mistakes. The concept of incompetence of players was suggested to address this issue in game-theoretic settings. Under the assumption of incompetence, players have non-zero probabilities of executing a different strategy from the one they chose, leading to stochastic outcomes of the interactions. In this article, we survey results related to the concept of incompetence in classic as well as evolutionary game theory and provide several new results. We also suggest future extensions of the model and argue why it is important to take into account behavioural mistakes when analysing interactions among players in both economic and biological settings. AU - Graham, Thomas AU - Kleshnina, Maria AU - Filar, Jerzy A. ID - 10770 JF - Dynamic Games and Applications SN - 2153-0785 TI - Where do mistakes lead? A survey of games with incompetent players VL - 13 ER - TY - JOUR AB - We study direct integrals of quadratic and Dirichlet forms. We show that each quasi-regular Dirichlet space over a probability space admits a unique representation as a direct integral of irreducible Dirichlet spaces, quasi-regular for the same underlying topology. The same holds for each quasi-regular strongly local Dirichlet space over a metrizable Luzin σ-finite Radon measure space, and admitting carré du champ operator. In this case, the representation is only projectively unique. AU - Dello Schiavo, Lorenzo ID - 10145 JF - Potential Analysis SN - 0926-2601 TI - Ergodic decomposition of Dirichlet forms via direct integrals and applications VL - 58 ER - TY - JOUR AB - We say that (Formula presented.) if, in every edge coloring (Formula presented.), we can find either a 1-colored copy of (Formula presented.) or a 2-colored copy of (Formula presented.). The well-known states that the threshold for the property (Formula presented.) is equal to (Formula presented.), where (Formula presented.) is given by (Formula presented.) for any pair of graphs (Formula presented.) and (Formula presented.) with (Formula presented.). In this article, we show the 0-statement of the Kohayakawa–Kreuter conjecture for every pair of cycles and cliques. AU - Liebenau, Anita AU - Mattos, Letícia AU - Mendonca Dos Santos, Walner AU - Skokan, Jozef ID - 11706 IS - 4 JF - Random Structures and Algorithms SN - 1042-9832 TI - Asymmetric Ramsey properties of random graphs involving cliques and cycles VL - 62 ER - TY - JOUR AB - We establish precise right-tail small deviation estimates for the largest eigenvalue of real symmetric and complex Hermitian matrices whose entries are independent random variables with uniformly bounded moments. The proof relies on a Green function comparison along a continuous interpolating matrix flow for a long time. Less precise estimates are also obtained in the left tail. AU - Erdös, László AU - Xu, Yuanyuan ID - 12707 IS - 2 JF - Bernoulli SN - 1350-7265 TI - Small deviation estimates for the largest eigenvalue of Wigner matrices VL - 29 ER - TY - JOUR AB - As developing tissues grow in size and undergo morphogenetic changes, their material properties may be altered. Such changes result from tension dynamics at cell contacts or cellular jamming. Yet, in many cases, the cellular mechanisms controlling the physical state of growing tissues are unclear. We found that at early developmental stages, the epithelium in the developing mouse spinal cord maintains both high junctional tension and high fluidity. This is achieved via a mechanism in which interkinetic nuclear movements generate cell area dynamics that drive extensive cell rearrangements. Over time, the cell proliferation rate declines, effectively solidifying the tissue. Thus, unlike well-studied jamming transitions, the solidification uncovered here resembles a glass transition that depends on the dynamical stresses generated by proliferation and differentiation. Our finding that the fluidity of developing epithelia is linked to interkinetic nuclear movements and the dynamics of growth is likely to be relevant to multiple developing tissues. AU - Bocanegra, Laura AU - Singh, Amrita AU - Hannezo, Edouard B AU - Zagórski, Marcin P AU - Kicheva, Anna ID - 12837 JF - Nature Physics SN - 1745-2473 TI - Cell cycle dynamics control fluidity of the developing mouse neuroepithelium VL - 19 ER - TY - THES AB - During development, tissues undergo changes in size and shape to form functional organs. Distinct cellular processes such as cell division and cell rearrangements underlie tissue morphogenesis. Yet how the distinct processes are controlled and coordinated, and how they contribute to morphogenesis is poorly understood. In our study, we addressed these questions using the developing mouse neural tube. This epithelial organ transforms from a flat epithelial sheet to an epithelial tube while increasing in size and undergoing morpho-gen-mediated patterning. The extent and mechanism of neural progenitor rearrangement within the developing mouse neuroepithelium is unknown. To investigate this, we per-formed high resolution lineage tracing analysis to quantify the extent of epithelial rear-rangement at different stages of neural tube development. We quantitatively described the relationship between apical cell size with cell cycle dependent interkinetic nuclear migra-tions (IKNM) and performed high cellular resolution live imaging of the neuroepithelium to study the dynamics of junctional remodeling. Furthermore, developed a vertex model of the neuroepithelium to investigate the quantitative contribution of cell proliferation, cell differentiation and mechanical properties to the epithelial rearrangement dynamics and validated the model predictions through functional experiments. Our analysis revealed that at early developmental stages, the apical cell area kinetics driven by IKNM induce high lev-els of cell rearrangements in a regime of high junctional tension and contractility. After E9.5, there is a sharp decline in the extent of cell rearrangements, suggesting that the epi-thelium transitions from a fluid-like to a solid-like state. We found that this transition is regulated by the growth rate of the tissue, rather than by changes in cell-cell adhesion and contractile forces. Overall, our study provides a quantitative description of the relationship between tissue growth, cell cycle dynamics, epithelia rearrangements and the emergent tissue material properties, and novel insights on how epithelial cell dynamics influences tissue morphogenesis. AU - Bocanegra, Laura ID - 13081 SN - 2663 - 337X TI - Epithelial dynamics during mouse neural tube development ER - TY - JOUR AB - In the present study, essential and nonessential metal content and biomarker responses were investigated in the intestine of fish collected from the areas polluted by mining. Our objective was to determine metal and biomarker levels in tissue responsible for dietary intake, which is rarely studied in water pollution research. The study was conducted in the Bregalnica River, reference location, and in the Zletovska and Kriva Rivers (the Republic of North Macedonia), which are directly influenced by the active mines Zletovo and Toranica, respectively. Biological responses were analyzed in Vardar chub (Squalius vardarensis; Karaman, 1928), using for the first time intestinal cytosol as a potentially toxic cell fraction, since metal sensitivity is mostly associated with cytosol. Cytosolic metal levels were higher in fish under the influence of mining (Tl, Li, Cs, Mo, Sr, Cd, Rb, and Cu in the Zletovska River and Cr, Pb, and Se in the Kriva River compared to the Bregalnica River in both seasons). The same trend was evident for total proteins, biomarkers of general stress, and metallothioneins, biomarkers of metal exposure, indicating cellular disturbances in the intestine, the primary site of dietary metal uptake. The association of cytosolic Cu and Cd at all locations pointed to similar pathways and homeostasis of these metallothionein-binding metals. Comparison with other indicator tissues showed that metal concentrations were higher in the intestine of fish from mining-affected areas than in the liver and gills. In general, these results indicated the importance of dietary metal pathways, and cytosolic metal fraction in assessing pollution impacts in freshwater ecosystems. AU - Filipović Marijić, Vlatka AU - Krasnici, Nesrete AU - Valić, Damir AU - Kapetanović, Damir AU - Vardić Smrzlić, Irena AU - Jordanova, Maja AU - Rebok, Katerina AU - Ramani, Sheriban AU - Kostov, Vasil AU - Nastova, Rodne AU - Dragun, Zrinka ID - 12863 JF - Environmental Science and Pollution Research SN - 0944-1344 TI - Pollution impact on metal and biomarker responses in intestinal cytosol of freshwater fish VL - 30 ER - TY - JOUR AB - Coherent control and manipulation of quantum degrees of freedom such as spins forms the basis of emerging quantum technologies. In this context, the robust valley degree of freedom and the associated valley pseudospin found in two-dimensional transition metal dichalcogenides is a highly attractive platform. Valley polarization and coherent superposition of valley states have been observed in these systems even up to room temperature. Control of valley coherence is an important building block for the implementation of valley qubit. Large magnetic fields or high-power lasers have been used in the past to demonstrate the control (initialization and rotation) of the valley coherent states. Here, the control of layer–valley coherence via strong coupling of valley excitons in bilayer WS2 to microcavity photons is demonstrated by exploiting the pseudomagnetic field arising in optical cavities owing to the transverse electric–transverse magnetic (TE–TM)mode splitting. The use of photonic structures to generate pseudomagnetic fields which can be used to manipulate exciton-polaritons presents an attractive approach to control optical responses without the need for large magnets or high-intensity optical pump powers. AU - Khatoniar, Mandeep AU - Yama, Nicholas AU - Ghazaryan, Areg AU - Guddala, Sriram AU - Ghaemi, Pouyan AU - Majumdar, Kausik AU - Menon, Vinod ID - 12836 IS - 13 JF - Advanced Optical Materials TI - Optical manipulation of Layer–Valley coherence via strong exciton–photon coupling in microcavities VL - 11 ER - TY - JOUR AB - This paper deals with the large-scale behaviour of dynamical optimal transport on Zd -periodic graphs with general lower semicontinuous and convex energy densities. Our main contribution is a homogenisation result that describes the effective behaviour of the discrete problems in terms of a continuous optimal transport problem. The effective energy density can be explicitly expressed in terms of a cell formula, which is a finite-dimensional convex programming problem that depends non-trivially on the local geometry of the discrete graph and the discrete energy density. Our homogenisation result is derived from a Γ -convergence result for action functionals on curves of measures, which we prove under very mild growth conditions on the energy density. We investigate the cell formula in several cases of interest, including finite-volume discretisations of the Wasserstein distance, where non-trivial limiting behaviour occurs. AU - Gladbach, Peter AU - Kopfer, Eva AU - Maas, Jan AU - Portinale, Lorenzo ID - 12959 IS - 5 JF - Calculus of Variations and Partial Differential Equations SN - 0944-2669 TI - Homogenisation of dynamical optimal transport on periodic graphs VL - 62 ER - TY - JOUR AB - Cu2–xS and Cu2–xSe have recently been reported as promising thermoelectric (TE) materials for medium-temperature applications. In contrast, Cu2–xTe, another member of the copper chalcogenide family, typically exhibits low Seebeck coefficients that limit its potential to achieve a superior thermoelectric figure of merit, zT, particularly in the low-temperature range where this material could be effective. To address this, we investigated the TE performance of Cu1.5–xTe–Cu2Se nanocomposites by consolidating surface-engineered Cu1.5Te nanocrystals. This surface engineering strategy allows for precise adjustment of Cu/Te ratios and results in a reversible phase transition at around 600 K in Cu1.5–xTe–Cu2Se nanocomposites, as systematically confirmed by in situ high-temperature X-ray diffraction combined with differential scanning calorimetry analysis. The phase transition leads to a conversion from metallic-like to semiconducting-like TE properties. Additionally, a layer of Cu2Se generated around Cu1.5–xTe nanoparticles effectively inhibits Cu1.5–xTe grain growth, minimizing thermal conductivity and decreasing hole concentration. These properties indicate that copper telluride based compounds have a promising thermoelectric potential, translated into a high dimensionless zT of 1.3 at 560 K. AU - Xing, Congcong AU - Zhang, Yu AU - Xiao, Ke AU - Han, Xu AU - Liu, Yu AU - Nan, Bingfei AU - Ramon, Maria Garcia AU - Lim, Khak Ho AU - Li, Junshan AU - Arbiol, Jordi AU - Poudel, Bed AU - Nozariasbmarz, Amin AU - Li, Wenjie AU - Ibáñez, Maria AU - Cabot, Andreu ID - 12915 IS - 9 JF - ACS Nano SN - 1936-0851 TI - Thermoelectric performance of surface-engineered Cu1.5–xTe–Cu2Se nanocomposites VL - 17 ER -